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The frontal aslant tract (FAT) is a recently identified white matter tract connecting

the supplementary motor complex and lateral superior frontal gyrus to the inferior

frontal gyrus. Advancements in neuroimaging and refinements to anatomical dissection

techniques of the human brain white matter contributed to the recent description of

the FAT anatomical and functional connectivity and its role in the pathogenesis of

several neurological, psychiatric, and neurosurgical disorders. Through the application

of diffusion tractography and intraoperative electrical brain stimulation, the FAT was

shown to have a role in speech and language functions (verbal fluency, initiation

and inhibition of speech, sentence production, and lexical decision), working memory,

visual–motor activities, orofacial movements, social community tasks, attention, and

music processing. Microstructural alterations of the FAT have also been associated

with neurological disorders, such as primary progressive aphasia, post-stroke aphasia,

stuttering, Foix–Chavany–Marie syndrome, social communication deficit in autism

spectrum disorders, and attention–deficit hyperactivity disorder. We provide a systematic

review of the current literature about the FAT anatomical connectivity and functional roles.

Specifically, the aim of the present study relies on providing an overview for practical

neurosurgical applications for the pre-operative, intra-operative, and post-operative

assessment of patients with brain tumors located around and within the FAT. Moreover,

some useful tests are suggested for the neurosurgical evaluation of FAT integrity to plan

a safer surgery and to reduce post-operative deficits.

Keywords: diffusion-weighted imaging, executive function skills, frontal aslant tract, language, working memory,

motor coordination, neurosurgery, tractography

INTRODUCTION

Refinements in the study of the human brain white matter by different means, such as dissection
and advanced MR imaging techniques are leading to the discovery of new brain pathways. The
frontal aslant tract (FAT) is a brain white matter tract connecting the superior frontal gyrus (SFG),
specifically the pre-supplementary motor area (pre-SMA), supplementary motor area (SMA), and
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lateral SFG to the pars opercularis and pars triangularis of
the inferior frontal gyrus (IFG) and the anterior insula. The
first time that connectivity between the pre-SMA and the
IFG was established was in 2007 (1). Catani et al. (2) and
Thiebaut de Schotten et al. (3) were the first to explicitly
name the FAT because of its oblique direction within the
frontal lobe. Since then, the FAT has been described using
ex vivo fiber dissections (4–14). Although from the discovery
of such white matter tract many papers described its role
in different functions, such as speech and language functions
(15–18), working memory (19–21), and visual–motor activities
(22–25), and its possible involvement in the pathogenesis of
several neurological, psychiatric, and neurosurgical disorders,
the awareness of such fascicle is still not well-popularized in
the neurosurgical community. For this reason, we decided to
perform a systematic literature review and to focus on the
neurosurgical applications of the current knowledge on the
FAT. Our objective is to suggest practical indications and useful
tests for the pre-operative, intra-operative, and post-operative
evaluation of patients with brain tumors located around and
within this tract or patients undergoing frontal lobe epilepsy
surgery, providing to the neurosurgeon useful information to
plan a safer surgery and to reduce post-operative deficits.

METHODS

Search Strategy
We performed a systematic review according to the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) statement guidelines (26). We used the following
databases for the search: PubMed, Ovid MEDLINE, and
Ovid EMBASE. We used the terms “FRONTAL,” “ASLANT,”
and “TRACT” as individual keywords or MeSH terms in
combination with the Boolean operator “AND” to maximize
the identification of articles describing the FAT. Full search
strategies are detailed for each database as follows: the PUBMED
query was (“frontal”[All Fields] OR “frontalis”[All Fields]
OR “frontalization”[All Fields] OR “frontally”[All Fields] OR
“frontals”[All Fields]) AND “aslant”[All Fields] AND (“tract”[All
Fields] OR “tracts”[All Fields]), and the Ovid MEDLINE and
EMBASE queries were “frontal” AND “aslant” AND “tract.” The
search was conducted including all the articles published until 31
July 2020, and no restrictions were applied for the study design.

Data were extracted by two independent authors (DE and
EG) and reviewed by a third author (ELC). The results were
exported to the Mendeley citation manager, and after duplicate
removal, title and abstracts were firstly screened and full text
were obtained. The reference lists of the full-text papers were
examined to identify additional relevant studies. Any dissension
was resolved through discussion between the three independent
reviewers, and an agreement was reached on all the articles
included in the review.

Selection Criteria
The selection criteria applied to the systematic review were
the following: studies written in English language involving
human participants (only animal studies were excluded) and

investigating brain white matter through post-mortem dissection
or in vivo brain imaging techniques. Studies were excluded if they
were not published as a full text in English because of insufficient
data. During full-text screening, 19 articles were further excluded,
including five reviews not introducing new concepts.

Data Collection
Data from the included articles were extracted, assembled, and
analyzed using Microsoft Excel 2019 (Microsoft Corp, Redmond,
WA). The details collected consisted of the study title, authors,
first author’s country, publication year, publication journal, type
of research (anatomical, clinical, or surgical), subjects (patient
or human cadaver), total population sample size, pathology
investigated, and the main result of the study.

RESULTS

A total of 261 records were retrieved (Figure 1). After 166
duplicate records have been removed, the titles and abstracts of
95 records were screened. During exclusion criteria application
and full-text screening, 25 records were excluded, with 70
remaining articles from 2012 to July 2020, including anatomical,
clinical, and neurosurgical studies. To review the available data
about the FAT, we started describing the anatomy and then
we highlight its role in different brain function fields, such as
language, executive functions, lexical decisions, stuttering, oro-
facial movements, working memory, social community tasks,
attention, and music processing.

DISCUSSION

Anatomy
Cortical Connections
The FAT is a white matter fiber tract traveling in the coronal
plane connecting the SFG to the ipsilateral IFG (27) (Figure 2).
According to the parcellation scheme developed by the Human
Connectome Project (HCP), the FAT connects the SFG, in
particular, two parcellations of the SMA complex (6ma and
SFL) and two of the dorsolateral prefrontal cortex (8BL and S6-
8) to the IFG (parcellations 44, 6r) and the frontal operculum
(parcellations FOP1, FOP3, and FOP4) as well as the middle
insula (MI) parcellation in the anterior insula (28, 29). In line
with the parcellation scheme, the tractography of the FAT shows
terminations into the SFG, including not only the pre-SMA and
SMA but also the lateral SFG (30). Varriano et al. (21) defined
the extended FAT, “exFAT,” as the FAT projecting more anteriorly
into the SFG. Catani et al. (15) reported the termination of the
FAT into the anterior cingulate cortex. The major projection of
the FAT in the IFG is the pars opercularis, but some fibers may
also reach the pars triangularis (2, 27) and the inferior region
of the pre-central gyrus (PrCG) (2). Non-homologous callosal
connections have been described between the premotor areas,
and some authors introduced the concept of “crossed FAT” that
may have a role in the recovery from the SMA syndrome (10).

In children, the predominance of fibers that travel from the
IFG-pars opercularis (IFG-Op) projects to the pre-SMA, but
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FIGURE 1 | Flow chart applied to the retrieval and selection of studies included in the systematic literature review according to PRISMA guidelines.

projections to the SMA and to the anterior cingulate are also
found (31).

An anterior and posterior component of the FAT have been
described, the first connecting Brodmann area (BA) 44 with the
pre-SMA, and the latter connecting BA 6 with the SMA (17).
Conflicting evidence about volumetric lateralization could be
found in the current literature. While some papers suggested
a left lateralization of the FAT in right-handed individuals (3),
other studies found no trend of lateralization across 29 (32) and
10 healthy subjects (4, 33). In 19 typical 5- to 8-year-olds children,
the FAT showed right laterality and a trend toward increasing
left laterality with age (31). Variable age-related changes in the
microstructure were noticed until early adulthood (31, 33, 34).

The presence of a bidirectional connection between the
SFG to the Broca area has also been demonstrated through
corticocortical evoked potentials (CCEPs). The latencies of CCEP
responses were significantly shorter in the SFG from the Broca

area stimulation than in the Broca area from the SFG stimulation
(35). This could be explained by the presence of a direct
corticocortical pathway from the Broca area to the SFG and an
indirect cortico-subcortical pathway connecting the SFG to the
Broca area. Another explanation is that different latencies reflect
antidromic or orthodromic projection (35).

Superior Frontal Gyrus
The terminations of the FAT are still objects of study. The upper
terminations are commonly identified in the SMA complex in
the medial SFG, but also in the dorsolateral prefrontal cortex of
the SFG (28–30). The SMA complex is subdivided into the SMA
proper, the pre-SMA anteriorly and the supplementary eye field
(9, 30) both in the medial surface of the SFG (30), delimitated
superiorly by the superior hemispheric border, the cingulate
sulcus inferomedially, and the precentral sulcus posteriorly (36)
(Figure 3). The anterior border of the pre-SMA is an imaginary
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FIGURE 2 | MR-diffusion tensor imaging of the frontal aslant tract (FAT) in a

23-year-old healthy female. Right (red) and left (yellow) FAT overlaid over

coronal images (A), left FAT terminations in the left posterior inferior frontal

gyrus overlaid over sagittal images (B), superior right and left FAT terminations,

respectively, in the right and left superior frontal gyrus overlaid over axial

images (C). 3D brain reconstruction of right and left FAT (D).

line tangential to the rostral portion of the corpus callosum
genu and perpendicular to the line connecting the anterior and
posterior commissures (AC–PC line) (36). There are differences
in histochemical and cytoarchitectonic properties between the
pre-SMA and the SMA proper, but since there is no visible
border between these two areas, a vertical imaginary plane
passing through the anterior commissure and perpendicular
to the AC–PC line is considered as the border (9, 30, 37).
Instead of subdividing the SMA into the pre-SMA and SMA
proper, the HCP subdivides the SMA into four parcellations:
6ma, SFL, 6mp, and SCEF; the first two parcellations are part
of the terminations of the FAT. According to the HCP, from the
SMA originates a medial bundle connected to the homologous
contralateral SMA, a middle bundle descending to the basal
ganglia and the corticospinal tract, and a lateral bundle, part of
the FAT, connected to the IFG and insula (38). The HCP has
also subdivided the dorsolateral prefrontal cortex into 13 areas;
two of them, SFL and 8BL, are terminations of the FAT (28). The
SFG is also connected to the inferior fronto-occipital fasciculus,
the cingulum, and a callosal fiber bundle connecting the SFG
bilaterally (5).

Inferior Frontal Gyrus
The IFG is delimitated superiorly by the inferior frontal
sulcus, its posterior part inferiorly by the Sylvian fissure, and
medially by the orbitofrontal gyri. The IFG is composed of
three cortical regions: the pars orbitalis, the pars triangularis,

and the pars opercularis, limited posteriorly by the precentral
sulcus. Four major connections of the IFG have been identified
and are represented by the FAT: the superior longitudinal
fasciculus/arcuate fasciculus complex, the inferior fronto-
occipital fasciculus, the uncinate fasciculus, and the callosal fibers
connecting the IFG bilaterally (4).

Insula
The insula is hidden within the Sylvian fissure and is in
continuity superiorly with the fronto-parietal opercular region
and inferiorly with the temporal lobe. The central insular sulcus
divides the anterior three short gyri from the posterior long
gyri. The MI area lies in the posterior superior part of the short
insular gyrus (39). The Human Connectome Project divided the
insula in numerous parcellations (39) and found connections of
the MI area with three SFG parcellations (6ma, 8BL, and SFL)
through the FAT (29). The termination of the FAT in the insula
has not been extensively studied, but Baker et al. (39) noted that
a previously known network, the salience network (SN), has as
nodes both FAT terminations and the anterior insula. The SN
connects the fronto-insular cortex, composed of the ventrolateral
prefrontal cortex and the anterior insula, to the anterior cingulate
cortex (ACC) (40). This network, which also includes the
amygdala, hypothalamus, ventral striatum, thalamus, and specific
brainstem nuclei, is not only part of a functional network (41)
but is also the only localization in the brain, jointly with BA 9 in
the prefrontal human cortex, of the von Economo neurons (42).
The fronto-insular cortex plays a role in interoceptive awareness
of changes in homeostatic states, whereas the ACC generates
relevant visceral, autonomic, behavioral, and cognitive responses.
Through mutual interactions, these regions could respond to
homeostatically relevant internal or external stimuli and enrich
them with emotional weight (41). The salience network could
mediate the switching between the processing streams of the
default mode network and the central executive network during
cognitively demanding tasks (40). This interconnection of the
FAT with the anterior insula is also suggested by the similar
spectrum of disorders that lesions to those regions cause. As
the FAT, the anterior insula has been associated with progressive
non-fluent aphasia PNFA, showing hypometabolism, atrophy
(43), and gray matter damage (17) atrophy progression in
large areas. This connection is also supported by the evidence
that neurodegeneration in non-fluent variant (nfv) primary
progressive aphasia (PPA) starts in a syndrome-specific epicenter
and in the opercular region of the left IFG and then spreads to
the most connected regions such as the SMA, insula, striatum,
and inferior parietal regions (44).

Subcortical Connections
The SMA complex is connected to the limbic system via the
cingulum and to the striatum (caudate nucleus and putamen)
via short “U” association fibers and the superior longitudinal
fasciculus I, cingulum, claustrocortical fibers, callosal fibers,
corticospinal tract, frontal aslant tract, and frontostriatal tract (9).
About 10% of the corticospinal fibers arise in the SMA proper,
but no corticospinal fibers originate from the pre-SMA (45). The
FAT is medial to the superior longitudinal fasciculus II (SLF II),
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FIGURE 3 | A 33-year-old woman with a WHO grade II astrocytoma located in the left cortico-subcortical region of the superior frontal gyrus. Surgical resection was

performed through fluorescein-guided microsurgical technique guided by intraoperative neurophysiological monitoring and by functional MRI

(fMRI)/tractography-integrated neuro-navigation system. Pre-operative symptoms included motor partial seizure affecting the right leg, followed by a generalized

seizure. The patient post-operatively developed a transient mild weakness in the right leg. Preoperative axial and coronal T2-weighted MR images (A), post-operative

axial T1-weighted post-gadolinium and coronal T2-weighted MR images (B), fMRI with blood oxygen level-dependent response in the left paracentral lobule evoked

during voluntary movement of the right foot overlaid on sagittal T1-weighted MR images (C), and 3D relationship between the tumor and frontal aslant tract

tractography reconstruction (D).

which is orthogonal to the FAT, and lateral to the frontostriatal
tract (FST) and claustrocortical fibers (CCF) (9, 13).

Regions of Interest for FAT Tracking
The FAT tracking is usually delineated by an axial “AND” region
of interest (ROI) on the white matter of the SFG and a sagittal
“AND” ROI on the white matter of the IFG (including the
pars opercularis and triangularis) (22). The SMA ROI’s anterior
border is the anterior tip of the cingulate gyrus, while the
posterior border is the precentral sulcus (34).

Surgery-Related Deficits
Acute deficits reported immediately after surgery involving the
FAT were aphasia, impairment of speech, self-initiated speech
disorders, speech hesitancy, numerous pauses and delays during
conversation, anomia, delays in naming and word finding
difficulties, errors in verb generation tasks, perseverations, need
for phonological cues, errors with reading, delay in counting, and
simple calculations (35, 46–49).

Lesion of the FAT during tumor resection can result in
peculiar deficits. In six patients with lesion close or inside the
left FATs, only the last ones experienced transient impairment of
speech. All patients recovered language function within 8 weeks
(35). Young et al. (47) reported a case of a patient operated for
a lower-grade diffuse glioma invading the dominant FAT, which

was significantly disrupted in the post-operative diffusion tensor
image (DTI). After transient symptoms, from post-operative
day 4 to follow-up at 9 months after surgery, the patient still
experienced fluent speech and intact naming/counting/sentence
repetition. In one patient with brain tumor at the level of
the left FAT, noun-based verb generation task and inverse task
(i.e., verb-based noun generation) impairment, noted during
intra-operatory stimulation of pre-SMA and left FAT, partially
persisted 1 month after surgery, while performance on other
language tasks remained acceptable. DTI confirmed left FAT
damage and corona radiata partial damage, but left Broca’s area
was intact and the SMA/preSMA region was the only cortical
region damaged (49). On five patients with left insular or frontal
language-eloquent glioma, no one had a permanent surgery-
related aphasia (46). A total of 19 patients with frontal glioma
(14 left and five right) underwent awake surgery. Persistent
speech initiation disturbances 3 months after the resection
of a SMA glioma were noted only in one patient with left
FAT disappearance. No post-operative speech disorders were
observed after right-side surgeries (48).

Surgical access to frontal subcortical pathology has primarily
been fulfilled via either transcortical or transcallosal routes.
In order to reduce surgical injury to the white matter tracts
and cortex, a tailored trans-sulcal para-fascicular corridor
surgery to the frontal horn, third ventricle, and subcortical
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frontal lobe has been developed (13). Kocher’s point (KP)
represents the most used entry point to access the frontal
horn of the lateral ventricle, and it relies exclusively on
craniometric landmarks, not considering brain matter
tracts, such as FAT, CCF, and SLF-II which are directly on
KP trajectory. Kassam et al. purposely built and designed
an optimized corridor to diminish subcortical surgical
damage (50).

The role of the FAT in speech initiation was investigated
through studies of electrical stimulation. Vassal et al. were the first
to observe arrest of speech induced by stimulation of the left FAT
during an awake resection of a left frontal lobe glioma in a right-
handed patient without language deficits. The speech normalized
again when the stimulation stopped (51). In another study by Fuji
et al., FAT stimulation, on five right-handed patients, induced
speech arrest in four patients and speech initiation delay in the
other patient (52). Similar results were obtained by Kinoshita
et al., who performed intra-operative electrical stimulation in 19
patients with frontal lobe tumors. Sixteen of these patients had
speech arrest during the stimulation (48). The frontal aslant tract
has been considered as part of the “negative motor network”; in
fact, direct electrical stimulation over this tract causes movement
arrest defined as negative motor response (53, 54).

During awake surgery of frontal tumors, direct cortical and
subcortical electrostimulation (52, 55) combined with navigated
tractography (51, 52) permitted to map and respect the FAT as a
functional boundary.

Bizzi et al. observed that low-grade glioma (LGG) infiltration
into the frontal intralobar tracts, including the FAT, may not
always cause language deficits. In fact, LGGs tend to spare pars
opercularis, the most eloquent area in the IFG, since infiltration
of pars orbitalis and triangularis did not cause any language
impairment (56). This could be explained by the adaptive
plasticity of the frontal operculum and the presence of natural
macroscopic (i.e., sulci) and microscopic barriers (i.e., cortical
cyto-architecture) that may prevent the diffusion of the tumor
into the pars opercularis (56).

The preservation of the FAT, despite acute post-surgical
transient speech and motor disorders, permitted complete
functional recovery within a few weeks after resection (51, 52,
55). Despite the preservation of the FAT, two patients out of
50, had permanent motor deficit, one due to injury to the
supplementary motor area proper and one due to a partial injury
of the corticospinal tract, but none of the patients experienced
permanent speech disturbance after tumor removal (55).

Roles in Verbal Fluency
Verbal fluency is a cognitive function that helps information
retrieval from memory. Semantic fluency is tested by asking to
generate words belonging to given categories (e.g., names of
animals), while phonemic fluency is tested by asking for words
beginning with a given letter, usually F, A, and S (57).

Microstructural abnormalities of the FAT were significantly
associated with verbal fluency deficits measured by mean length
of utterance and words-per-minute tasks in patients with
primary progressive aphasia. Catani et al. found no correlations
between the FAT and measures of overall language impairment,

grammar deficit, repetition or single word comprehension
(measured, respectively by Western Aphasia Battery Aphasia
Quotient, Northwestern Anagram Test Western Aphasia
Battery—Repetition and Peabody Picture Vocabulary Test)
(15). Alteration of the left FAT is correlated only with nfv
in PPA (15, 16). This suggests a dissociation between verbal
fluency and semantic processing functions, which relay,
respectively on the FAT and on the uncinate fasciculus (15, 17).
Mandelli et al. results strongly suggest that neurodegeneration
in nfv-PPA starts in a syndrome-specific epicenter in the
dorsal portion of the opercular region of the left IFG and
then spreads most significantly to the SMA through the
FAT (44).

In chronic post-stroke aphasia speech, fluency was uniquely
correlated with left motor cortex and underlying white matter
(including the anterior section of the arcuate fasciculus and the
frontal aslant tract) (18, 58, 59). Damage to FAT in chronic
aphasia due to left-hemisphere ischemic stroke correlated with
both semantic and phonological fluencies (60).

In a patient with crossed aphasia, cholinergic potentiation
and audiovisual repetition–imitation therapy improved language
deficit throughmodifications in the right FAT and the right direct
segment of the arcuate fasciculus (61).

In multiple sclerosis patients, verbal fluency is significantly
correlated with mean fractional anisotropy (FA) in bilateral
frontal aslant tract (62, 63).

In adults with a history of very preterm birth worse verbal
fluency than controls is correlated to FAT properties and
laterality (64). No association between the frontal aslant tract and
verbal fluency was found in 29 right-handed, healthy university
students; however, lexical decision was correlated with FAT
laterality (32).

Single-photon emission computed tomography and
functional near-infrared spectroscopy suggested that FAT
may play a crucial role in word retrieval difficulty in acute
thalamic stroke survivors; furthermore, SMA may contribute to
improve word retrieval difficulty (65). No correlation between
FAT and apraxia of speech (66) or syntax (67) has been noticed.
Naming recovery in patients with aphasia after a left hemispheric
stroke also showed no correlation with FAT (68). In subthalamic
nucleus deep brain stimulation, the most reported adverse effect
is verbal fluency impairment, but it could be not associated with
the damage of fiber pathways along the electrode trajectories,
including the FAT (69).

Speech fluency can be measured by different tests, such as
the Western Aphasia Battery-Revised (WAB-R) fluency subtest
and words per minutes (WPM) test. The WPM and WAB
fluency are related, but not redundant, measures of fluency. The
WPM and WAB fluency scores highlight the role of the FAT in
verbal fluency (15, 58). Patients with FAT disconnection showed
significantly worse phonemic fluency test scores (70). Low scores
in Brief Language Assessment for Surgical Tumours patients’
articulatory agility task, which requires reciting utterances as
rapidly as possible (e.g., 50, 50, 50. . . ), are associated with
pathologies overlapping with the territory of the FAT (71). In
nfvPPA, the FAT microstructural properties were associated with
the number of distortion errors per hundred words that patients
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made in spontaneous speech during the WAB spoken picture
description task (17).

Roles in Lexical Decision
Sierpowska et al. firstly suggested a relationship between a FAT
damage and lexical retrieval deficits. The authors performed
awake surgery to resect a left frontal tumor and observed, at
the time of tumor resection and at the left FAT intraoperative
electrical stimulation, that the patient, while performing a noun-
based verb generation task, applied a morphological derivation
rule to the given nouns to form new inexistent verbs instead
of retrieving proper existing verbs (49). Pre-operative and
post-operative fMRI analyses revealed that Broca’s area and
preSMA were both activated during the verb generation task.
Indeed several studies have established the role of Broca’s area
in language production, lexical retrieval, and/or selection of
semantic knowledge and grammatical/morphological processing
(49, 72–77), the role of the SMA in speech initiation, coordination
and monitoring, and articulatory abilities (78–81), and the role
of the pre-SMA in linguistic production (15). All of these
regions are cortical terminals of the FAT which, in the post-
operative tractography DTI, was confirmed to be damaged. After
surgery, the patient had good abilities in semantic decisions,
past and present tense forms, and phonological production;
verbal fluency and working memory were instead considerably
affected along with the performance in the noun-based verb
generation task and also in the inverse task of verb-based noun
generation. In another case study, Chernoff et al. considered
two patients, one underwent surgical resection of a left frontal
glioma and the other one underwent left anterior temporal
and hippocampal resection (82). In the first patient, the post-
operative DTI evaluation revealedmicrostructural impairment of
the left FAT and clinically dysfluent speech in complex sentences
without impairment in lexical access. On the contrary, the second
patient presented impairment of the left inferior longitudinal
fasciculus and word finding difficulties without dysfluent speech.
Other language functions were not affected in any patient. To
further investigate the role of the FAT in the mediation process
from sentence planning to lexical access, the authors performed
a second case study of a patient undertaking awake surgery to
remove a left frontal brain tumor. During the surgery, the patient
was given a task consisting of generating a sentence to describe
the spatial relation of a target marked shape (the grammatical
subject of the sentence) with the shape above or below it. In the
course of the intra-operative task execution, stimulation of the
left FAT generated a prolonged inter-word time at the beginning
of syntactic phrases, but inter-word duration within phrases
was either not affected by stimulation or reduced, along with
the sentence’s total extent and intra-word duration. Given this
result, the authors suggested a potential role of the left FAT in
integrating grammatical information with the sentence structure,
thus introducing the “Syntagmatic Constraints On Positional
Elements” hypothesis (83). These evidences lead Corrivetti
et al. to retrospectively analyze functional language maps of
both white and gray matter regions obtained in 17 patients
undergoing awake surgery for left frontal lobe glioma resection.
The conclusion of this study was that motor–speech responses

and lexico-semantic responses are both functions conveyed by
the FAT; specifically, the lexico-semantic role belongs to the
anterior FAT, while the motor–speech function is attributable
to the posterior FAT (84). In contrast with these findings, a
recent study considering 20 patients with a left-hemisphere
stroke located in the frontal lobe did not show any association
between a lower FAT volume and lower conceptual or lexical
selection abilities. The behavioral assessment was measured using
the sentence completion task to evaluate conceptual and lexical
selection and the picture–word interference task to specifically
evaluate the lexical selection. The authors tried to explain this
variance from previous findings, confirming the idea of the
FAT involvement in these functions but assuming a possible
reorganization of the FAT during the post-stroke recovery period
(85). Finally, Vallesi et al. investigated, in a group of 29 healthy
university students, the correlation between macrostructural and
microstructural properties of the FAT, evaluated though the
utilization of DTI indices and the lexical decision processes. The
latter were evaluated through a lexical decision task, in which
the students had to estimate if the letter strings provided were
real Italian terms or invented ones, and the color and shape
discrimination task, in which they had to specify the color and
the shape of the presented stimulus. The result of this study was
the evidence, for the first time, of a positive association between
left lateralization of the FAT and faster lexical decision latency.
However, no correlation was observed between the lateralization
indices of the FAT and verbal fluency (32).

Roles in Stuttering
Stuttering is a childhood-onset speech fluency disorder
that sometimes persists into adulthood, consisting in sound
prolongations and repetitions along with interrupted words
regardless of articulatory features (86). Recently, persistent
developmental stuttering has been associated with anatomical
abnormalities and lower activation of the IFG and the ventral
premotor cortex (PMv) (87, 88). This theory is aligned with
the results obtained by Chesters et al. who, after applying
direct current stimulation on the left IFG/PMv, observed an
improvement of speech fluency in people with stuttering (89).
Starting from these evidences, recent studies have investigated
the role of the FAT in speech fluency in people with stuttering.
Among these, Kronfeld-Duenias et al. grouped 15 adults
with persistent developmental stuttering and nine healthy
controls and then analyzed through tractography the volume
and diffusion properties of the FAT. As a result, increased
mean diffusivity in the left FAT was observed in the group
with stuttering compared with controls. Moreover, a negative
association was found between diffusivity values and speech
rate and fluency in the individuals with stuttering. To evaluate
the occurrence of stuttering, the authors used an interview
about a neutral topic and a reading task, and the severity was
instead assessed with the Stuttering Severity Instrument-III
(90, 91). In another study considering eight patients with no
pre-operative stuttering, Kemerdere et al. showed that direct
electrical stimulation of the left FAT, conducted throughout
awake surgical resection of a left frontal glioma, induced
intra-operative transient stuttering. No patient experienced
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post-operative stuttering though during tumor resection, and
the FAT was preserved in all cases. In two patients, minor speech
initiation disorders persisted after surgery (92). Based on these
results and on the studies observed above, the authors identify
the disconnection of the cortico-subcortical circuit, including
the FAT that supports the speech motor control, as a potential
etiopathogenesis of stuttering. Recently, Neef et al. recruited
a group of 31 adults with stuttering and a second group of 34
healthy controls (93) and found impaired white matter integrity
of the right FAT in the group with stuttering. Moreover, a
stronger connectivity of the right FAT was positively associated
with stuttering severity, suggesting an enhanced speech–motor
suppression mechanism in stuttering.

Roles in Executive Functions
Taking the premise that the FAT is a white matter bundle
connecting secondary motor areas, in particular, the Broca’s area
with the SMA and the pre-SMA regions were shown to be
involved, respectively in the online control and in the planning
of simple reaching and grasping actions (94).

The SMA syndrome is a well-known neurosurgical
disturbance that may appear after surgery has been performed
in the unilateral SMA region. This syndrome is defined by a
transient inability to initiate contralateral voluntary movements
which typically spontaneously disappear within 3 months,
except for the incapability to alternate bimanual gestures that is
often irreversibly affected (95). In six patients operated through
surgical excision of low-grade glioma located in the SMA
region, no statistically significant association was found between
recovery time and damage of white matter tracts contiguous
to the SMA, including the FAT, FST, and pyramidal tract,
except for the cingulum (96). The mechanism of functioning
restoration after surgical damage of the FAT is undiscovered,
but it likely involves plasticity of the cortical language network
and recruitment of the contralateral hemisphere, possibly
through transcallosal fibers (47). In fact, right FAT has also a
role in recovery after left FAT lesion-associated speech deficit
as suggested by the evidence that cholinergic enhancing,
alone or integrated with a model-based aphasia therapy,
promotes improvements in aphasia by inducing structural plastic
changes in right FAT. Baker et al. hypothesize that a possible
mechanism involved in the recovery from SMA syndrome may
be represented by not equivalent bonds between contralateral
motor areas by supporting interhemispheric connectivity (10).
For this reason, commissural fibers from the contralateral SMA
region should be preserved in order to facilitate the resolution of
transcortical motor aphasia that typically occurs after resection
of SMA lesions (52).

Budisavljevic et al. suggested, for the first time, a potential role
of the FAT in the visuo-motor process that supports movement
planning and feedback control during hand movement vs. a
target object. To support this idea, the authors used DTI to
analyze the microstructural organization of the bilateral FATs
in 32 right-handed, healthy participants who were asked to
perform a reach to grasp task and a reach task vs. a target object.
As a result, a higher anisotropy of the bilateral FAT resulted
to be associated with a more efficient visuo-motor processing

and more stable paths, in particular, with lower acceleration
and deceleration amplitude ranges of reach and reach-to-grasp
movements (22).

Afterwards, the hypothesis of a potential FAT involvement
in the neurological mechanisms underlying visuo-motor
integration was supported by two other studies. In the first
one, Serra et al. enrolled 23 patients with Alzheimer’s disease
(AD) and conducted a probabilistic tractography analysis and
examination of the bilateral FATs FA. Not only the mean FA
resulted to be significantly lower bilaterally in patients with
AD compared to healthy subjects (HS) but also the FA in the
right FAT resulted to be positively associated with patients’
performance at copy of drawings and copy of drawings with
landmarks tests (that evaluate constructional praxis) and Raven’s
colored matrices (that evaluates visuo-spatial logical reasoning)
(23). In the other study, Tsai et al. considered 10 adults with
amblyopia and showed a lower mean FA in in the left FAT
compared to HS (97). Considering that both apraxia and
amblyopia are associated to visuo-motor integration deficits—
in fact, constructional apraxia is defined as the inability to
reproduce spatial patterns due to an impairment of visuo-spatial
analysis and integration with motor planning and skills (25),
while amblyopia was reported to be associated with visuo-motor
defective abilities in tasks demanding precision and speed
(98, 99)—these results support the idea that the FAT may have
a role in these processes. Moreover, Budisavljevic et al., relying
on the observed association between movement deceleration
and the bilateral FATs and supported by previous subcortical
stimulation studies of the white matter corresponding to the
nowadays FAT producing a deceleration (100) or complete
interruption (101) of both hands movements, also suggested for
the first time a potential involvement of the FAT in the inhibitory
control of motor pathway (22). This idea is supported by studies
of fMRI, DWI, TMS, direct cortical/subcortical stimulation, and
electrocorticography showing that the right IFG and the right
SMA and pre-SMA, both interconnected by the FAT, play a role
in the neural motor network in conducting inhibitory regulation
processes (24). In particular, these regions have been described
by Aron et al. as parts of a cortico–basal ganglia–thalamic–
cerebellar circuit (102) where, more specifically, both the right
IFG and the pre-SMA connect to the subthalamic nucleus and
play a role, respectively, in suppressing cortical output and
resolving conflicting behaviors (103, 104). Motor inhibition has
been evaluated through go/no-go and stop signal experimental
models, where a powerful response is launched at first (go trial),
and then it must be supplanted when a stop signal appears (stop
trial) (105–108).

Based on these evidences, Dick et al. assumed that the
FAT is a component of the cortico–basal ganglia–thalamic–
cerebellar anatomical–functional circuit described above and
plays a role in executive functions, especially in the programming
and coordination of sequential motor movements through
a selection among motor plans that compete for the same
motor resources. The authors, in accordance with computational
models of inhibitory regulation for speech and for manual
actions, assume that this function is present bilaterally but is
differently specialized between the two hemispheres: the left
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FAT is specialized for speech programming and controls the
articulatory apparatus, while the right FAT is specialized for
general action and for visuo-motor integration, regulating the
manual/limb and the oculomotor systems (24).

Roles in Oro-Facial Movements
Foix–Chavany–Marie syndrome (FCMS) is a rare syndrome,
usually caused by bilateral lesions of the anterior operculum, for
this reason it is also known as opercular syndrome. FCMS is a
form of pseudobulbar palsy, clinical manifestations range from
severe articulatory disorders to mutism (109), limb weakness
and bowel and bladder incontinence, but with preservation of
involuntary reflex motor movements of the affected muscles,
such as smiling or crying (110). Symptoms usually recover over
a matter of days or over a timespan of months (111). Surgical
damage of connections between FAT and arcuate fasciculus, and
the right pars opercularis caused post-operative FCMS. For this
reason a trans-opercular approach to insulo-opercular gliomas
can generate FCMS (112). In a patient with opercular syndrome,
a volume reduction was noticed in the primary motor cortex,
SMA, posterior portion (BA6) of the operculum and white matter
of the frontal lobe, with a left prevalence, including the CC, AF,
SLF, FAT, and CST (109, 113).

Signs of spastic and atrophic bulbar palsy are also present in
amyotrophic lateral sclerosis. Disease duration in amyotrophic
lateral sclerosis patients is associated with atrophy in the cortical
terminations of left FAT and the right precentral gyrus (114).

Roles in Working Memory
Working memory comprises a complex brain system that
maintains information for periods of time going from seconds
to minutes and allows processing of information for future
goal-directed behavior and complex cognitive tasks (115).
Recent studies showed that the FAT can also have implications
in working memory performances. Rizio et al. performed
neuropsychological tasks and DTI in two groups of adults, one
group under 35 years old and the other over 59 years old, with the
aim to evaluate age-related changes in speed, language, working
memory, episodic memory, and inhibitory control. Working
memory evaluation included spatial working memory and both
backward and forward digit span. In both groups, age was a
predictor of working memory, but only in the older group the
integrity of bilateral FAT and left SLF/AF, evaluated through
FA, was a marginal predictor of working memory ability (19).
This result paved the way to other studies that investigated
the FAT functional implication in working memory. Varriano
et al. proposed an extended definition of the FAT (“exFAT”)
that ends further anteriorly into the SFG. The authors evaluated
its volume and laterality in four groups of participants selected
from a total of 900 subjects according to their performance in
language and working memory tasks. The authors observed that
the exFATwas not lateralized in any group; there were statistically
significant differences instead in the volume of the left exFAT
between the groups of best performers and worst performers in
the language task and of the right exFAT between top performers
and bottom performers for 2-back working memory task, but
not for the 0-back working memory task (21). In these n-back

tasks, a series of visual stimuli appears, and the subjects were
asked for each stimulus as to whether it corresponds a stimulus
n trials ahead (20). The FA of the right FAT was also found
to be associated with better visual memory performance in the
delayed matching to sample task in a study considering 39
healthy brothers of autism spectrum disorder (ASD)-affected
boys (116). This task consists on presenting a stimulus to the
subject to make themmemorize it, and after a delay, the stimulus
is presented again but with other stimuli, and the subject has to
choose the right one (117). These evidences suggest that the FAT
is another tract to be considered during tasks performed in awake
surgical resection of tumors located in the right frontal lobe in
order to preserve the working memory function. The working
memory was particularly examined in individuals with right non-
dominant frontal tumors so far, using intraoperative tests, such as

TABLE 1 | Summary of putative frontal aslant tract functions and useful

assessment tests.

Roles Specific functions Evaluation tests

Language Verbal fluency Phonemic fluency tests (FAS)

Mean length of utterance

Western Aphasia Battery-Revised

(WAB-R) fluency subtest

Words per minutes (WPM) test

Control of the

articulatory apparatus

Interview about a neutral topic

Reading task

Stuttering Severity Instrument (SSI)

Lexical and semantic

word selection

Noun-based verb generation task

Verb-based noun generation task

Sentence completion task

Picture-word interference task

Lexical decision task

Grammatical

processing

Sentence generation task

Motor and

executive

functions

Visuo-motor integration Reach to grasp task

Reach task vs. a target object

Constructional praxis Copy of drawings test

Copy of drawings with landmarks

test

Raven’s Colored Matrices

Inhibitory regulation of

speech and motor

actions

Go/No Go trial

Stop-Signal trial

Executive function

abilities

Behavior Rating Inventory of

Executive Function (BRIEF)

Working

memory

Verbal, spatial and

visual working memory

Backward and forward digit span test

n-back working memory task

Delayed Matching to Sample

(DMS) task

Social

community

and attention

tasks

Identification and

expression of

communicative

purposes and ability to

concentrate

Autism Diagnostic Interview-Revised

(ADI-R)

Social Responsiveness Scale (SRS)

Social Communication Questionnaire

(SCQ)

Child Behavior Checklist (CBCL)

Music

processing

Online correlation and

differentiation of

subsequent sounds

Montreal Battery of Evaluation of

Amusia (MBEA)
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the digit span test for verbal working memory and the 2-back test
for spatial working memory (55, 118).

Finally, in a study conducted by Chen et al., mean diffusivity
of the bilateral FAT, along with the bilateral superior longitudinal
fasciculus, was observed to be significantly associated to fluid
intelligence (119). Fluid intelligence is defined as an innate
capability, independent from experience and education, that
allows one to make logical reasons and decisions to solve
problems and respond to complex and unpredictable situations.
Since this ability is also linked with working memory, executive
functions, and attention, this result is aligned with the studies
mentioned above (120).

Roles in Social Community Tasks
In 2014, Catani and Bambini have proposed a five-levels model
for social communication based on results of functional and
anatomical neuroimaging studies in humans. For each level,

including informative actions, communicative intentions, lexical
and semantic processing, syntactic analysis, and pragmatic
integration, they identified the correlated white matter tracts.
On the bases of the regions and relative functions connected by
the FAT, the authors associated this tract to the communicative
intentions level (level 2), suggesting a role in identification
and expression of communicative purposes (121). Recently, a
relationship has been described between social communication
deficits in ASD and FAT integrity, evaluated through FA.
ASD is a neurological and developmental disorder with
social communication deficits and social reciprocal interaction
impairment as core symptoms, and the diagnosis is clinical
according to the Diagnostic and Statistical Manual of Mental
Disorders (DSM–5) diagnostic criteria (122, 123). These
problems may be seen with various grades of severity using
different scales, of which the most important are the Autism
Diagnostic Interview—Revised and the Social Responsiveness

FIGURE 4 | Graphical representation of the frontal aslant tract and its putative roles.
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Scale for subjects above 18 months, the Social Communication
Questionnaire, and the Child Behavior Checklist (CBCL) for
individuals above 4 years old (124). Lo et al. firstly identified that
the microstructural integrity of the bilateral FAT was decreased
in a group of 62 right-handed boys with ASD compared to
a group of 55 normally developing boys. Moreover, the FA
values resulted to be significantly associated with the severity
of socially related communication and interaction deficits in
the ASD group (125). The same results were obtained later in
another study that had also shown a reduction of the bilateral
FAT integrity in unaffected siblings of subjects with ASD (116).
Based on these results, Lo et al. tried to identify intermediate
phenotypes of social communication deficits in ASD, taking
into consideration three different groups: 30 boys with ASD,
27 healthy brothers of individuals with ASD, and 30 normally
developing boys. According to previous results, the FAT integrity
was reduced both in ASD subjects and in the unaffected siblings.
Moreover, the reduction was also associated with the social
communication scores (126). These findings suggest that the FAT
may potentially contribute to the neural processes involved in
social communication deficits in ASD.

Roles in Attention
Attention-Deficit Hyperactivity Disorder (ADHD) is a complex
and heterogeneous brain developmental condition associated
with excesses levels of hyperactivity and inability to concentrate
(127). The clinical diagnosis is made according to the DSM-5
criteria (123), but ADHD tendency can be assessed through the
Conner’s Comprehensive Behavior Rating Scale in children and
the Conner’s Adult ADHD Rating Scales in adults (128). Garic
et al. observed, for the first time, a relationship between left
laterality of the FAT and attention problems in children (34). In a
group of 70 subjects younger than 19 years old, the left laterality
of the FAT predicted greater attention problems (measured via
CBCL) and lower executive function abilities (measured via the
Behavior Rating Inventory of Executive Function). This result is
aligned with the previous structural and functional neuroimaging
studies showing that right IFG and pre-SMA alterations are also
associated with impaired executive function and ADHD (129–
131).

Roles in Music Processing
Since the IFG and the motor cortical areas have been shown to
contribute to music–syntactic and rhythm processing, the FAT,
connecting these areas, may also be involved in music processing
(132). The first evidence comes from a study conducted in a
group of 42 right-handed stroke patients. Structural impairment
of different white matter tracts, including the FAT, resulted
to be associated with post-stroke non-recovered amusia. To

evaluate the music perception of the patients, the authors used
the Montreal Battery of Evaluation of Amusia (133). According
to the other FAT functions mentioned above, the role of the
FAT in music processing and perception may be, in particular,
related to its role in attention and working memory, both of
which are useful to allow online correlation and differentiation
of subsequent sounds.

CONCLUSION

The frontal aslant tract is a recently identified white matter
tract connecting the supplementary motor area complex
and the lateral superior frontal gyrus to the ipsilateral
inferior frontal gyrus and the anterior insula. The present
review retrieved studies suggesting its involvement in
speech and language functions (verbal fluency, initiation
and inhibition of speech, sentence production, and lexical
decision) as well as executive functions, visual–motor activities,
orofacial movements, inhibitory control, working memory,
social community tasks, attention, and music processing
(Table 1, Figure 4). The acquired knowledge on the FAT
anatomical connectivity and its functional roles may raise
awareness in the neurosurgical community to set up their
practical applications in routine surgical activities and
to pose future foundation for intraoperative stimulation
research studies.
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