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Oculomotor deficits, vestibular impairments, and persistent symptoms are common after

a mild traumatic brain injury (mTBI); however, the relationship between visual-vestibular

deficits, symptom severity, and dynamicmobility tasks is unclear. Twenty-three individuals

(mean age 55.7 ± 9.3 years) with persistent symptoms after mTBI, who were between

3 months to 2 years post-injury were compared with 23 age and sex-matched controls.

Oculomotor deficits [depth perception, near-point convergence, baseline visual acuity

(BLVA), perception time], vestibular deficits (dynamic visual acuity in the pitch and yaw

planes), dynamic mobility measured by the Functional Gait Assessment (FGA), and

symptoms measured by the Post-Concussion Symptom Scale (PCSS) and Dizziness

Handicap Inventory (DHI) were compared between groups. Participants with mTBI had

poorer performance on the FGA (p < 0.001), higher symptom severity on the PCSS

(p < 0.001), and higher DHI scores (p < 0.001) compared to controls. Significant

differences were seen on specific items of the FGA between individuals with mTBI and

controls during walking with horizontal head turns (p = 0.002), walking with vertical head

tilts (p < 0.001), walking with eyes closed (p = 0.003), and stair climbing (p = 0.001).

FGA performance was correlated with weeks since concussion (r = −0.67, p < 0.001),

depth perception (r = −0.5348, p < 0.001), near point convergence (r = −0.4717,

p = 0.001), baseline visual acuity (r = −0.4435, p = 0.002); as well as with symptoms

on the PCSS (r = −0.668, p < 0.001), and DHI (r = −0.811, p < 0.001). Dynamic

balance deficits persist in chronic mTBI and may be addressed using multifaceted

rehabilitation strategies to address oculomotor dysfunction, post-concussion symptoms,

and perception of handicap due to dizziness.

Keywords: baseline visual acuity, post-concussion symptom scale, dizziness handicap inventory, functional gait

assessment, chronic mild traumatic brain injury
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INTRODUCTION

Mild traumatic brain injury (mTBI) is challenging to diagnose
and manage because of the widely disparate mechanisms of
injury, a range of associated symptoms, and a spectrum of
recovery trajectories (1–3). In the United States alone, 75% of the
estimated 2.5–3.8 million people who sustain a traumatic brain
injury (TBI) annually, are considered mild (4, 5). Diagnosis of
mTBI in middle-aged and older adults is further complicated due
to pre-existing comorbidities, side-effects of medications, and
many physical and psychosocial factors (6–8). As a result many
concussive events remain unrecognized and untreated (9), which
may have work-related consequences for middle-aged adults
(10), and could lead to decline in function (11, 12) and potential
loss of independence for older adults (13).

In some individuals with mTBI, symptoms persist, evolve,
or new symptoms develop beyond the 3-month period since
injury; (1, 14–16) these individuals in the chronic stage of
mTBI are said to have “post-concussion syndrome” (16). The
number of people with post-concussion syndrome is unclear,
with prior studies reporting numbers ranging from 15 to 82%
(3, 9, 15, 17). Oculomotor (18), vestibular (19, 20), and visual-
vestibular processing deficits (21–23) have been reported in
the chronic stage of mTBI. These deficits may arise from
injury to the peripheral vestibular structures (11, 24, 25) or
due to traumatic central axonal injury (26–30). Several studies
have examined adults in the chronic stage of mTBI showing
higher post-concussion symptom severity (15, 31–33), poorer
balance control (23, 34), reduced frequency and intensity of
leisure activities (13), change in activity and driving habits
(10, 35), and lower quality of life (15). Skóra et al. (20)
report persistent central vestibular dysfunction in their cohort
of middle-aged participants (mean age 44.4 ± 13.6 years)
6 months after mTBI, although symptoms of dizziness had
decreased in intensity. Using inertial sensors to capture gait
and turning dynamics, Fino et al. (36) have reported that
their participants (mean age 38.4 ± 9.9 years) with chronic
mTBI with peripheral vestibular or oculomotor dysfunction had
slower turning speed compared to healthy controls which were
associated with higher severity of post-concussive symptoms,
while Martini et al. (37) report that single task and dual-task
gait are altered in persons with chronic mTBI (mean age 39.6
± 11.7 years). Row et al. (23) report that in their cohort
(mean age 47.49 ± 16.12 years) vestibular and motor control
deficits are associated with higher symptoms of dizziness. These
studies have examined specific aspects of gait, such as turning
dynamics, gait variability, rhythm, and motor control measured
by accelerometers or laboratory equipment that may not be easily
accessible to clinician practitioners. Hence, the purpose of this
study was to examine the relationship between visual-vestibular
deficits, symptom severity, and a clinical test that examines
dynamic balance.

The Functional Gait Assessment (FGA) is a clinical test that

assesses dynamic balance control during daily activities such as

walking with head turns, stepping over objects, walking in the

dark among others (38, 39). The purpose of this pilot study

was to examine the relationship between visual dysfunction,

peripheral vestibular deficits, symptoms quantified by the post-
concussion symptom scale and dizziness handicap inventory, and
functional mobility in adults between 40 and 80 years of age who
were between 3 months and 2 years post-injury. Our hypotheses
were (1) Visual deficits (measured by depth perception, near-
point convergence, baseline visual acuity, perception time), and
peripheral vestibular deficits (measured by the dynamic visual
acuity test) will be associated with poorer performance on the
FGA; (2) Higher symptom severity on the Post-Concussion
Symptom Scale (PCSS) and higher perception of handicap due
to dizziness on the Dizziness Handicap Inventory (DHI) will be
associated with poorer performance on the FGA.

MATERIALS AND METHODS

Study Design
This was a cross-sectional, comparative study conducted at the
University of Kansas Medical Center. The study protocol was
approved by the University’s Institutional Review Board.

Participants
Participants with mTBI were recruited from the Neurology
clinic, with the assistance of a neurologist (MR). Additionally,
the Healthcare Enterprise Repository for Ontological Narration
(HERON) (40, 41) search discovery tool was used to identify
persons with mTBI who were seen at the University hospital
and who met inclusion and exclusion criteria. Participants who
met screening criteria were contacted if they had signed up
for the Pioneers Research participant registry. Participants were
included if they were: (1) Between 40 and 80 years of age, (2)
Had a diagnosis of mTBI coded by ICD-10 codes (S06.0X0A–
S06.0X9S) or F07.81, (3) Had persistent symptoms from their
injury (determined with a subjective self-report), (4) Were
between 3 months and 2 years since their injury. Due to the
exploratory nature of the study, we included a broad age range.
We selected 3 months to 2 years as the time frame since
injury. The 3-month period allows for spontaneous recovery after
mTBI, while the 2-year period was chosen based on the patient
population that comes to the neurology clinic.

Participants were excluded if they (1) Had a diagnosed
neurological problem, or a history of a visual or vestibular
disorder prior to the mTBI, (2) Had lower extremity injury,
recent surgery or pain that would impact the walking tests,
(3) Had a history of cancer and received chemotherapy, or
(4) If they were involved in litigation due to the injury.
Exclusion criteria were based on evidence that chemotherapy
can independently affect the peripheral vestibular system while
persons involved in litigation have higher stress levels that could
affect performance (42–44).

Healthy controls with no history of head injury were
recruited through word-of-mouth from the campus, and from
the community, and were individually matched for sex and age
(±5 years).

Study Procedure
Participant eligibility was verified using a phone screen and
eligible participants were scheduled for a testing session. All
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participants were informed to wear comfortable shoes and bring
their corrective eyewear to the testing session. After completing
informed consent, demographic information, medical history
such as height, weight, medication list; and for people with
mTBI, the date of injury was collected. Systems review included
history of hearing disorders, migraines, and comorbidities. A
clinical examination was completed (LD) which included sensory
testing, motor testing, and positional testing to rule out benign
paroxysmal positional vertigo (BPPV). Near point convergence
was tested using the Royal Air force convergence ruler and
depth perception was tested using the Randot stereo test (45).
Following the systems review and clinical assessments, the tests
and questionnaires below were completed in random order based
on a random number generator.

The Bertec R© Vision AdvantageTM (Bertec R© Corporation,
Columbus, Ohio, USA) was used to administer the Dynamic
Visual Acuity Test (DVAT). It includes a wireless inertial
measurement unit mounted in the center of the participant’s
forehead using an elastic headband with a 3-axis integrating gyro
(Yost 3-SpaceWireless Sensor, Yost Labs) to determine rotational
head velocity in the yaw and pitch planes (46). Similar to the
work of Quintana et al., the inertial measurement unit was used to
quantify velocity and identify direction of head movement, with
a sampling frequency of 175Hz. The measures of visual acuity
were recorded in Logarithm of theMinimumAngle of Resolution
(LogMAR) units. The LogMAR value of zero corresponds to
20/20 which is the standard for normal vision. The lower the
LogMAR, the better the visual acuity. A negative LogMAR unit
represents better than 20/20 vision.

Participants were seated in a study chair, five feet from the
computer screen. The testing procedure required two baseline
assessments which included testing of baseline visual acuity
(BLVA) and perception time test (PTT) to individualize the
dynamic assessments to the person being tested. BLVA was
measured with the person’s head stationary where an optotype
(the letter “E”) was presented on the computer screen and
they had to correctly identify the orientation of the “E.” Based
on the Hughson-Westlake algorithm, the smallest optotype
that was correctly identified 66% of the time, was considered
their BLVA. For PTT, the optotype appeared for varying
time periods in milliseconds to determine the time that the
participant required to perceive the optotype. For the DVAT,
participants had to generate active rotational head movements
to 20 degrees from midline in each direction at a target
velocity of 100 degrees per second (with a range from 85
to 120 degrees/second). Once the participant’s achieved the
desired head velocity, the optotype “E” appeared in the center
of the screen. DVAT was recorded as the size of the smallest
optotype that the participant could identify while rotating the
head at or above the minimum velocity. For the pitch plane,
the participant had to achieve a target head velocity of 80
degrees/second (range from 60 to 100 degrees/second) for the
optotype to appear. The participants were set up to complete
15 trials in each direction. The outcome variables for the
DVAT was loss of lines in logMAR value to the right and
left in the yaw plane, and up and down in the pitch plane.

Higher logMAR values indicate greater loss of dynamic visual
acuity (25, 47–49).

Participants completed the FGA which consists of mobility
tasks in 10 conditions such as walking with head turns and tilts,
walking with eyes closed, pivot turns, and stepping over obstacles
among others. Participants walked on a 20-foot walkway that was
12 inches wide and were scored on a Likert scale from 0 to 3,
where 0 indicated severe impairment and 3 was normal. A score
of 30 indicates a perfect score with no mobility impairments. The
FGA has been validated in persons with vestibular disorders and
scores of 22 or less indicate high risk for falls (38, 39). The FGA
was administered by a single physical therapist (LD), it has a high
intra-rater reliability with an intraclass correlation coefficient of
0.99 (95% CI: 0.97–0.99) (50).

The subjective questionnaires were completed after
instructions were provided by the investigators. Participants
completed the PCSS which contains 22 self-reported symptoms
that can be rated on a 7-point Likert scale with zero indicating
“none” and six indicating “severe” complaint. The maximum
PCSS score is 132 with higher scores reflecting either more
symptoms or higher severity of fewer symptoms (51, 52).
The PCSS is divided into somatic, cognitive, emotional, and
sleep sub-scales (53). The DHI is a measure of self-reported
activity and participation restrictions due to either dizziness
or unsteadiness with a maximum score of 100 points (54, 55).
Participants were asked to score how dizziness or imbalance
may affect their participation on each item. The DHI is further
divided into physical, emotional, and functional sub-domains.
People with scores of more than 60 points on the DHI have been
shown to have a higher risk of falls (56).

Statistical Analysis
Data were inspected for normality using histograms and the
Kolmogorov–Smirnov test of normality. Independent sample t-
tests were used to compare data that was normally distributed
(age, BMI, DVA loss upward, downward, right, and left in
LogMAR), while data that was not normally distributed were
compared usingMann–WhitneyU (depth perception, near point
convergence, baseline visual acuity, processing time, FGA score,
PCSS score and sub scales, and DHI score and sub scales).
Levene’s test was examined to determine equality of variance.
Scores on each item of the FGA were compared between groups
using Mann–Whitney U-tests. Alpha was set a priori to 0.05,
but Bonferroni’s correction was applied for the independent
variables (visual, vestibular, symptoms; total of 10), and the
individual items on the FGA test (total of 10); therefore, alpha
was set to 0.005 for these group analyses. Spearman’s rank
correlation coefficients were used to assess the relationship
between FGA score and each independent variable (14 variables
in total, with Bonferroni adjustment alpha was set at 0.004).
Furthermore, correlations were examined between FGA score
and each subscale of the DHI and PCSS. Correlations were
interpreted as fair (0.25–0.50), moderate (0.5–0.75), and good
(>0.75). All analyses were conducted using SPSS for Windows
version 25.0 (SPSS Inc., Chicago, USA).
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FIGURE 1 | Participant recruitment with reasons for exclusion.

RESULTS

Forty-two individuals with mTBI were screened through the
neurology clinic at the University of Kansas Hospital. Thirty-two
individuals were identified through the HERON database search
and Pioneers Registry, however only eight were contactable.
Twenty-nine controls were screened from the campus and
community. The participant flow diagram depicts subjects
screened, enrolled, and excluded (Figure 1).

Participant Characteristics
Forty-six individuals completed the study; 23 in the mTBI group
(19 females and 4 males) and 23 age and sex-matched controls.
The mean duration since injury was 33.2± 5.1 weeks (range: 12–
92 weeks). Three control subjects had diagnoses of hearing loss
(two were genetic) and three had a prior history of migraines. In
the mTBI group, two participants complained of tinnitus since
the injury, two had a prior history of migraines, and three were
wearing prescription glasses with prisms. No strength deficits
were noted with manual muscle testing, sensation in the feet was
impaired in one control and two persons with mTBI, none of the
participants had BPPV.

Comparisons Between mTBI and Control
Groups
Participants with mTBI had poorer performance on the FGA
(p< 0.001), higher severity of symptoms on the PCSS (p< 0.001),
and higher perception of handicap due to dizziness (p < 0.001)
compared to controls (Table 1). Significant differences between
participants with mTBI and controls were seen in near point
convergence (p= 0.003), while none of the dynamic visual acuity

TABLE 1 | Participant demographics.

mTBI group Control group p-value

(n = 23) (n = 23)

Age (years)a (mean ±

SD)

55.70 ± 9.3 55.13 ± 9.1 p = 0.84

Sex (Female/male) 19/4 19/4

BMI (kg/m2)a (mean ±

SD)

31.4 ± 7.9 28.77 ± 6.5 p = 0.22

Weeks since injury 33.23 ± 5.1 NA

Post-concussion

Symptom Scaleb

(median, range)

58.50 (9–110) 2 (0–37) p < 0.001*

Dizziness Handicap

Inventoryb (median,

range)

54 (10–90) 0 (0–2) p < 0.001*

Functional Gait

Assessmentb (median,

range)

22 (7–29) 29 (22–30) p < 0.001*

a Indicates comparisons using independent t-tests, b indicates comparison of distributions

using Mann–Whitney U-test. *indicates significant differences between groups

(Bonferroni < 0.005). BMI, body mass index; mTBI, mild traumatic brain injury.

measures were significantly different between groups (Table 2).
Examination of the 10 individual items of the FGA, showed
significant differences between participants with mTBI and
controls during walking with horizontal head turns (p = 0.002),
walking with vertical head tilts (p < 0.001), walking with eyes
closed (p= 0.003), and stair climbing (p= 0.001; Figure 2).
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TABLE 2 | Differences between the mTBI and control groups in visual and

vestibular outcomes.

mTBI group Control group p-value

Depth perceptiona 70 (60) 30 (50) p = 0.04

(median, IQR, 95% CI) (50.03, 125.63) (28.56, 105.35)

Near point

convergence (cm)a
22 (24) 10 (17) p = 0.003*

(median, IQR, 95% CI) (18.98, 31.37) (9.92, 17.65)

Baseline visual acuity

(LogMAR)a
−0.07 (0.22) −0.11 (0.10) p = 0.15

(median, IQR, 95% CI) (−0.09, 0.02) (−0.16, −0.05)

Perception time (ms)a 30 (2.5) 30 (0) p = 0.32

(median, IQR, 95% CI) (30.38, 35.27) (29.25, 34.64)

Downward DVA loss

(LogMAR)b
0.22 ± 0.11 0.22 ± 0.10 p = 1.0

(Mean, SD, 95% CI) (0.17, 0.26) (0.17, 0.26)

Upward DVA loss

(LogMAR)b
0.24 ± 0.12 0.19 ± 0.09 p = 0.18

(Mean, SD, 95% CI) (0.18, 0.29) (0.16, 0.23)

Right DVA loss

(LogMAR)b
0.21 ± 0.11 0.20 ± 0.09 p = 0.78

(Mean, SD, 95% CI) (0.17, 0.26) (0.16, 0.24)

Left DVA loss

(LogMAR)b
0.21 ± 0.09 0.21 ± 0.11 p = 0.98

(Mean, SD, 95% CI) (0.18, 0.25) (0.17, 0.26)

a indicates comparisons using the Mann–Whitney U-test. b indicates comparisons using

the independent samples t-test. * indicates significant differences between groups

(Bonferroni < 0.005). mTBI, mild traumatic brain injury; DVA, dynamic visual acuity.

Correlation Analyses Between Oculomotor
Deficits, Symptoms, and FGA Performance
Fair to moderate correlations were noted between FGA score and
weeks since concussion (r =−0.67, p < 0.001), depth perception
(r =−0.5348, p < 0.001), near point convergence (r =−0.4717,
p = 0.001), baseline visual acuity (r = −0.4435, p = 0.002)
(Figure 3), and PCSS score (r = −0.668, p < 0.001) while
good correlation were noted with the DHI score (r = −0.811,
p < 0.001) (Figure 4).

The DHI was examined by the three subscales between the
mTBI and control groups, physical (16.1 vs. 0, p < 0.001),
emotional (15.2 vs. 0, p < 0.001), and functional (19.13 vs.
0.17, p < 0.001). Significant associations between FGA score and
physical subscale (r = −0.77, p < 0.001), emotional subscale
(r = 0.79, p < 0.001), and functional subscale (r = −0.81,
p < 0.001) were observed. Highest symptom provocation on
the physical subscale were reported by 56% of people with
mTBI during “ambitious activities such as sports, dancing,
and household chores,” and by 52% while “doing quick head
movements.” Within the functional subscale, 48% of participants
withmTBI reported that they had difficulty performing strenuous
activity, while 43% had difficulty walking around the house in
the dark. Within the emotional subscale, 43% reported feeling
frustrated, and having difficulty concentrating.

The PCSS was examined based on subscales between themTBI
and control groups, somatic (27.3 vs. 1.3, p < 0.001), cognitive

(13.86 vs. 1.3, p < 0.001), sleep (9.8 vs. 1.3, p < 0.001) and
emotional (10.6 vs. 1.0, p < 0.002). Significant associations were
observed between FGA score and somatic symptoms (r =−0.72,
p < 0.001), cognitive symptoms (r = −0.72, p < 0.001), sleep
subscale (r = −0.60, p < 0.001), and emotional symptoms
(r =−0.61, p < 0.001).

DISCUSSION

Results of this study show that adults (mean age of 55.7 ± 9.3
years) who had persistent symptoms after a mTBI had poorer
dynamicmobility scores on the FGA. Oculomotor deficits, higher
post-concussion symptoms, and higher perception of handicap
due to symptoms of dizziness or imbalance were associated with
poorer dynamic balance on the FGA test.

More than 30% of individuals with mTBI experience feeling
off-balance, even though this feeling of imbalance is not easily
detectable (11, 57). Functional mobility relies on the central
nervous system to combine and transform sensory information
seamlessly into a motor output (58, 59). Slower gait speed (9),
poorer static balance control (23), altered gait dynamics during
turning activities (36), and impaired motor control at the limits
of stability (23), have been described in chronic mTBI. The
current study has extended previous study findings to examine
dynamic balance during the performance of daily mobility
activities. Forty-eight percent of the participants with mTBI in
our study had FGA scores below 22, indicating poor dynamic
functional mobility. Oculomotor abnormalities such as poorer
depth perception, poorer baseline visual acuity, longer near point
convergence distance were moderately correlated with poorer
functional mobility. Visual deficits have been studied extensively
after traumatic brain injury (45, 60–66), and in combination with
vestibular dysfunction have been shown to affect balance (21).
Kleffelgaard et al. examined 65 individuals (mean age 39.2 ±

12.9 years) who were 3 months post-injury and reported that
78% had poorer high-level balance while 77% had lower scores
on high level mobility tasks compared to normative values. Of
these individuals 62% had positive findings during oculomotor
tests while 29% had positive findings with the dynamic visual
acuity test (57). Results of our study show that the tasks on the
FGA that were most difficult for people with mTBI compared
to healthy controls were walking with horizontal head turns,
vertical head tilts, tandem walking, stepping over an obstacle,
walking with eyes closed, and stair climbing. These findings
are similar to those reported by Chou et al. (12) who have
shown higher medio-lateral instability in people with mTBI
(mean age 40.9± 11.3 years), which is increased while navigating
obstacles in the environment. Fino et al. performed clinical tests
of oculomotor function and examined the peripheral vestibular
system in 14 adults with chronic mTBI (mean age 38.4 ± 9.9).
They report that all participants had evidence of oculomotor
or peripheral vestibular dysfunction on at least one clinical test
which was associated with slower turning speed and impaired
balance compared to the control group (36), while Basford et al.
(11) report higher postural sway which were associated with
sensory deficits in the peripheral vestibular system. These studies
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FIGURE 2 | Comparison between the control and mTBI group on 4 individual items of the Functional Gait Assessment. Values range from 0 to 3 where 3 = normal

performance, 1 = mild impairment, 2 = moderate impairment, and 0 = severe impairment. mTBI, mild traumatic brain injury.

collectively highlight the relationship between visual, vestibular,
and balance dysfunction and the resulting impact on mobility.

Of interest, although assessment of the peripheral vestibular
system using the computerized dynamic visual acuity has shown
higher loss of dynamic visual acuity in young adults (between 20
and 30 years of age) in the chronic stage of concussion compared
to controls (21, 25), as well as in the previous mentioned studies
(36, 57), no differences in dynamic visual acuity between the
mTBI and control groups were seen in this study. Due to the high
symptoms burden experienced by this population, which can be
increased by head movement, we used the standard protocol that
maintains a head velocity between 80 and 120 degrees/second
in the yaw plane and between 60 and 100 degrees/second in
the pitch plane, which should be adequate to detect peripheral
vestibular hypofunction. Due to the small sample size we did
not analyze participants who had >0.2 LogMAR loss in dynamic
visual acuity (which is considered clinically abnormal). Future
studies with larger sample sizes are necessary to examine the
relationship between functional measures of gaze stability and
functional mobility.

Like other studies, we observed an association between poorer
dynamic balance and higher symptom severity (9, 15, 23, 36,
57, 67, 68). Dizziness is one of the most common symptoms

experienced after mTBI, with close to 81% complaining of
dizziness right after injury (69, 70). In our study, the DHI
score in individuals with mTBI was highly variable with a
range between 10 and 90. Higher perception of handicap
due to dizziness/imbalance were associated with lower FGA
performance scores. Additionally, higher scores on each subscale
of the DHI; physical, functional, and emotional were associated
with poorer FGA performance. Within the physical subscale,
participants reported that performing strenuous leisure activities
were difficult which aligns with results of the study by
Bier et al. where leisure activities were shown to be less
frequent and less strenuous compared to pre-mTBI injury
status (13). Quick movements and bending down activities
were also difficult for people with mTBI which is seen in
their performance while walking quickly with head turns and
tilts on the FGA. Within the functional subscale, participants
reported that they had difficulty walking around the house in
the dark. The item on the FGA that examines walking with
eyes closed showed significantly lower scores in individuals
with mTBI compared to control subjects. Kleffelgaard et al.
(57) have reported that dizziness-related disability was predicted
by pre-injury comorbidities, and was associated with more
vertigo symptoms, balance problems, and psychological distress,
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FIGURE 3 | Associations between FGA scores and oculomotor deficits including depth perception, near point convergence, and baseline visual acuity. p-values are

significant at α = 0.004 after Bonferroni adjustment. FGA, Functional Gait Assessment.

showing that the relationship between perception of handicap
and dynamic balance can be bidirectional. Likewise, the
relationship between dizziness and emotional status including
anxiety is complicated, bidirectional in nature, with high
levels of anxiety resulting in deleterious effects on balance
control (71–74).

We show an association between dynamic balance and post-
concussion symptom severity. Kleffelgaard et al. (9) examined
older adults with mTBI 4 years after injury and reported
slower walking speed, poor balance, and lower Dynamic Gait
Index scores which were associated with higher PCSS scores.
We report similar findings where lower dynamic mobility
scores were associated with higher PCSS scores while Fino
and group report slower turning speed were correlated with
symptoms such as headache, nausea, vision problems, and
sensitivity to noise/light (36). The subscales of the PCSS that
were associated with FGA performance were somatic complaints,
cognitive, and sleep symptoms. Somatic symptoms (headache,
nausea, vomiting, balance problems, dizziness, fatigue, light
sensitivity, noise sensitivity, numbness, visual problems) can
individually or collectively affect dynamic balance (75–78). In
this study, two participants with mTBI had a past history of
migraines, but 20/22 (90%, 1 person with missing data) had
current symptoms of headache with 6 individuals reporting
headache severity of 5 or 6. Cognitive symptoms (feeling
slow, feeling foggy, difficulty concentrating, and difficulty

remembering) are commonly seen after mTBI and can be related
to impairments in executive function, visual attention, memory,
information processing among others (79–81). Cognition is
closely related to the vestibular system (82–85), in fact, motor
training programs that incorporate cognitive tasks have shown
a high success rate in increasing gait speed, reducing fall
risk, and enhancing quality of life (86–88). Sleep quality and
duration are affected after mTBI (89–91), and poor sleep habits
can increase symptoms of dizziness (71), and affect balance
adversely (92).

Results of this study have important implications for
rehabilitation clinicians who treat people after mTBI. Due to
persistent impairments and symptoms, patients may not feel
confident continuing with daily activities resulting in lower
activity levels, physical deconditioning, and social isolation.
The FGA is a test that can be easily performed in the
clinic setting to identify dynamic balance issues as well as
to track recovery as symptoms subside with rehabilitation
exercises. Future studies examining the effects of impaired
balance and persistent symptoms on physical activity levels
in chronic mTBI are necessary. Results of this study show
that dynamic balance deficits continue to persist in chronic
mTBI, hence, rehabilitation to address persisting deficits
using strategies that are engaging should be considered.
Exercising in a game format could increase engagement while
providing feedback to patients regarding the accuracy of their
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FIGURE 4 | Relationship between DHI, PCSS, and FGA score. p-values are significant at α = 0.004 after Bonferroni adjustment. DHI, Dizziness Handicap Inventory;

PCSS, Post-concussion Symptom Scale; FGA, Functional Gait Assessment.

performance. Use of virtual reality to encourage motor and
cognitive pairing while simulating outdoor environments can
provide more realistic models of training. If exercises by
themselves are not adequate to induce neuroplasticity in the
chronic stage of mTBI, pairing neuromodulation with exercise
strategies may provide opportunities to improve functional
outcomes (93).

Limitations
This pilot study is not without limitations. Assessment of
central oculomotor function was not performed using video-
oculographic systems, hence, future studies that perform
quantitative assessments of oculomotor performance are needed
to be able to understand the relationship between impaired
pathways and dynamic balance control after mTBI. Although
our sample size was adequate to detect meaningful differences
in mobility performance and symptom scores between people
with mTBI and healthy controls, it was not large enough to
analyze the role of medications or the effect of co-morbidities
like diabetes that can affect mobility. We did not collect history
of alcohol/ drug abuse, or psychological issues, and acknowledge
that personal factors may impede recovery. Medical history was
not verified in the control participants, history was collected by
self-report. Although the age range for the study was 40–80 years,
we mainly recruited individuals in the middle-aged range, which
narrows the generalizability of the study.

CONCLUSIONS

Dynamic balance deficits during dynamic mobility tasks
persist in individuals with chronic mTBI. Oculomotor deficits,
perception of handicap due to dizziness, and post-concussion
symptoms are associated with poorer performance on the
Functional Gait Assessment, a test that can be completed
easily in the clinic setting. Interdisciplinary and multifaceted
interventions that simultaneously address these deficits can
improve outcomes.
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