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Background: The surgical strategy for brain glioma has changed, shifting from tumor

debulking to a more careful tumor dissection with the aim of a gross-total resection,

extended beyond the contrast-enhancement MRI, including the hyperintensity on FLAIR

MR images and defined as supratotal resection. It is possible to pursue this goal thanks to

the refinement of several technological tools for pre and intraoperative planning including

intraoperative neurophysiological monitoring (IONM), cortico-subcortical mapping,

functional MRI (fMRI), navigated transcranial magnetic stimulation (nTMS), intraoperative

CT or MRI (iCT, iMR), and intraoperative contrast-enhanced ultrasound. This systematic

review provides an overview of the state of the art techniques in the application of nTMS

and nTMS-based DTI-FT during brain tumor surgery.

Materials and Methods: A systematic literature review was performed

according to the PRISMA statement. The authors searched the PubMed and

Scopus databases until July 2020 for published articles with the following Mesh

terms: (Brain surgery OR surgery OR craniotomy) AND (brain mapping OR

functional planning) AND (TMS OR transcranial magnetic stimulation OR rTMS

OR repetitive transcranial stimulation). We only included studies regarding motor

mapping in craniotomy for brain tumors, which reported data about CTS sparing.
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Results: A total of 335 published studies were identified through the PubMed and

Scopus databases. After a detailed examination of these studies, 325 were excluded

from our review because of a lack of data object in this search. TMS reported an accuracy

range of 0.4–14.8mm between the APB hotspot (n1/4 8) in nTMS and DES from the DES

spot; nTMS influenced the surgical indications in 34.3–68.5%.

Conclusion: We found that nTMS can be defined as a safe and non-invasive technique

and in association with DES, fMRI, and IONM, improves brain mapping and the extent

of resection favoring a better postoperative outcome.

Keywords: NTMs, motor mapping, surgical planning, glioma, craniotomy, tractography

INTRODUCTION

The surgical strategy for brain glioma has changed dramatically
throughout the years, shifting from tumor debunking with
subtotal resection to a more careful tumor dissection with the
aim of a gross-total resection (GTR) while sparing neurologic
functions. This more aggressive strategy was demonstrated
to increase survival, the actual goal of glioma surgery, and
has been extended beyond the contrast-enhancement MRI,
including the hyperintensity on FLAIR MR images and defined
as supratotal resection (SpTR). It is possible to pursue this
goal thanks to the refinement of several technological tools
for pre and intraoperative planning including intraoperative
neurophysiological monitoring (IONM), cortico-subcortical
mapping, functional MRI (fMRI), navigated transcranial
magnetic stimulation (nTMS), intraoperative CT or MRI (iCT,
iMR), and intraoperative contrast-enhanced ultrasound (CEUS)
(1–6). These methods not only allow more detailed preoperative
planning but are effective in the evaluation of motor pathways
integrity and are a valuable tool to guide tumor resection. It has
been reported that, cortically, the closer the distance between
the tumor and motor cortex, the greater the risk of new motor
deficit, as demonstrated by lesion to activation distance (LAD)
assessment in fMRI (1, 7–9). Similarly, at the subcortical stage,
usually the proximity of the tumor to the corticospinal tract
(CST) is related to a higher risk of motor deficits, but a great
variability has also been reported (10–12). Moreover, repeated
subcortical stimulation and its intensity modulation present a
positive correlation for the detection of the CST (13, 14). The
reliability of preoperative tractography is well-demonstrated to
be consistent with subcortical stimulation for the CST location,
in about 95% of cases (15), providing a marked improvement
in the tractography data, which is not surgeon-dependent and
has a strong clinical correlation allowing for reliable subcortical
mapping associated with diffusion tensor imaging fiber-tracking
(DTI FT) (16–19). This association has only been reported twice
in literature, stating that it offers patient-specific analysis of
the risk of deficit for lesions sited in eloquent areas, which can

Abbreviations: fMRI, Functional MRI; nTMS, Navigated transcranial magnetic

stimulation; IONM, Intraoperative monitoring; SpTR, Supratotal resection; GTR,

Gross-total resection; CST, Corticospinal tract; EOR, Extent of resection; CEUS,

Contrast-enhanced ultrasound; DES, Direct electrical stimulation.

be avoided when keeping 8mm from the CTS (15, 19). This
systematic review provides an overview of the state of the art
techniques in the application of nTMS and nTMS-based DTI-FT
during brain tumor surgery.

MATERIALS AND METHODS

A systematic literature review was performed according to
the PRISMA statement and related checklists. The authors
searched the PubMed and Scopus databases until July 2020
for published articles with the following Mesh terms: (Brain
surgery OR surgery OR craniotomy) AND (brain mapping OR
functional planning) AND (TMS OR transcranial magnetic
stimulation OR rTMS OR repetitive transcranial stimulation); a
language restriction to English only papers was also applied.
All included studies were meticulously reviewed and scrutinized
for their study design, methodology, and patient characteristics.
We only included 10 studies regarding motor mapping in
craniotomy for brain tumors, which reported data about
CTS sparing (Figure 1). Data for all patients were recorded
when available, including accuracy, GTR, STR, permanent
deficits, change of strategy, and intraoperative tools used
(Table 1).

A linear regression analysis was performed using Excel
software. R2 is the coefficient of determination. We compared
estimated and actual y-values, and ranges in value from 0 to 1.
If it was 1, there was perfect correlation in the sample—there
was no difference between the estimated y-value and the actual
y-value. At the other extreme, if the coefficient of determination
was 0, the regression equation was not helpful in predicting a
y-value. f is the F statistic, or the F-observed value. We used
the F statistic to determine whether the observed relationship
between the dependent and independent variables occurred by
chance (slope +− fault slope, intercepts +− fault intercepts,
r2, f).

RESULTS

A total of 335 published studies were identified through the
PubMed and Scopus databases. After a detailed examination of
these studies, 325 were excluded from our review because of a
lack of data object in this search, or did not report accurate data.
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FIGURE 1 | PRISMA flow diagram.

All the fits showed a low r2 value, while F was high. Linear
multiple regression analysis showed that there was no correlation
from the extracted data among the variables plotted in the
graphs (Figure 2). Accuracy reported rate ranged from 0.4 to
14.8mm; GTR range was 33–98%, and STR range 9.4–66.6%. The
associated nTMS tools used included DTI fiber tracking, fMRI,
MPRAGEMRI, IONM, and sodium-fluorescein. IONMwas used
in 8 out of 10 studies suggesting that this was considered the most
reliable tool, followed by DTI fiber tracking (6 out of 10), fMRI
(4 out of 10), and sodium fluorescence as the emerging tool (1
out of 10).

DISCUSSION

Multimodal Functional Surgical Planning
The gold standard for functional assessment and surgical

planning is represented by DES associated with IONM (29–32).

With the aim to improve risk stratification of motor eloquent
area detection in the preoperative phase, other techniques

have been introduced. Function MRI is a valuable tool, which

helps to obtain visuo-spatial data of motor and language

functions, which can be merged with the anatomic multiplanar

MRI study in navigation planning (22, 33–35). fMRI offers
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TABLE 1 | Summary of the systematic review including authors, motor mapping accuracy, extent of resection nTMS related, associated nTMS tools, eventual change of

surgical strategy and outcome.

Authors Motor mapping

accuracy

Extent of resection

nTMS related

Associated nTMS

tools

Change of surgical

strategy

Outcome

Paiva et al. (20) 4.1 +−1.2mm GTR in 33.34%; STR in

66.66%

IONM, MPRAGE MRI Not reported Not reported

Coburger et al. (21) 2.33 ± 0.97mm GTR in 85.2%; STR in

14.8%

DTI fiber tracking, fMRI,

MPRAGE MRI

26.6% Not reported

Rosenstock et al. (19) 2mm GTR in 50%; STR in

33%

DTI fiber tracking,

IONM

Not reported Permanent deficits in

22%

Raffa et al. (22) <11mm GTR in 61.3% DTI fiber tracking,

IONM

20% Permanent deficits in

11.4%

Jung et al. (23) 3.50 ± 0.66mm GTR in 75%; STR in

25%

IONM 31.5% Permanent deficits in

5.7%

Raffa et al. (24) 1.1 + −14-8mm GTR in 67.6%; STR in

24.1%;

DTI fiber tracking Not reported Permanent deficits in

7.5%

Raffa et al. (25) <11mm GTR in 73.13%; STR in

41.46%

DTI fiber tracking,

IONM,

sodium-fluorescein

Not reported Permanent deficit in

9.75%

Frey et al. (26) 0.4 + −14.8mm GTR in 58.6%; STR in

9.4%

DTI fiber tracking,

IONM

35.2% Permanent deficits in

6.1%

Krieg et al. (27) 6.2 + −6mm GTR in 50%; STR in

50%

IONM, fMRI Not reported Permanent deficits in

12.5%

Sollmann et al. (28) 8.2 + −9.4mm GTR 98% fMRI, IONM Not reported Permanent deficits

22%

FIGURE 2 | Multiple linear regression analysis between variables GTR, accuracy, and permanent deficits.

59–100% sensitivity, with 0–97% specificity, which although
a drawback offers a great variability operator dependent of
language mapping, while tractography representation does not

offer functional data (36–39). TMS mapping is not a novelty
by itself, introduced in 1985 (40), it has been reported to
be a valuable tool in risk stratification and the mapping of
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motor and language areas for surgical planning (41–50). Of
notice, nTMS is used directly by neurosurgeons, in the context
of the neurosurgical department and it is independent of
neuroradiological availability, helping its routine use in the
setting of surgical planning.

Motor Mapping Accuracy
An important TMS parameter is stimulation focality, which
corresponds to the cortical area where the TMS’ electric field
strength reaches half the maximum value (51, 52). The smaller
this area is, the better the focally and accuracy. Thielscher and
Kammer (52) reported that the variability map size documented
among patients can related to different coil–cortex distances and
cortex radii. The focally of a coil can be quantitatively estimated
by the electric field on a hemisphere representing the brain
cortex radius r = 8 cm. Furthermore, Thielscher and Kammer
reported that the variability in map dimension among different
patients is related to two parameters: coil–cortex distances and
cortex radii. Thus, the variability documented in our research
can be related mainly to operator-dependent variables, rather
than technical TMS characteristics, confirming the reliability and
the utility of nTMS in a multimodal motor mapping setting. In
literature, it has been reported that TMS displayed an accuracy
range of 0.4–14.8mm between the APB hotspot (n1/4 8) in
nTMS and DES from the DES spot (19, 23–28, 48, 52–57).
These data endorse the reliability of nTMS in motor mapping,
representing a useful tool in multimodal brain mapping. An
important point is the reduction of the surgical time: nTMS
plays an important role in the guidance of the intraoperative
stimulation, saving time during cortical mapping. Moreover,
the preoperative cortical mapping related to nTMS reduces the
need of large cortical exposure, thus reducing the craniotomy
size and again the surgical time related to the craniotomy
opening/closing step.

Surgical Strategy and Clinical Outcomes
nTMS reliability has been proven to be very strong and
can influence the surgical indication to change from no
surgery/biopsy to craniotomy removal in 34.3–68.5% of cases (23,
24, 26, 58–60). As already reported in the previous paragraph,
the size of the craniotomy is reduced and thus the surgical
strategy is modified according to the nTMS mapping, which
allows professionals to plan for the location of the motor cortex,
guiding the “no-look” positioning of the strip electrode, without
direct visualization of the cortical motor cortex. Moreover, if
brain mapping shows the absence of an eloquent area at the level
of the anatomic cortical landmark, it allows surgeons to conduct
the surgical removal through the cortex in otherwise considered
functional areas. Jung et al. (23) reported a transopercular
approach guided by the negative correspondence between the
anatomic area and the language mapping of the nTMS, likewise
another patient in which nTMS documented the absence of
motor function at the level of the premised primary motor
cortex in a patient affected by cavernoma, modifying the clinical
management from no survey to indication of craniotomy.

In literature, several authors documented the positive
influence of nTMS on surgical planning and postoperative
outcome, with a significant role in risk stratification (26, 27, 31,
45, 61, 62). Interestingly, and apparently in contrast to these
data, some authors reported more postoperative neurological
deficits, with delayed recovery. An interpretation of this finding
could be that more deficits are relative to a more aggressive
surgical strategy encouraged by the combined use of DES and
nTMS in eloquent areas (26). Even if in the literature there
are several reports about sodium fluorescence (63, 64), it is
not possible to provide statistically significant data as it is an
emerging tool, reported only in 1 out of 10 of the selected paper
in this review.

Extent of Surgical Resection
About the role of nTMS and its effect on the extent of surgical
resection (ESR), there are no univocal reports. Despite the
fact that some authors (23) did not find a direct relation
between nTMS and ESR, others documented a greater
ESR in surgical series in which nTMS was associated with
DES and IONM, and a longer progression-free survival
(26, 27, 45, 65–67). These different findings could be
related to the novelty of this technique and thus to the
learning curve. Of course, a better understanding and a
systematic analysis of data is required through randomized
multicentric studies.

CONCLUSIONS

From the analysis of the present systematic review, we found
that nTMS can be defined as a safe and non-invasive technique,
which when associated with DES, fMRI, and IONM improves
brain mapping and the extent of resection with a better
postoperative outcome. Of notice, the reliability of nTMS
has been documented to modify the surgical strategy for
oncologic patients.
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