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Objectives: This study aimed to investigate the potential connectivity mechanism

between the cerebellum and anterior cingulate cortex (ACC) and the cerebellar structure

in primary dysmenorrhea (PDM).

Methods: We applied the spatially unbiased infratentorial template (SUIT) of the

cerebellum to obtain anatomical details of cerebellar lobules, upon which the functional

connectivity (FC) between the cerebellar lobules and ACC subregions was analyzed and

the gray matter (GM) volume of cerebellar lobules was measured by using voxel-based

morphometry (VBM) in 35 PDM females and 38 age-matched healthy females. The

potential relationship between the altered FC or GM volume and clinical information was

also evaluated in PDM females.

Results: PDM females showed higher connectivity between the left perigenual ACC

(pACC) and lobule vermis_VI, between the left pACC and left lobule IX, and between

right pACC and right cerebellar lobule VIIb than did the healthy controls. Compared

with healthy controls, no altered GM volume was found in PDM females. No significant

correlation was found between altered cerebellum–ACC FC and the clinical variables in

the PDM females.

Conclusion: PDM females have abnormal posterior cerebellar connectivity with pACC

but no abnormal structural changes. ACC–cerebellar circuit disturbances might be

involved in the PDM females.

Keywords: primary dysmenorrhea, anterior cingulate cortex, cerebellum, functional connectivity, gray

matter volume

INTRODUCTION

Primary dysmenorrhea (PDM) is a common gynecological disease in women of reproductive
age, which is characterized by severe chronic pelvic pain and menstrual cramps but with normal
pelvic anatomy (1). Sometimes, PDM can be accompanied by low back pain and sleeplessness
and even result in emotional and cognitive dysfunction in the affected individuals (2). To date,
its neurological basis has been reported to be predominantly related to the central nervous system
(CNS) comprising the periaqueductal gray (PAG), anterior cingulate cortex (ACC), dorsomedial
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prefrontal cortex (PFC) (dmPFC), precuneus, insula, and
amygdala, which are associated with pain perception,
transmission, and modulation (3–6). For example, PDM
females showed altered cortical thickness and gray matter
(GM) volume in the brain region involved in the generation
of negative affect and top-down pain modulation as revealed
by structural magnetic resonance imaging (MRI) (5, 7–10). In
addition, abnormal brain metabolism, spontaneous activity,
and functional network in the default mode network (DMN)
and emotional network (3–6, 11–14), which contribute to
higher-level sensory and attention processing toward pain and
affect regulation, have also been found in PDM females.

The ACC, a hub of the pain-related neural circuit, receives
inputs from the thalamus, amygdala, and insular cortex involved
in nociceptive information transfer and emotional mediation
of the pain state and projects to the PFC and insular cortex
involved in sensory modulation and pain-related anxiety (15).
It is known that PDM can cause an increase in GM volume
(8, 9) and brain activity of the ACC (4) and abnormal functional
connectivity (FC) of the ACC with the other cerebral cortex
(3, 4, 11, 13). The FC of the ACC subregions was also found
to be abnormal, including increased connectivity between the
causal ACC (cACC) and somatosensory cortex and between
the subgenual ACC (sACC) and medial PFC (mPFC) in PDM
females; and the disturbance of connectivity loops in different
ACC subregions may reflect different function deficits such as the
dysfunction of pain sensory pathway and affective pain process
(11). Furthermore, the connectivity of the dorsal ACC (dACC)
with the ventromedial PFC (vmPFC) (13) and connectivity
of the perigenual ACC (pACC) with the precuneus/vmPFC
(4, 11, 13) were reported to be involved in cognitive and
emotional modulation of pain in PDM females. Although these
findings underline the importance of the ACC and ACC–
cerebral cortex circuits in PDM, they mainly focused on the
ACC subregion connectivity with the cerebral cortex, not
the cerebellum.

The cerebellum is not only recognized as a crucial region
for sensorimotor control (16, 17) but also involved in high-
level functions, such as pain processing, cognitive control, and
emotional monitoring (18–21). Previous studies on chronic pain
have already shown abnormal cerebellar function and structure
associated with pain-related emotion modulation in patients
with low back pain (22, 23), complex regional pain syndrome
(24), and medication-overuse headache (25). The cerebellar
connectivity with the ACC was also related to cognitive and
emotion processing (26–29). A recent study of the rat model
of recurrent headache (30) further demonstrated increased
connectivity between the cerebellum and ACC, suggesting the
participation of the cerebellum–ACC connectivity in the pain-
related process. In PDMwomen, decreasing spontaneous activity
in the right cerebellum posterior lobe (31) and increasing GM
volume in the cerebellar tonsil (right VIIIa) (8) have been found.
However, whether the cerebellum–ACC connection is aberrant
and different cerebellum–ACC circuits correspond to different
pain-related processes in PDM remain unknown. The role of the
cerebellum in pain processing in PDM females also needs to be
further elucidated.

In this study, the FC between the ACC subregions and
cerebellar lobules and the GM volume of the cerebellum were
analyzed in the PDM females. The relationship between altered
FC and GM volume and clinical information were also examined.
The purpose of this study was to determine whether the
cerebellum–ACC subregion connectivity and GM volume of the
cerebellum might be another neurological basis in PDM.

MATERIALS AND METHODS

Participants
Thirty-eight right-handed women with PDM and 42 healthy
women were recruited from the university by recruitment
advertisement. PDM was diagnosed in Sun Yat-Sen Memorial
Hospital, according to the American College of Obstetricians &
Gynecologists. Inclusion criteria for PDM were as follows: (1) a
regular menstrual cycle between 27 and 32 days; (2) menstrual
pain is >4 on the visual analog scale (VAS; 0 = no pain, 10
= worst pain) in the recent 6 months; and (3) pelvis MRI
scan did not show any anatomical pelvic disease. The inclusion
criteria for the healthy controls were similar to those for the
PDM females except that the VAS score is 0 in the controls.
The exclusion criteria for all participants were anatomical pelvic
diseases, history of neurological or psychiatric disorders, alcohol
or drug dependency, pregnant, or any contraindication for MRI
scan. Self-rating Depression Scale (SDS) (32) and the Self-rating
Anxiety Scale (SAS) (33) were also used to evaluate emotion
state in PDM women. MRI scan of all subjects was performed
during the periovulatory phase (days 12–16 of the menstrual
cycle), which is the phase in which influence of PDM was
usually evaluated (3, 11, 34). All participants wrote informed
consent, and this study was performed according to Declaration
of Helsinki and approved by the ethics committee of Sun Yat-Sen
Memorial Hospital, Sun Yat-Sen University.

MR Data Acquisition
MRI was performed on a 3.0-T unit (Achieva; Philips Healthcare,
the Netherland) with an 8-channel head coil in Sun Yat-
Sen Memorial Hospital, Sun Yat-Sen University. Earplugs were
placed in the ears to reduce scanner noise, and a foam block
was used to fix the head during the scan. T2∗-weighted fast
field echo–echo-planar imaging (FFE-EPI) was performed to
collect resting-state functional MRI (rs-fMRI) data. There were
240 volumes obtained in 8min with the following acquisition
parameters: repetition time (TR) = 2,000ms, echo time (TE) =
30ms, flip angle (FA) = 90◦, field of view (FoV) = 240 × 240
mm2, acquisition matrix = 64 × 64, slice number = 33, and
thickness = 4.0mm without gap between slices. T1-weighted 3D
FFE sequence was acquired to obtain high-resolution structural
brain images with the following acquisition parameters: TR =

8.2ms, TE = 3.7ms, FA = 8◦, FoV = 256 × 256, acquisition
matrix= 256× 256, thickness= 1mm, and slice number= 168.

fMRI Data Preprocessing
All rs-fMRI data were preprocessed using SPM 12 (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/) and DPABI v3.1
toolbox (35) in MATLAB R2013a. First, the following steps
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were conducted for rs-fMRI data of each subject: removal
of the first 10 functional volumes; slice timing correction;
head motion correction; segmentation of the high-resolution
structural images; nuisance covariate removal; normalization
of whole-brain functional images to Montreal Neurological
Institute (MNI) standard space; spatial smoothing [a 4-mm full
width at half maximum (FWHM)] and band-pass filtering (0.01–
0.1Hz). Afterward, the quality control was performed according
to the large head motion criterion (translation >2mm in any
plane, or rotation>2◦ in any direction) and the normalized map.
Then, the mean frame-wise displacement Jenkinson index (Mean
FD Jenkinson) (36) was calculated to match the head motion
between the PDM females and healthy controls (p = 0.435).
Three PDM and four healthy women with excessive head motion
or bad normalization were excluded.

Cerebellum Normalization Using the
Spatially Unbiased Infratentorial Template
The cerebellum normalization was performed using the spatially
unbiased infratentorial template (SUIT) toolbox (http://www.
diedrichsenlab.org/imaging/suit.htm) (37, 38), which is intended
to achievemore accurate cerebellum inter-subject alignment than
the whole-brain methods. The SUIT is a cerebellum-specific
template, including the cerebellum and brainstem structures,
which can provide higher degree anatomical details of the
cerebellum than the whole-brain MNI template. The use of
SUIT template can improve the superposition of fissures, the
spatial variance, and the overlap of the deep cerebellar nuclei
and further promote the alignment of anatomical and functional
areas (37–39). First, the anatomical image was transferred into
LPI orientation, and the origin of the anatomical image was
set to the anterior commissure. Then, the cerebellum and
brainstemwere isolated from the whole brain and segmented into
GM and white matter. The isolation map was further checked
and corrected to ensure perfect isolation using the MRIcron
(https://people.cas.sc.edu/rorden/mricron/index.html), and any
GM outside the cerebellum was excluded. The segmented GM
images were normalized to the SUIT template using a non-
linear deformation. The functional images with slice timing,
head motion correction, and nuisance covariate removal were
resliced according to the above-determined deformation. Finally,
smoothing (4-mm FWHM) and filtering (0.01–0.1Hz) were
performed for the above functional images.

Functional Connectivity Analysis
Region of interest (ROI)-based FC was performed for each
subject. For the ACC, five spherical ROIs with 5-mm radius were
placed on the most typical ACC subregions, including the cACC,
dACC, rostral ACC (rACC), pACC, and sACC (40–42), in a
previous PDM study (11). These ACC subregions are involved
in different domain functions, such as motor control (cACC),
cognitive control (dACC and pACC), conflict monitory (rACC),
self-referential and social processing (pACC), and emotional
regulation (sACC, pACC, and dACC) (11, 41, 43–45). These
subregions were centered in the following coordinates: bilateral
cACC (±5, −10, 47), dACC (±5, 14, 42), rACC (±5, 34, 28),
pACC (±5, 47, 11), and sACC (±5, 25,−10). For the cerebellum,

ROIs were selected according to the SUIT template, including
28 lobules (anterior lobe: bilateral I–IV and V; posterior lobe:
bilateral and vermis VI, Crus I, Crus II, VIIb, VIIIa, VIIIb, and
IX; flocculonodular lobe: bilateral and vermis X) (Figure 1). The
average time courses of each ACC subregion and cerebellar lobule
were extracted by averaging across all voxels within each ROI.
The connectivity between the ACC and cerebellumwas estimated
by computing the correlation coefficient, and a 5 × 28 matrix
was obtained for each subject. The correlation matrices were
converted to z-scores by using Fisher’s r-to-z transformation.

FIGURE 1 | The locations of ACC and cerebellum subregions. (A) Five ACC

subregions, including cACC, dACC, rACC, pACC, and sACC. (B) Cerebellum

including 28 lobules; the I_IV and V including the bilateral regions; and the VI,

CrusI, CrusII, VIIb, VIIIa, VIIIb, IX, and X including bilateral and vermis regions.

cACC, causal anterior cingulate cortex; dACC, dorsal anterior cingulate cortex;

rACC, rostral anterior cingulate cortex; pACC, perigenual anterior cingulate

cortex; sACC, subgenual anterior cingulate cortex; l, left hemisphere; r, right

hemisphere; v, vermis.

TABLE 1 | Demographic and clinical information in 35 women with primary

dysmenorrhea (PDM) and 38 healthy controls.

PDM (n = 35) Controls (n = 38) p-value

Age, years 20.49 ± 1.20 20.58 ± 1.52 0.773

Begin age of menstrual, years 12.60 ± 1.31 12.74 ± 2.60 0.780

Duration years of menstruating 7.89 ± 1.75 7.63 ± 3.04 0.667

Days of Menstrual cycle 30.46 ± 3.21 28.74 ± 2.89 0.019

Pain begin age, years 15.14 ± 1.99 N/A N/A

Pain duration year, years 5.14 ± 2.13 N/A N/A

Pain degree 6.54 ± 1.09 N/A N/A

SAS 33.78 ± 5.35 31.65 ± 4.68 0.074

SDS 37.62 ± 6.71 36.77 ± 6.12 0.573

Values represent mean ± standard deviation.

N/A, non-applicable; SAS, Self-Rating Anxiety Scale; SDS, Self-Rating Depression Scale.
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Voxel-Based Morphometry Analysis
The GM volume of all cerebellum lobules was analyzed by using
voxel-based morphometry (VBM) procedure in SPM12 platform
with SUIT toolbox. In brief, after the isolation, the structural
images were normalized and resliced to the SUIT template.
Then, the smoothing with a 4-mm FWHM Gaussian kernel was
performed to reslice structural images. Finally, the average signals
of cerebellar lobules in each subject were extracted as GM volume
for between-group comparison.

TABLE 2 | The significant difference of ACC–cerebellum FC between PDM and

healthy control.

ACC Cerebellum PDM Controls p-value

Left_pACC Vermis_VI 0.236 ± 0.160 0.069 ± 0.168 <0.001

Left_pACC Left_IX 0.237 ± 0.169 0.086 ± 0.186 <0.001

Right_pACC Right_VIIb 0.169 ± 0.143 0.042 ± 0.198 <0.001

Values represent mean ± standard deviation.

pACC, perigenual anterior cingulate cortex; FC, functional connectivity; PDM,

primary dysmenorrhea.

Statistical Analysis
Two-sample t-test was used to test the between-group differences
in age, menstrual beginning age, menstrual duration year,
menstrual cycle, SAS, SDS, and FD Jenkinson. A non-parametric
permutation t-test was used to test the group difference in
cerebellum FCwith the ACC, and cerebellar GM volume between
PDM and healthy controls, with menstrual cycle as a regressor.
The statistically significant threshold was set as p < 0.05
with a false discovery rate (FDR) correction. Furthermore, the
mean value of the altered FC of cerebellum–ACC or cerebellar
GM volume was extracted for each PDM. Pearson correlation
analysis was used to determine the relationship between the
altered cerebellum–ACC FC, cerebellar GM volume, and clinical
variables, including VAS, pain duration years, SAS, and SDS.

RESULTS

Demographic and Clinical Information
The demographic and clinical information of 35 PDM women
(20.49 ± 1.20 years old) and 38 healthy women without PDM
(20.58 ± 1.52 years old) is shown in Table 1. There were

FIGURE 2 | The significant difference of ACC–cerebellum FC between the PDM females and healthy controls. There are three abnormal ACC–cerebellum FC: (A) the

ACC subregions of abnormal FC; (B) the cerebellar lobules of abnormal FC; (C) bar plot showing the FC (z-value) in each abnormal FC for each group, the bar height

represents the mean value, and the error bar corresponds to standard deviation. FC, functional connectivity; Ctrl, healthy control; PDM, primary dysmenorrhea; pACC,

perigenual anterior cingulate cortex; ***p < 0.001.
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no significant differences in the age, menstrual beginning age,
menstrual duration year, SAS, and SDS between PDM and
healthy control groups (p > 0.05). The PDM group had a
significantly longer menstrual cycle than the healthy control
group (p= 0.019).

Cerebellum–Anterior Cingulate Cortex
Functional Connectivity
Cerebellum–ACC FC in PDM and healthy control groups is
shown in Table 2. Compared with healthy controls, the PDM
group had higher FC between the left pACC and cerebellar
vermis_VI, between the left pACC and left cerebellar lobule IX,
and between the right pACC and right cerebellar lobule VIIb
(FDR correction, p < 0.05, Figure 2).

Cerebellar Lobules Gray Matter Volume
GM volumes of all cerebellar lobules in PDM and healthy control
groups are shown in Table 3. We found that there was no
significant difference in the GM volume between PDM females
and healthy control (FDR correction, p < 0.05, Table 3).

Correlation Analysis
The correlations between the altered cerebellum–ACC FC and
the clinical variables in the PDM group are shown in Table 4.
Correlation analysis showed no significant correlations between
the altered cerebellum–ACC FC and clinical information in the
PDM females (p > 0.05, Table 4).

DISCUSSION

Our study results showed that PDM females had higher
connectivity between the left pACC and vermis_VI, between the
left pACC and left lobule IX, and between the right pACC and
right lobule VIIb, than had healthy controls. Altered cerebellum–
ACC FCs were not correlated with clinical variables in the PDM
females. There were no significant group differences in the GM
volume. These aberrant circuits between the ACC subregions and
specific cerebellar lobules extend the knowledge of the cerebellum
function in pain processing, and cognitive and emotional
function of PDM, also intensify the multidimensionality of pain
processing. A cerebellum-specific template was used in our study
to normalize and segment cerebellar structure. To the best of
our knowledge, this is the first study to use the SUIT cerebellar
template to examine the cerebellar mechanism of pain processing
in PDM.

In our study, the FC between the ACC subregions and
cerebellar lobules was analyzed by using SUIT method to
comprehensively describe the potential aberrant ACC–cerebellar
circuit. The results showed that PDM females had higher FC
between the right pACC and right cerebellar lobule VIIb, between
the left pACC and cerebellar vermis_VI, and between the left
pACC and left cerebellar lobule IX. Previously, the pACC
not only participated in self-referential and social processing
(43) but also is involved in cognitive processing, the same as
the dACC (45) and emotion regulation via the sACC (44–
47). In addition, the pACC was also thought to be related
to the pain control machine (48–51). As for PDM, Liu et al.

TABLE 3 | The significant difference of cerebellar GM volume between PDM and

healthy control.

ROI PDM Controls p-value

1 Left_I_IV 0.507 ± 0.047 0.492 ± 0.046 0.140

2 Right_I_IV 0.495 ± 0.045 0.486 ± 0.045 0.255

3 Left_V 0.592 ± 0.049 0.571 ± 0.051 0.055

4 Right_V 0.570 ± 0.048 0.552 ± 0.052 0.101

5 Left_VI 0.643 ± 0.055 0.617 ± 0.053 0.037

6 Vermis_VI 0.509 ± 0.057 0.488 ± 0.051 0.042

7 Right_VI 0.614 ± 0.058 0.589 ± 0.053 0.044

8 Left_CrusI 0.580 ± 0.061 0.560 ± 0.054 0.102

9 Vermis_CrusI 0.309 ± 0.053 0.296 ± 0.046 0.135

10 Right_CrusI 0.572 ± 0.061 0.550 ± 0.052 0.067

11 Left_CrusII 0.556 ± 0.059 0.539 ± 0.057 0.127

12 Vermis_CrusII 0.535 ± 0.052 0.525 ± 0.061 0.240

13 Right_CrusII 0.546 ± 0.064 0.536 ± 0.055 0.291

14 Left_VIIb 0.596 ± 0.060 0.575 ± 0.062 0.108

15 Vermis_VIIb 0.653 ± 0.073 0.636 ± 0.063 0.129

16 Right_VIIb 0.585 ± 0.074 0.568 ± 0.058 0.192

17 Left_VIIIa 0.595 ± 0.064 0.566 ± 0.069 0.054

18 Vermis_VIIIa 0.615 ± 0.057 0.596 ± 0.057 0.083

19 Right_VIIIa 0.584 ± 0.086 0.558 ± 0.070 0.125

20 Left_VIIIb 0.538 ± 0.063 0.515 ± 0.080 0.098

21 Vermis_VIIIb 0.630 ± 0.060 0.609 ± 0.067 0.069

22 Right_VIIIb 0.524 ± 0.079 0.505 ± 0.080 0.178

23 Left_IX 0.535 ± 0.067 0.501 ± 0.080 0.029

24 Vermis_ IX 0.657 ± 0.065 0.631 ± 0.078 0.053

25 Right_ IX 0.545 ± 0.070 0.524 ± 0.080 0.118

26 Left_I 0.431 ± 0.054 0.422 ± 0.057 0.345

27 Vermis_ I 0.409 ± 0.043 0.392 ± 0.045 0.037

28 Right_ I 0.375 ± 0.055 0.381 ± 0.054 0.261

Values represent mean ± standard deviation.

GM, gray matter; PDM, primary dysmenorrhea; ROI, region of interest.

TABLE 4 | Correlation between cerebellum–ACC FC and clinical variables in the

PDM females.

Pain duration Pain severity

(VAS)

SAS SDS

r p r p r p r p

Left_pACC

–Vermis_VI

0.095 0.588 0.196 0.260 0.111 0.524 0.096 0.582

Left_pACC

–Left_IX

8.63e−04 0.996 −0.070 0.688 0.209 0.229 0.095 0.589

Right_pACC

–Right_VIIb

0.148 0.395 0.260 0.131 0.111 0.526−0.034 0.845

ACC, anterior cingulate cortex; pACC, perigenual ACC; VAS, visual analog scale; SAS,

Self-rating Anxiety Scale; SDS, Self-rating Depression Scale.

(4, 11) has found that abnormal pACC connectivity with
precuneus and caudate was associated with pain duration and
severity in the PDM women. In our study, the abnormal
pACC connectivity with cerebellar lobules was found to be

Frontiers in Neurology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 645616

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wu et al. Altered Cerebellum-ACC Connectivity in PDM

mainly located in the posterior cerebellum, including lobule
VIIb, vermis_VI, and lobule IX. These regions are related
to high-level functions, such as cognitive function, memory
processing, emotion monitoring (17, 19, 52, 53). For example,
cerebellar lobule VIIb is seen as a “cognitive cerebellum,”
which contributes to the specific cerebro-cerebellar loops that
participate in the executive control task (54–57). Both cerebellar
vermis and lobule IX are seen as “limbic cerebellum,” which
is functionally connected with limbic brain structures that are
involved in emotional processing (17, 20, 58). Moreover, the
posterior cerebellum lesion (lobule VII/vermis) can deprive
cerebro-cerebellar-cognitive/limbic loops of cerebellar input (52,
59). These loops are associated with attention deficit (59),
affective alterations (19), and reduced emotional expressivity
(60). This phenomenon has not been reported in chronic pain.
Previously, individuals with chronic low back-related leg pain
(22) and low back pain (23) showed changed local connectivity
and GM volume in the posterior cerebellum. Furthermore, the
altered spontaneous activity (31) and glycometabolism (61) in
the right posterior cerebellum lobe were detected in the PDM
patients that further supported the results of abnormal posterior
cerebellar connectivity in our study. Taken together, abnormal
connectivity between the pACC and posterior cerebellum may
reveal dysfunction in the ACC–cerebellar cognitive and emotion
processing circuit in PDM. However, in our study, no correlation
was found between the altered cerebellum–ACC FC and clinical
variables, including VAS, pain duration years, SAS, and SDS, in
the PDM females. Notably, in our study, VAS, SAS, and SDS were
assessed in the pain-free phase rather than in the menstruation
phase (pain phase). This might result in an underestimation of
VAS, SAS, and SDS.

In our study, the cerebellar GM volume was further calculated
for the cerebellar structure. Compared with healthy controls,
PDM females had no altered GM volume. Previously, Tu et al. (8)
have reported increased GM volume of the posterior cerebellum
(cerebellar tonsil) in PDM females based on the whole-brain
standard MNI template. This discrepancy might be due to
different template normalization and the duration of history of
PDM. In the study by Tu et al., PDM females had a PDM history
of 10.31± 3.30 years. The PDM females in our study had a history
of 5.14 ± 2.13 years. A longer history of pain may lead to more
severe adverse effect on cerebellar structure in the PDM females.

There was a limitation in our study. PDM women were
included under the pain-free phase, not under the pain phase.
Previous studies (6, 9, 12) have shown different brain functional
and structural alterations in PDMwomen between the pain phase
and pain-free phase. Whether different pain phases can exert a

distinct effect on the cerebellar lobules needs to be determined in
the future study.

CONCLUSION

In summary, our study demonstrated aberrant cerebellum–ACC
FC but unaltered cerebellar GM volume in the PDM females
based on the cerebellum-specific SUIT template. PDM females
could have increased connectivity between the left pACC and
vermis_VI, between the left pACC and left lobule IX, and
between the right pACC and right lobule VIIb. ACC–cerebellar
circuit disturbances might be involved in the PDM females.
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