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Intracranial atherosclerotic disease (ICAD) has been characterized by the degree of

arterial stenosis and downstream hypoperfusion, yet microscopic derangements of

endothelial shear stress at the luminal wall may be key determinants of plaque

growth, vascular remodeling and thrombosis that culminate in recurrent stroke. Platelet

interactions have similarly been a principal focus of treatment, however, the mechanistic

basis of anti-platelet strategies is largely extrapolated rather than directly investigated

in ICAD. Platelet FcγRIIa expression has been identified as a potent risk factor in

cardiovascular disease, as elevated expression markedly increases the risk of recurrent

events. Differential activation of the platelet FcγRIIa receptor may also explain the variable

response of individual patients to anti-platelet medications. We review existing data on

endothelial shear stress and potential interactions with the platelet FcγRIIa receptor

that may alter the evolving impact of ICAD, based on local pathophysiology at the site

of arterial stenosis. Current methods for quantification of endothelial shear stress and

platelet activation are described, including tools that may be readily adapted to the clinical

realm for further understanding of ICAD.
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INTRODUCTION

Intracranial atherosclerotic disease (ICAD) is the most common cause of stroke worldwide (1, 2).
The devastating consequences of ICAD reflect racial, sex and ethnic disparities, impact a broad age
group and lack strategies for prevention (3). Overwhelming recurrent risk amounts to an excessive
burden of disease and public health priority (4). ICAD engenders a∼12.5% rate of recurrent clinical
strokes within 1 year (5, 6). The impact of “silent” strokes, evident only on surveillance imaging,
may be even greater when one considers cognitive or other impairment.

Recurrent ischemic stroke due to ICAD is extremely common despite treatment with
anti-platelet medications. Heterogeneity of the arterial architecture and associated blood flow
changes in ICAD-related stenoses result in different patterns of wall shear stress (WSS) from
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one individual to the next. Such wall shear stress can be
readily quantified with computational fluid dynamics (CFD)
from non-invasive CT angiography (CTA), routinely acquired
in patients with minor stroke or transient ischemic attack
(TIA) due to ICAD. These shear stress changes in blood flow
promote platelet aggregation and thereby alter the response
to anti-platelet therapy. Additionally, greater platelet FcγRIIa
expression increases platelet reactivity and promotes thrombosis
when platelets are exposed to increased shear stress. In coronary
artery disease (CAD), greater platelet expression of FcγRIIa
identifies patients at greater risk of recurrent cardiovascular
events, including stroke. Numerous mechanisms have been
invoked in the recurrence of ischemia in ICAD, yet focused
research on the pathophysiology of shear stress and platelet
activation has not been evaluated to explain the high rate of
imaging evidence and clinical strokes following minor stroke or
TIA due to ICAD. Given the shared pathology of coronary artery
disease and ICAD, the data suggest that individual differences in
CFD-derived WSS and platelet FcγRIIa expression may inform a
precision medicine strategy to prevent recurrent stroke.

SHEAR-INDUCED PLATELET
AGGREGATION IN ICAD

More than 25 years ago, stroke research underscored the
pathophysiology of shear-induced platelet aggregation (7–9).

FIGURE 1 | Endothelial shear stress in ICAD and activation of platelet FcγRIIa.

In vitro studies showed a protective effect of thienopyridines
(e.g., clopidogrel), creating parallel approaches to ICAD and
CAD, based on anti-platelet effects. These studies revealed that
aspirin has limited effect on platelet aggregation, modified largely
by local hemodynamics, forming the rationale for dual anti-
platelet therapy (DAPT) in ICAD and CAD. Distinct zones in
the region of arterial narrowing or stenosis and immediately
downstream in the post-stenotic segment influence platelet
activation, modulated by shear stress. As in Figure 1, wall shear
stress (WSS, calculated as ts) increases as blood flows tangentially
to the arterial wall of the narrowed lumen or stenosis, measured
by the residual radius. As blood flow volume asymmetrically
exits the stenosis, flow vortices create oscillating gradients in
both direction and intensity of WSS. High shear stress and
the oscillatory shear index (OSI) can be measured with CTA

techniques and are closely linked to platelet activity (10–13).

PLATELET REACTIVITY AND PLATELET
EXPRESSION OF FCγRIIA

Increased platelet reactivity has identified patients with minor

stroke or TIA who are at greater risk of recurrent stroke (14).

Similarly, increased platelet reactivity has consistently identified

patients with CAD who are at greater risk of subsequent
cardiovascular events (15–17). Two large clinical trials in
CAD failed to demonstrate that currently available non-specific
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platelet function tests can be used to guide treatment (18, 19).
Intra-individual variability in platelet function over time is
substantial and likely to be a major contributor to the failure (20–
22). Because of the failure of platelet function tests to effectively
guide treatment in patients with CAD, it is unlikely that existing
platelet function tests will be able to guide individualized care
in ICAD.

FcγRIIa is a member of the Fc family of proteins that
is expressed on the surface of platelets and amplifies platelet
activation (23, 24). The Schneider Lab has pioneered the platelet
biology of FcγRIIa and established it as a potential marker of
risk for secondary thrombotic events in circulatory disorders.
FcyRIIa amplifies activation of platelets in response to any
stimulus or agonist. Importantly, platelet FcγRIIa expression
amplifies thrombosis in the setting of shear forces (25). In a single
center study, we found that high platelet FcγRIIa expression
(≥11,000/platelet) is associated with a greater risk (odds ratio >

4) of myocardial infarction (MI), stroke and death (26). Platelet
FcγRIIa expression does not require activation of platelets and
does not exhibit the magnitude of intra-individual variability
seen with platelet function tests (27). The emphasis on platelet
activation directly focuses our stroke prevention efforts in ICAD
where anti-platelets have been paramount and shear-induced
platelet aggregation pivotal. FcγRIIa may identify those at high
or low risk of recurrent stroke and serve as an effective tool to
guide precision medicine in ICAD.

FCγRIIA AS A MARKER OF PLATELET
REACTIVITY AND RISK OF
CARDIOVASCULAR EVENTS

FcγRIIa was identified as a low-affinity receptor for the fragment
constant (Fc) portion of immunoglobulin (Ig) G (28, 29). FcγRIIa
markedly enhances thrombus formation when platelets are
perfused over a collagen-coated flow chamber under conditions
of arterial and venous shear (30). Phosphorylation of FcγRIIa
amplifies the activation of platelets (23, 24). We demonstrated
that platelets with more FcγRIIa exhibited greater activation in
response to sub-maximal concentrations of multiple agonists
(31). FcγRIIa may therefore be a novel biomarker capable
of identifying patients with increased platelet reactivity. A
prospective trial was designed to determine the prognostic
implications of platelet FcγRIIa expression (26). Patients (n =

197) were enrolled shortly before discharge from hospitalization
for myocardial infarction (MI, both ST elevation and non-ST
elevation were included). All patients were treated with aspirin
(81mg) and treatment with clopidogrel (∼64%) and ticagrelor
(∼36%) was balanced in patients with high and low platelet
expression of FcγRIIa (26). Clinical characteristics were well-
balanced with the exception of older age, diabetes, and prior
revascularization being more prominent in the high expression
group. Patients with platelet expression of FcγRIIa ≥11,000 had
a greater risk of heart attack, stroke, and death that became
apparent after 6 months. Cox regression analysis was performed
and platelet expression of FcγRIIa was the sole covariate (hazard
ratio 3.9, p= 0.035) associated with freedom fromMI, stroke, and

death. The sensitivity of high expression to identify patients with
cardiovascular events was 0.82 (95% confidence intervals 0.57 to
0.92) and the specificity was 0.51 (95% confidence intervals 0.43
to 0.58). Cardiovascular events (heart attack, stroke, and death)
were uncommon (8% of all patients experienced an event). The
negative predictive value of low platelet expression of FcγRIIa
was 0.97 (95% confidence intervals 0.89 to 0.98). Based on
preliminary retrospective studies it has been hypothesized that
a threshold of 11,000 molecules of FcγRIIa/platelet may identify
high and low risk of subsequent cardiovascular events. Analysis
of patients with heart attack confirmed that this threshold
discriminated high and low risk most efficiently (26). As platelet
expression of FcγRIIa is a continuous variable, a larger study
will be required to address whether the relationship between
cardiovascular events and FcγRIIa expression is continuous.

DEFINING PLATELET ACTIVITY AND
ANTI-PLATELET STRATEGIES IN
SECONDARY STROKE PREVENTION

Anti-platelet therapies have been the mainstay of secondary
stroke prevention for decades. In ICAD, “best medical therapy”
is currently defined as DAPT with aspirin and clopidogrel for
90 days after stroke or TIA as in the Stenting and Aggressive
Medical Management for Preventing Recurrent Stroke in
Intracranial Stenosis (SAMMPRIS) trial (6). Determining
platelet activity, defining long-term “best medical therapy” and
establishing criteria for “failure” of anti-platelet strategies remain
unaddressed. Extensive variation exists in combinations of anti-
platelet strategies used and platelet activity monitoring remains
a quandary. The measures in Table 1 are used sporadically,
imparting bias without systematically assaying platelet activity,
offering a role for FcγRIIa.

ARTERIAL HEMODYNAMICS OF ICAD
WITH CTA COMPUTATIONAL FLUID
DYNAMICS (CFD)

For more than a decade, routinely acquired, non-invasive
CTA has been used to generate CFD measures of arterial
hemodynamics in the coronary and cerebral circulations. CTA
CFD has measured fractional flow reserve (FFR), elevated wall
shear stress associated with arterial stenoses and post-stenotic
flow aberrations, including focal areas of atherogenic low shear
stress. In ICAD, almost all cases are treated with medical therapy
with very few undergoing endovascular revascularization or
alteration of the arterial lesion. As a result, CTA CFD can be
used to characterize the local arterial hemodynamics that may
predict future events. Our group has pioneered the use of CFD
to quantify specific arterial hemodynamic parameters in ICAD
for more than a decade (32–40). Our collaborative efforts with
investigators in Beijing and Hong Kong have yielded insight
on WSS in ICAD stenoses and subsequent clinical events. In
a multicenter study of 245 patients (median age = 61 years,
63.7% men) we demonstrated the pivotal prognostic implication
of high WSS in the stenosis (35). Stroke in the territory (SIT)
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TABLE 1 | Platelet assays and potential use in anti-platelet stroke prevention strategies.

Biomarker Description Role Pro Con

Platelet Count • Indication of total mass of

platelet

• Platelets are key to hemostasis

over a wide range

(150,000–400,000/µl)

• Hemostasis maintained with

platelet count even

below 50,000/µl

• High platelet mass predisposes

to exaggerated thrombosis in

response to vascular injury

• Most stroke patients have

normal platelet count

• Increased platelet count often

transient, not reflective of

long-term risk

Platelet Indices • Mean platelet volume (MPV) is a

measure of platelet size

• Young platelets are larger and

more reactive

• Young platelets are first

responders to vessel injury and

critical in hemostasis

• High MPV reflects more

young platelets

• High MPV predisposes to

exaggerated thrombosis in

response to vascular injury

• High MPV in stroke patient likely

due to release of new platelets

after thrombosis

• Increased MPV is transient, not

reflective of long-term risk

Genotyping

(CYP2C19)

• Genotyping for CYP2C19 will

identify patients who poorly

metabolize clopidogrel to form

the active metabolite

• Decreased metabolism of

clopidogrel to form the active

metabolite leads to less

antiplatelet effects

• If clopidogrel is poorly

metabolized, less antiplatelet

effect will occur predisposing to

more events

• Useful to guide alternative

treatment to clopidogrel

• CYP2C19 genotyping is specific

to clopidogrel

• Genotyping has not been

shown to predict underlying

thrombotic risk

Platelet Function

Testing (Verify

Now)

• Measures activation of platelets

in response to an agonist or

combinations

• High platelet reactivity (more

activation in response to an

agonist) identifies subjects who

are likely to have an

exaggerated thrombotic

response to vascular injury

• High platelet reactivity has been

consistently associated with a

greater risk of heart and stroke

• Platelet function tests have

failed to effectively guide

therapy

• Platelet function tests exhibit

high intra-individual variability

• Platelet function tests

determine response to a

selected agonist/combination

Platelet FcγRIIa • Platelet surface marker

quantified with the use of flow

cytometry

• Amplifies activation of platelets

exposed to vessel

injury/agonist/activating signal

• Marker of high platelet reactivity

• Leverages implications of high

platelet reactivity identified with

platelet function tests

• Marker of consistent increased

platelet reactivity

• Requires additional validation in

larger cohorts

occurred in 20 (8.2%) patients, mostly with multiple infarcts
in the borderzone and/or cortical regions. In multivariate Cox
regression, high WSS ratio (WSSR) of stenotic WSS to pre-
stenotic WSS was independently associated with SIT (adjusted
HR = 3.05, p = 0.014). These data suggest that high WSS
will predict recurrent stroke, yet many other instrumental
variables were not captured in that study, including post-stenotic
shear force. In our most recent shear stress and endothelial
pathophysiology study, we are investigating post-stenotic foci
of low shear stress as a nidus for specific endothelial genotype
expression, laden with atherogenic and pro-thrombotic stimuli
(41). Our collaborative work integrating CFD of ICAD with
microfluidic and endothelial expertise has analyzed the CTA
subset acquired in the SAMMPRIS trial, showing low shear stress
in the post-stenotic segment due to flow vortices proving our
ability to extract and define WSS ratios at various arterial lesion
sites. These retrospective analyses of SAMMPRIS are limited in
ability to prove recurrent stroke due to post-stenotic low shear
stress, particularly as they lack systematic MRI follow up to
discern interval ischemic injury. These studies focus on only 70–
99% stenoses of the proximal MCA and other potentially critical
variables regarding platelet biology, anti-platelet treatment, and
platelet resistance or response were not collected. In vitro work
on shear-induced platelet aggregation strongly suggests that not
just elevated WSS, but immediate downstream fluctuations in

shear stress are instrumental. We have used the OSI in the post-
stenotic segment to calculate, map and quantify this influential
variable on in silicomodels of ICAD with CTA CFD.

DISCUSSION

Poor understanding of ICAD pathophysiology has been a critical
barrier to progress in the field of stroke prevention. Targeting
specific mechanisms of recurrent ischemia may enable clinicians
to match diagnostic findings of ICAD in a given patient with
the most effective therapies. Such strategies have been limited
due to gaps in clinical trial design, dearth of observational
studies, simplistic definitions of ICAD lesion type, empiric use
of “best medical therapy,” choice of endpoints and failure to
maximally leverage patient-level information from diagnostic
imaging. ICAD trials increasingly focus on the most severe
(70–99%) stenosis, yet almost half of ischemic strokes due
to ICAD occur in milder (50–69%) lesions (42). We have
previously shown that hemodynamics in ICAD are pivotal for
risk stratification. Dual anti-platelet treatment (DAPT) is often
used for variable durations after stroke without recognizing
individual anti-platelet response or effects.

It may be possible to tackle these weaknesses using precise
individual platelet biology, arterial hemodynamics of shear force
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across a spectrum of ICAD lesions to ascertain effect on both
clinical and imaging ischemic endpoints in a multicenter cohort
study. Preliminary data have established that increased platelet
FcγRIIa expression is a stable measure of increased platelet
reactivity. FcγRIIa can now be quantified for comparison across
centers. Unlike platelet function tests, platelet FcγRIIa expression
is not substantially affected by assay conditions. Finally, FcγRIIa
≥ 11,000/platelet identifies patients with ∼4-fold greater risk of
MI, stroke and death. Using the baseline CTA routinely acquired
in our recently completed MyRIAD study, we calculated the time
averaged WSS in the ICAD lesion, WSS ratio and post-stenotic
OSI under pulsatile flow conditions. This preliminary research
enabled us to develop standard methodology for quantification
of these variables in circumferential bands of the stenosis and
equivalent length post-stenosis. A larger study may extend these
findings to ICAD patients, show key interplay between platelet
FcγRIIa expression and WSS, providing these markers as a basis
to guide individualized ICAD stroke prevention.

We have been ardently detailing a vision for precision
medicine approaches to stroke and ICAD for many years now
(43–56). We have described the potential of imaging features,
novel assays and individual clinical characteristics of patients
with acute stroke and chronic ICAD to identify therapeutic
opportunities based on an n of 1. At a population level, we have
advocated for innovative statistical methods such as clustering
to discern key predictors of not just risk, but also of propensity
for benefit with specific therapeutics. In retrospective analyses,
we have leveraged clustering and principal component analyses
to reclassify and stratify patient subsets at heightened risk of
recurrent events in the datasets of past stroke randomized,
controlled trials (44, 49, 57). We developed a novel approach
to validate CTA CFD values of WSS in stenoses in ICAD with

precision 3D cerebrovascular models, including data from the
landmark SAMMPRIS trial. In other collaborations, we have
separately studied the potential impact of elevatedWSS on stroke
recurrence in ICAD and conducted an observational multicenter
study on mechanisms of recurrent stroke in ICAD. It has been
demonstrated that greater platelet FcγRIIa expression increases
the activation of platelets in response to agonists and shear stress.
These synergies now enable investigation of how the interaction
of anti-platelet therapies with individual platelet expression of
FcγRIIa and WSS calculated from patient-specific CTA CFD
may explain recurrent ischemia after minor stroke or TIA due
to ICAD. The culmination of parallel work on shear stress-
induced platelet activation in ICAD leverages preliminary data
on FcγRIIa, CTA CFD of WSS and precision medicine analytics
in stroke.
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