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More than 30 years after discovering Leber’s hereditary optic neuropathy (LHON) as the

first maternally inherited disease associated with homoplasmic mtDNAmutations, we still

struggle to achieve effective therapies. LHON is characterized by selective degeneration

of retinal ganglion cells (RGCs) and is the most frequent mitochondrial disease, which

leads young people to blindness, in particular males. Despite that causative mutations

are present in all tissues, only a specific cell type is affected. Our deep understanding

of the pathogenic mechanisms in LHON is hampered by the lack of appropriate models

since investigations have been traditionally performed in non-neuronal cells. Effective

in-vitromodels of LHON are now emerging, casting promise to speed our understanding

of pathophysiology and test therapeutic strategies to accelerate translation into clinic.

We here review the potentials of these new models and their impact on the future of

LHON patients.

Keywords: Leber’s hereditary optic neuropathy, human induced pluripotent stem cells, mitochondrial disorders,

organoids, retinal ganglion cells (RGC)

INTRODUCTION

Leber’s hereditary optic neuropathy (LHON) is caused by maternally inherited missense
point mutations of mitochondrial DNA (mtDNA) (1) and is estimated as the most-frequent
mitochondrial disease (2). This blinding disorder is characterized by selective degeneration of
retinal ganglion cells (RGCs), the retinal neurons projecting their axons, which form the optic
nerve to the brain. Thus, the extended loss of RGCs and their axons leads to optic nerve atrophy,
with a severe defect of central vision, in most cases leaving the patient legally blind (3, 4).
Almost all LHON maternal lineages present with homoplasmic mutation (100% mtDNA copies
are mutant in all tissues), having one of three frequent mtDNA mutations found in over 90% of
patients worldwide (m.11778G>A/MT-ND4, m.3460G>A/MT-ND1, m.14484T>C/MT-ND6), but
only some individuals develop the disease. Also, despite that the homoplasmic mtDNA mutation
is present in all tissues, only a cellular type, that is, RGCs, undergoes degeneration. The pathogenic
mechanism leading to cell death is thus extremely tissue and cell specific (3, 4). The phenotype of
these mutations characterized by defective ATP synthesis when driven by complex I substrates (5),
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increased oxidative stress (6, 7), and increased propensity to
undergo apoptosis (8, 9) has been thoroughly investigated in
cybrids, lymphocytes, and fibroblasts but not in RGCs, the
disease’s target, which are not easily accessible and cannot be
maintained in vitro (10).

Moreover, given the difficulties in manipulating mtDNA,
very few animal models with mtDNA pathogenic mutations are
available (11), preventing the possibility to study the affected
tissues and organs and test therapeutic options.

To overcome these issues, we and other investigators exploited
innovative approaches, based on the use of human-induced
pluripotent stem cells (hiPSCs) as a faithful source of human
neuronal cells and RGCs.

The use of hiPSCs to obtain terminally differentiated cells of
a variety of tissues is a revolutionary approach to understanding
diseasemechanisms, performing drug screening, and testing gene
or cell therapy (12–15).

Several studies have demonstrated the possibility to generate
neurons and RGCs from plated hiPSC-derived embryoid bodies
(16–19). In addition, different groups developed 3D culture
systems recapitulating key steps of retinal development and
allowing the generation of self-organizing retinal organoids
containing RGCs (15, 20–25). These models provide a bridge
between traditional 2D cell culture and mouse models,
representing a paraphysiologic system with pros and cons
(26), but of paramount importance for modeling mtDNA-
related disorders.

Modeling LHON mutations in differentiated neurons and
organoids will provide not only insights into the tissue-specific
disease pathogenic mechanisms, but it will offer the unique
opportunity to test in-vitro pharmacological approaches in a
model systemmuchmore relevant than traditional non-neuronal
cell cultures, such as fibroblasts, lymphoblasts, or cybrids.
Moreover, patient-specific hiPSCs allow studying the effect of
the mtDNA mutation in the context of patient-specific nuclear
background, which, in LHON particularly, plays a pivotal role in
the modulation of disease’s presentation (27).

We here discuss our experience with the generation of hiPSCs
from LHON-affected patients integrated with the data present
in the literature. We particularly emphasize the translational
potential for patients in exploiting LHON neuronal cells and
RGCs to advance our knowledge of pathogenic mechanisms and
test therapies.

REPROGRAMMING FIBROBLASTS OR
PERIPHERAL BLOOD MONONUCLEAR
CELLS PBMCS FROM LHON PATIENTS

Since the epochal discovery of induced pluripotent stem cells by
the Yamanaka group in 2006 (28), many researchers generated
hiPSC by reprogramming differentiated cells obtained from
mitochondrial disease patients [MELAS syndrome (29), MERRF
syndrome (30), Pearson syndrome (31); reviewed by Liang (32)].
Unexpectedly, even if LHON is the most-frequent mitochondrial
disease, to date only a few groups, including ours (33), had
generated LHON hiPSCs by reprogramming fibroblasts or

peripheral blood mononuclear cells (PBMCs) derived from
patients (34–38).

One group from Taiwan reprogrammed PBMCs from two
LHON m.11778G>A patients and one LHON m.11778G>A
unaffected carrier using the Sendai virus (37). The authors
reported a slightly increased complex I (CI) activity, failing
statistical significance, in the LHON hiPSCs, both affected and
carrier, as compared to control. The authors reported a slightly
increased of complex I (CI) activity in both affected and carrier
LHON hiPSCs as compared to control, that failed to reach
statistical significance.

Another group reprogrammed fibroblasts from two LHON
m.11778G>A patients as well as one LHON proband carrying
two mutations m.4160T>C and m.14484T>C, using episomal
vectors expressing six reprogramming factors OCT4, SOX2,
KLF4, L-MYC, LIN28, and shRNA for p53 (34). They
investigated hypothetical difficulties in reprogramming cell lines
with OXPHOS defects since Yokota et al. reported reduced
reprogramming efficiency in mitochondrial encephalomyopathy
with lactic acidosis and stroke-like episodes syndrome (MELAS)
fibroblasts carrying more than 90% of the m.3243A>G
mtDNA mutation (39). Hung and collaborators reprogrammed
fibroblasts carrying the homoplasmic LHON mutations and
found no significant differences in the number of hiPSC colonies
between controls and LHON patients (21 colonies on average
for the controls, and 13 colonies on average for the LHON
patients). Differently, our own experience with LHON was more
similar to what observed by Yokota, since we noticed that
LHON fibroblasts or PMBCs are refractory to be reprogrammed
to hiPSC.

Specifically, we attempted to reprogram different LHON cell
lines: two m.3460G>A patients, four m.11778G>A patients,
and two unaffected m.11778G>A carriers (Table 1). As shown
in Table 1 and Figure 1A, the number of clones obtained
was in general very low, even if numerous attempts were
performed also in different laboratories. Conversely, using
fibroblasts derived from healthy controls or disease’s patients
affected by mitochondrial disorders, including dominant optic
atrophy (OPA1 mutation), Pearson (40), and MPAN (41), we
obtained on average from 10 to 20 clones of hiPSC (Table 1 and
Figure 1B) per reprogramming experiment. To overcome this
issue, we tested the reprogramming efficiency of LHON cells
under hypoxia laboratory conditions (5% pO2, more similar to
physiological oxygen tension in vivo), a condition previously
used to enhance the generation of hiPSC (42), and recently
demonstrated to be specifically beneficial in several OXPHOS
defects, by improving disease phenotype in mice and cells (43).
In fact, under traditional culturing conditions cellular models
of mitochondrial respiratory-chain disease and Friedreich’s
ataxia showed proliferative defects, which could be reversed by
lowering oxygen tension (44). In addition, hypoxia was able to
prevent and even reverse the neurological phenotype in a Leigh
syndrome mouse model characterized by CI deficiency due to
Ndufs4 gene ablation (45). Based on this evidence and since
LHON mutations were associated with reduced CI-driven ATP
synthesis and increased ROS production (46), we hypothesized
that hypoxic cell culture conditions during reprogramming
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TABLE 1 | Characteristics of cell lines subjected to reprogramming.

Individuals Cell line

name

Gene mutated Nucleotide change Cell type

reprogrammed

Reprogramming

conditions

Clones

obtained

LHON patients 3460 1 MT-ND1 m.3460G>A FB Normoxia 2

3460 2 MT-ND1 m.3460G>A FB Normoxia 1

11778 1a MT-ND4 m.11778G>A FB Normoxia 0

11778 1b MT-ND4 m.11778G>A FB Normoxia 2

11778 2a MT-ND4 m.11778G>A FB Normoxia 0

11778 2b MT-ND4 m.11778G>A FB Normoxia 0

11778 3 MT-ND4 m.11778G>A FB Normoxia 0

11778 4a MT-ND4 m.11778G>A PBMC Normoxia 1

11778 4b MT-ND4 m.11778G>A PBMC Hypoxia 4

carrier 1 MT-ND4 carrier m.11778G>A FB Normoxia 0

Carrier 2a MT-ND4 carrier 90% m.11778G>A PBMC Normoxia 3

Carrier 2b MT-ND4 carrier 90% m.11778G>A PBMC Hypoxia 7

Disease controls DOA OPA1 c.1334 G>A FB Normoxia 13

MPAN C19orf12 c.172G>A FB Normoxia 12

Pearson 1 mtDNA

macrodeletion

m.9449_14550 del FB Normoxia 10

Pearson 2 mtDNA

macrodeletion

m.8469_13460 del FB Normoxia 16

Healthy controls Control 1 None none FB Normoxia 23

Control 2 None none FB Normoxia 20

Control 3 None none PBMC Normoxia 15

could increase the number of hiPSC clones generated. Thus,
we recently reprogrammed PBMCs derived from one LHON
m.11778G>A patient and one carrier, in parallel under normoxic
(11778 4a and Carrier 2a) and hypoxic (11778 4b and Carrier 2b)
conditions (5% oxygen), following published procedures (42).
We found that this hypoxic condition significantly increased
the number of hiPSC clones generated (Table 1 and Figure 1A).
In fact, while under normoxic conditions, we obtained around
nine LHON hiPSCs clones in 10 different reprogramming
experiments (0.9 clones/reprogramming cycle), and this number
increased, under hypoxic conditions, to 11 clones in two
reprogramming experiments (5.5 clones/reprogramming cycle).
Although these last results derived from only two experiments
and need to be further consolidated, they indicated a statistically
significant improvement of the reprogramming efficiency
(Figure 1A), which remains largely below that observed for
the disease control group (12.7 clones/reprogramming cycle)
and for the healthy control group (19.3 clones/reprogramming
cycle) (Figure 1B). This amelioration of the reprogramming
efficiency is relevant not only to obtain enough biological
material for further investigations but could also unravel an
insight into pathogenic mechanisms, relevant for the disease, and
for the development of targeted effective therapy. Remarkably,
the subacute phase of LHON is hallmarked by well-known
vascular changes, and ongoing discussions revolve around the
issue of pseudo-hypoxic signaling that RGCs may produce as
their metabolic unbalance reaches the threshold for triggering
the disease, possibly underlying the microangiopathy in
LHON (3, 4, 47, 48).

GENERATION OF RGCs FROM LHON
PATIENTS

In the last years, a few protocols have been developed with
the purpose to differentiate RGCs directly from patients-derived
hiPSCs. However, very few of these RGCs models have been
produced for LHON. The first model was reported in 2017 by
the Wong group, who generated RGCs from one healthy control
and one patient carrying in combination the two homoplasmic
mtDNAmutations m.4160T>C andm.14484T>C. Interestingly,
they used cybrid technology to also generate patients’ fibroblasts
homoplasmic for the wild-typemtDNA, thus creating an isogenic
control hiPSCs and derived RGCs (35). They found an increased
level of apoptosis in LHONRGCs not observed in the healthy and
isogenic corrected RGCs, demonstrating that this phenotype was
a direct consequence of the LHON mutations. Another group
generated hiPSCs-derived RGCs from a m.11778G>A LHON-
affected and unaffected carrier, belonging both to the same
family (37). They observed enhanced mitochondrial biogenesis,
decreased basal respiration, and increased oxidative stress in
both affected and unaffected RGCs. However, defective neurite
outgrowth was only found in the affected RGCs, while carrier
cells exhibited a prominently higher expression of the gene
encoding γ-synuclein. Interestingly, increased CI activity was
observed in RGCs derived from the asymptomatic carrier but not
from the affected patient. Differences in affected and unaffected
RGCs carrying homoplasmic m.11778G>A mutation were also
found by Yang et al. (49). Both lines showed increased ROS
production, but only the affected cells were characterized by
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FIGURE 1 | LHON cell lines reprogramming efficiency. (A) Number of hiPSC clones obtained by reprogramming affected or non-affected (carrier) LHON-derived

fibroblasts or PBMC under normoxia (solid blue bars) or hypoxia (cross-hatched blue bars) conditions. (B) Comparison between grouped numbers of hiPSC clones

obtained from LHON (solid blue bar), disease controls including non-LHON mitochondrial diseases (hatched red bar), and healthy controls (cross-hatched green bars)

cell lines. The dots represent the number of clones obtained under normoxia (white dots) or hypoxia (black dots) conditions. ***p < 0.001, *p < 0.05.

increased apoptosis and altered mitochondrial transport pattern
along the axons, with an increase in retrograde and a decrease in
stationary mitochondria. Furthermore, affected RGCs displayed
a significant increase of KIF5A, a member of the kinesin-1
family KIF5, involved in the transport of mitochondria along
the axons. Another study carried out on hiPSC-derived RGCs by
Yang et al. (50) highlighted the possible role played by AMPA
receptors and excitotoxicity in m.11778G>A LHON patients.
They used a modified protocol of differentiation of hiPSCs
to RGCs to obtain a highly homogeneous RGCs population.
They showed how the MT-ND4-mutated LHON-RGC cells
exhibited significantly reduced GluR1/R2 (subunits of AMPA
receptors) and their associated scaffold proteins and the resulting
different pattern of response to glutamate stimulation compared
to control.

Lastly, Edo et al. (51) demonstrated that hiPSC-
derived RGCs can suppress the immune activity of
T-cells via TGF-β, have a poor expression of HLA
class I, and no expression of HLA class II (CD80 and
CD86 co-stimulatory molecules), opening the possibility
of using these cells in transplant without the risk
of rejection.

GENERATION OF NEURONS FROM LHON
PATIENTS

Almost two decades ago, the Cortopassi group generated
cybrids using the neuronal precursor cell line NT2, containing
mitochondria from patients withm.11778G>A andm.3460G>A
mutations (52). Differentiation of LHON-NT2 cells resulted in
a decreased number of cells, reduction of mtDNA amount,
and increased ROS production, compared to the parental
line. To our knowledge, no hiPSCs-derived neuronal model
different from RGCs has been generated to date. Although it
is clear that RGCs represent the best model to unravel LHON
pathomechanisms, hiPSCs differentiation in non-RGCs neurons
could be informative as well to study the selective degeneration
of RGCs in patients. To maintain the transparency of the retina
to light, the retinal segment of the RGCs axon is unmyelinated,
increasing the energetic demand for action potential firing along
this portion and making these cells particularly susceptible to
energetic deficit (53). The generation of in-vitro myelinated
neurons through co-cultures of Schwann cells and hiPSCs-
derived neurons (54) might be informative to establish the
involvement of myelin in the pathogenesis of the disease.
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STATE OF THE ART ON ORGANOIDS
IMPLEMENTATION

The use of 3D organoids generated in vitro from patient-derived
cells may represent an important interface between in-vitro and
in-vivo modeling of LHON, being more accessible and easier
to obtain than mouse models and overcoming the anatomical
interspecies differences between humans and rodents.

The first human brain and retinal organoids have been
generated about 10 years ago from different groups (55,
56). Lancaster and colleagues successfully modeled genetic
microcephaly using hiPSCs derived from patients’ fibroblasts to
generate brain organoids.

Only a year before, the Sasai group had generated a 3D optic
structure by self-organization of cultured human embryonic stem
cells (ESCs). The optic cup consisted of the retinal pigmented
epithelium, and an inner neural retina correctly organized into
multilayered tissue containing photoreceptors (rods and cones),
interneuron precursors, and RGCs (57). Both these protocols
exploited the capacity of embryoid bodies (EBs) (ESCs or
hiPSCs-derived) to proceed spontaneously toward ectodermal
commitment without extrinsic signaling factors, which instead
are necessary for mesodermal and endodermal specifications
(26, 58).

Several modifications and adjustments to the pivotal
approaches of Lancaster (55, 59) and Sasai group (57, 60), have
been done in the following years, essentially identifying distinct
extrinsic factors to obtaining specific regions in the organoids
(60, 61), or by-passing the EBs formation step (62). Moreover,
improvements toward standardization are constantly evolving,
such as the use of completely xeno-free culture methods (62) or
the introduction of technologies allowing large-scale controlled
organoids production, such as bioreactors or microfluidics
chips (26). Importantly, also protocols for cryopreservation
at intermediate steps of differentiation have been established,
allowing the biobanking of the in-vitro-generated organoids, an
additional advantage compared to animal models (26, 57, 62).

THERAPEUTIC APPROACHES

Despite the numerous clinical and pre-clinical investigations
carried out to date, effective therapies for LHON are still limited.
Effective means that therapy should be able to tangibly modify
the disease natural history either by aborting or reverting the
catastrophic wave of cell death, or at least limiting the progression
so that the visual function is substantially preserved based on
anatomical RGCs measurable sparing. Multiple clinical trials
have been conducted in recent years, essentially targeting the
main pathways involved in the pathogenic mechanism (63).
Several antioxidants molecules, some of which with direct effects
on mitochondrial respiration, have been tested in patients:
idebenone, Coenzyme Q10 (CoQ10), EPI-743, Elamipretide,
curcumin (63).

To date, idebenone (Raxone R©) is the only drug approved
by the European Medicines Agency for LHON. It has been
documented that idebenone can increase the rate of visual

recovery in LHON patients after reaching a nadir of visual loss
(64–66); however, its efficacy remains incomplete and variable
amongst treated subjects.

The only treatment explored in LHON hiPSCs-derived RGCs
was the antioxidant N-acetyl-L-cysteine, which was shown
to reduce the ROS production and apoptosis, also rescuing
the defective mitochondrial transport observed in the LHON
cells (49).

Additional compounds targeting other pathways involved
in the LHON pathogenesis (mitobiogenesis, mitophagy,
mitoinflammation) have been evaluated only in patient-derived
primary cells or in cybrids, such as phytoestrogens (67),
rapamycin (68), papaverine, and zolpidem (69). Moreover, other
potential strategies are emerging, for example, the inhibition of
the miRNA181a/b, acting on both mitobiogenesis andmitophagy
(70). All these pharmacological approaches should be reevaluated
also in RGC to understand if they are efficacious and rapidly
translatable into a therapy.

Besides pharmacological clinical trials, encouraging results are
nowadays being reported by clinical trials with gene therapy
for patients carrying the m.11778G>A/MT-ND4 mutation
[reviewed in Amore et al. (63)], using the Adeno-Associated
Virus (AAV)-mediated allotopic expression of a wild-type
recoded version of themtDNA-encoded ND4 subunit of complex
I (71, 72). To better refine the efficiency of allotropic expression
strategy in the context of RGCs, detailing the mitochondrial
import of wild-type ND4 protein, its competition with the
endogenously expressedmutant ND4, and finally the dynamics of
complex I assembly of either one or the other ND4 subunits, may
greatly benefit of 3D organoid modeling of LHON. This might
resolve some of the criticisms previously raised by the preclinical
studies (73–75). The same approach could be developed for the
other LHON-related mutations, and different approaches based
on gene therapy might be proposed in the future, for example,
modulating the expression of modifying genes or miRNAs (70)
or applying possible gene-editing strategies, as recently proposed
for mtDNA (76). Similarly, the feasibility of mitochondrial
import of nucleic acids, claimed by some studies (77, 78), may
benefit the use of eye/brain organoids carrying LHONmutations,
reproducing those experiments and possibly paving the road for
further gene therapy strategies.

DISCUSSION

In-vitro modeling of LHON through 2D cell cultures, including
patient-derived hiPSCs and neurons, allowed important steps
forward in the understanding of the pathogenic mechanism
of this complex and fascinating disease. We here presented
evidence that LHON hiPSCs are difficult to obtain as compared
to other apparently more severe mitochondrial disorders, but
this reduced efficiency could be improved by performing the
reprogramming experiment under hypoxic conditions. This
observation would deserve further investigation since obtaining a
large number of hiPSCs clones is instrumental to further develop
differentiated 2D cell cultures. Although 2D cell cultures show
several advantages such as easy manipulation and analysis (good
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accessibility of nutrients and/or drugs, excellent visualization
and tracking of cells at microscopy by live-cell imaging), the
complex 3D architecture of in-vivo tissues is not reproduced
by this method, nor are the interactions between different co-
resident populations of specialized cells (79). This is particularly
important for LHON, in which RGCs are the only cells affected
in the retina. The application of the innovative single-cell omics
on hiPSCs-derived 3D organoids can provide useful insight
on the cell specificity of LHON disease. A recent study has
already paved the way for this approach, performing single-cell
transcriptomics on in-vitro-generated human retinal organoids
and ex-vivo adult human retinas, allowing mapping of disease-
associated genes to particular cell types (25). This work highlights
the importance of investigating mechanisms of disease in RGCs
since they could be differently regulated in the traditional cell
models so far exploited. Many of the findings so far achieved
in LHON should be revalidated in RGC models to assure
that the right pathogenic mechanism was effectively targeted
by therapies.

Modeling mitochondrial diseases caused by mtDNA
mutations in animals is still challenging due to the difficulties
in manipulating the mitochondrial genome (80, 81), although a
new promising method has been recently described Mok et al.
(76). In 2012, the group of DougWallace, a pioneer in the field of
mitochondrial medicine, successfully generated a mouse model
carrying a mutation in the MT-ND6 gene, which developed a
pathology closely resembling LHON at 2 years of age, although
the mouse did not show reduced visual responses (82). This
model was instrumental to reproduce some of the hallmark
features observed in human post-mortem LHON retina (83, 84);
however, mice, because they lack the macular region, ultimately
fail to reproduce the natural history that clinically characterizes
humans with the characteristic catastrophic evolution of RGC
neurodegeneration (3, 4).

Thus, it will be fundamental to investigate pathogenic
mechanism of LHON disease in hiPSCs-derived cell/tissue-
specific models and retinal organoids might be instrumental
to assess efficacy/toxicity in the pre-clinical phases. The issue
of maintaining organoids in a spinning bioreactor under
hypoxic conditions, with the intent of reproducing the brain
endogenous developmental program, could be crucial, especially
for LHON in light of our observation, but also in general
for other diseases. To date, only a few brain organoids
models of mitochondrial diseases have been reported, specifically
for MELAS syndrome, mitochondrial neurogastrointestinal
encephalomyopathy, Friedrich ataxia, and Leigh syndrome (85–
88). We think that modeling LHON with retinal organoids
would provide substantial progress in the understanding of the

pathogenic mechanisms and in identifying the correct targets
for therapy development. To this end, testing pharmacological
and gene therapy approaches with human transgenes packaged
in the appropriate AAV vector constructs, currently performed
in animal models with obvious problematic issues (89, 90), may
benefit human-patient-derived eye/brain organoids, certainly
allowing to speed translation from pre-clinical science to
approval for human clinical trials of regulatory agencies such
as the Food and Drug Administration (FDA) and European
Medicines Agency (EMA).
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