
ORIGINAL RESEARCH
published: 05 May 2021

doi: 10.3389/fneur.2021.653483

Frontiers in Neurology | www.frontiersin.org 1 May 2021 | Volume 12 | Article 653483

Edited by:

Nikolaus Plesnila,

Institute for Stroke and Dementia

Research (ISD), Germany

Reviewed by:

Serge Marbacher,

Aarau Cantonal Hospital, Switzerland

R. Loch Macdonald,

University of Toronto, Canada

*Correspondence:

Moritz Helsper

moritz.helsper@uk-essen.de

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 14 January 2021

Accepted: 22 March 2021

Published: 05 May 2021

Citation:

Helsper M, Agarwal A, Aker A,

Herten A, Darkwah-Oppong M,

Gembruch O, Deuschl C, Forsting M,

Dammann P, Pierscianek D,

Jabbarli R, Sure U and Wrede KH

(2021) The Subarachnoid

Hemorrhage–Weather Myth: A

Long-Term Big Data and Deep

Learning Analysis.

Front. Neurol. 12:653483.

doi: 10.3389/fneur.2021.653483

The Subarachnoid
Hemorrhage–Weather Myth: A
Long-Term Big Data and Deep
Learning Analysis

Moritz Helsper 1*, Aashish Agarwal 2, Ahmet Aker 2, Annika Herten 1,

Marvin Darkwah-Oppong 1, Oliver Gembruch 1, Cornelius Deuschl 3, Michael Forsting 3,

Philipp Dammann 1, Daniela Pierscianek 1, Ramazan Jabbarli 1, Ulrich Sure 1 and

Karsten Henning Wrede 1

1Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,
2Department of Computer Science and Applied Cognitive Science, University of Duisburg-Essen, Duisburg, Germany,
3 Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany

Objective: The frequency of aneurysmal subarachnoid hemorrhage (aSAH) presents

complex fluctuations that have been attributed to weather and climate changes in the

past. In the present long-term big data and deep learning analysis, we have addressed

this long-held myth.

Methods: Bleeding dates and basic demographic data for all consecutive patients

(n= 1,271) admitted to our vascular center for treatment of aSAH between January 2003

and May 2020 (6,334 days) were collected from our continuously maintained database.

The meteorological data of the local weather station, including 13 different weather and

climate parameters, were retrieved from Germany’s National Meteorological Service for

the same period. Six different deep learning models were programmed using the Keras

framework and were trained for aSAH event prediction with meteorological data from

January 2003 to June 2017, with 10% of this dataset applied for data validation and

model improvement. The dataset from July 2017 to May 2020 was tested for aSAH

event prediction accuracy for all six models using the area under the receiver operating

characteristic curve (AUROC) as the metric.

Results: The study group comprised of 422 (33.2%) male and 849 (66.8%) female

patients with an average age of 55 ± 14 years. None of the models showed an AUROC

larger than 60.2. From the presented data, the influence of weather and climate on the

occurrence of aSAH events is extremely unlikely.

Conclusion: The myth of special weather conditions influencing the frequency of aSAH

is disenchanted by this long-term big data and deep learning analysis.

Keywords: subarachnoid hemorrhage-weather, SAH, hemorrhagic stroke, big-data, deep-learning, subarachanoid

hemorrhage, machine learning
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INTRODUCTION

Aneurysmal subarachnoid hemorrhage (aSAH) is a common
cause of stroke with high mortality and morbidity. The
worldwide annual incidence of aSAH is 7.9 per 100,000
person-years (1). The worldwide annual death toll of aSAH
is approximately half a million people. The highest prevalence
is in the age group of 35 to 60 years, and thus half of
the patients affected are under 50 years of age (2). Known
risk factors of cerebral aneurysms include smoking, arterial
hypertension, congenital disorders of the connective tissues (e.g.,
“Marfans syndrome” or “Ehlers–Danlos syndrome”), positive
family history of the disease, age (>40 years) as well as
gender (male to female ratio: 2/3). Further risk factors are
alcohol and drug abuse (particularly cocaine), polycystic kidney
disease, and fibromuscular dysplasia (3, 4). Several scores
such as “UIATS”, “ELAPSS,” or “PHASES” have been created
to predict aneurysm growth and the rates of aSAH using
those risk (5–7). However, numerous authors have attributed
weather and climate to influence the occurrence of aSAH events
(8–22). Unlike for the clear correlation between myocardial
infarction and cold weather (23), the results of research on
the incidence of aSAH succeeding weather and/or climate
changes have been inconsistent. Over the last decades, starting
in the 1980s (16), no general agreement could be established,
and the persistent myth of “aneurysm weather” perseveres.
Different study cohorts, geographical areas, study designs, and
statistical methods have led to contradicting results. Computing
power and the amount of research in big data analysis
have been constantly increasing throughout the last decades.
Deep learning data analysis has made its way into medical
mainstream. The availability of large datasets allows event
predictions, pattern recognition, and detailed image analysis.
Consequently, these networks can aid clinicians for diagnosis
and treatment and can, therefore, improve the quality of patient
care (24). Several clinical applications have been reported in
the last years, including analysis of electrocardiograms (25),
diagnosis of pneumonia in chest X-rays (26), and virtual contrast
application in cranial magnetic resonance imaging (27). In the
field of neurosurgery, machine learning networks were used
to predict the postoperative mortality rates of patients with
spinal metastases (28). This study aimed to analyze a large
range of weather and climate parameters and their effect on the
occurrence of aSAH. The big data and deep learning approach
allowed to the simultaneous analysis of 13 different weather and
climate parameters and 1,271 aSAH events over a course of 6,334
days (83,613 data points).

The results are reported in accordance with the Strengthening
the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines for reporting observational studies.

Abbreviations: CT, computed tomography; CTA, computed tomography

angiography; MRA, magnetic resonance angiography; DSA, digital subtraction

angiography; SAH, subarachnoid hemorrhage; aSAH, aneurysmal subarachnoid

hemorrhage; AUROC, area under the receiver operating characteristics; ROC,

receiver operating characteristic; LSTM, long short term memory; Bi-LSTM,

directional long short term memory; CNN, convolutional neural network; ICD,

International Classification of Diseases.

METHODS

The University of Duisburg-Essen ethical committee authorized
the study (registration number: 15-6331-BO), and all patients
or their relatives provided written informed consent. The study
was conducted according to the principles of the Declaration of
Helsinki andwas compliant with theHealth Insurance Portability
and Accountability Act.

Study Area and Inclusion Criteria
The neurovascular department at the University Hospital of
Essen is one of the most frequented referral centers for patients
with aneurysmal SAH in the Ruhr area. The region is densely
populated with over five million inhabitants, located close to
Germany’s western border with the Netherlands. The climate
in the area is moderate with four distinct seasons. The climate
throughout the whole regions tends to not vary significantly due
to the absence of large mountain ranges or other geographical
weather disturbances. Data from 1,271 patients admitted to our
neurovascular department for the treatment of aSAH between
January 2003 andMay 2020 were collected from our continuously
maintained prospective database. Evaluation included bleeding
dates, basic demographic data as well as 13 weather parameters
for each day (6,334 days). The inclusion criteria were (a)
radiographic verification of the bleeding source of aSAH (by
digital subtraction angiography and/or computed tomography
angiography) and (b) information about the exact date of
the ictus.

Meteorological Data
Meteorological data was obtained from the closest weather
station (Bredeney #1303), approximately 3 km southwest of
our department. It was kindly provided by the Climate
Data Center of the German meteorological service (Deutscher
Wetterdienst). The following weather parameters were included:
daily maximum wind speed (m/s), daily mean wind speed (m/s),
daily amount of rainfall in (mm), daily amount of sunshine
(hours), daily amount of snowfall (cm), mean daily vapor
pressure (hPa), mean daily atmospheric pressure (hPa), mean
daily humidity (%), mean daily temperature (◦C), maximum and
minimum daily temperature at 2m above ground level (◦C),
minimum daily temperature at 5 cm aboveground (◦C), and
cloud coverage.

Data Preprocessing
Various techniques were applied to preprocess the data, including
imputation of missing values using scikit-learn (29) and quantile-
based discretization to smoothen the data by identifying outliers
(30) using the Pandas software library (31). Standardization and
Gaussian distribution with zero mean and unit variance were
achieved with the scikit-learn library (29). Feature engineering
allowed modeling the impact of changes in temperature from
the previous day’s maximum to the minimum of the next
day as a trigger for SAH. The chi-square test was applied
to determine significant associations between features (weather
parameter) and class labels (ictus/no ictus). Pearson correlation
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coefficient was calculated to identify the correlation of different
meteorological factors on admission days for aSAH.

Training, Validation, and Test Split
The meteorological dataset from January 2003 to June 2017 was
used as training data, and 10% of the training data was selected
to validate this data and improve the model. Meteorological data
from July 2017 to May 2020 was chosen as test data. Sequence-
to-sequence classification with sequence lengths of 5 days (2 days
before and after the ictus) allowed the correction for bias from
overlapping positive and negative classes.

Deep Learning Models
We used pattern recognition algorithms in six standard
deep learning models that were implemented with the Keras
framework for Python (32), Dense Autoencoder, bi-directional
long short-term memory (Bi-LSTM), standard long short-
term memory (LSTM), LSTM autoencoder, Dense (feed
forward neural network), convolutional neural network (CNN),
and CNN+LSTM.

One-Class Classification
In the context of neural networks, one-class classification is also
called a “novelty detection technique.” It has been implemented
extensively in the field of anomaly detection to classify rare events
in cases with a large class imbalance. This technique considers
either positive or negative instances instead of distinguishing
between two classes. Autoencoders used for this purpose are
trained to perform auto-associative mapping, that is, identity
function. The classification is made based on a reconstruction
error between the input and predicted output patterns, for
example, Euclidean, Mahalanobis distance, absolute error, or
the squared sum of errors. We used dense and LSTM-based
autoencoders (33–35). In this type of classification, the sequence
of information is not relevant. Therefore, features are extracted
either from days with a bleeding event (in case of positive) or
days without a bleeding event (in case of negative).

Two-Class Classification
In contrast to the previous technique, sequence-to-sequence-
based classification models were applied. These models use the
current input and also the previous values to calculate the result.
Five days preceding each positive and negative day were included,
resulting in a sequence of six consecutive days. These sequence-
to-sequence models make the judgment based on the entire
sequence. We investigated standard LSTM and also Bi-LSTM
models (36–38). Bi-LSTM, in contrast to standard LSTMmodels,
read the sequence from left to right and then right to left.
Furthermore, we combined LSTM with CNN, which helps to
extract more and more detailed features (39).

Evaluation Metrics and Testing
The overall accuracy, which is the proportion of test examples,
is the metric that is most widely used to evaluate a classifier’s
performance. When a dataset is imbalanced, the accuracy will
favor the overrepresented classes. This leads to misclassification.
A measure of quality that addresses these issues is the AUROC
(area under receiver operator characteristic). We used the

AUROC as the main metric to compare the performance
of classifiers trained with our datasets. However, for the
purpose of evaluation, we also report precision (ratio of
correctly predicted positive observations to the total predicted
positive observations), recall (ratio of correctly predicted positive
observations to all the observations in actual class), and F1
score (harmonic mean of precision and recall) along with the
AUROC values.

Statistical Analysis
Data preprocessing, statistical analysis, and model training was
implemented in Python (Version 3.6) (40). The Python libraries
utilized for data preprocessing included Numpy (41), Pandas
(42), and scikit-learn (29). Model training was implemented in
the Keras library (32). Statistical analysis was carried out using
the Seaborn (43) and MatplotLib (44) libraries.

Any data not published within the article is available in the
public repository “figshare” (https://doi.org/10.6084/m9.figshare.
14129960).

RESULTS

The study group comprised 422 (33.2%) male and 849 (66.8%)
female patients with an average age of 55 years (range, 19–94;
SD ± 14). During data preprocessing, chi-square test (Table 1)
showed a significant association between seven out of 14 features
and the class label (aSAH), revealing a slight correlation between
the data. The Pearson correlation chart (Figure 1) showed only
a weak linear correlation within the majority of the chosen
meteorological parameters. All networks showed similar, high
classification accuracy, represented by Precision, Recall, and
F1. However, they were not able to reproduce bleeding days

TABLE 1 | Results of “chi-squared test” performed during data preprocessing,

illustrating association between aSAH and weather features.

Feature P-value Correlation

Daily maximum windspeed (m/s) 0.01584 Yes

Daily mean windspeed (m/s) 0.39967 No

Daily amount of rainfall in (mm) 0.03829 Yes

Daily amount of sunshine (hours) 0.75359 No

Daily amount of snowfall (cm) 0.00098 Yes

Mean daily vapor pressure (hPa) 0.00264 Yes

Mean daily atmospheric pressure (hPa) 0.71198 No

Mean daily humidity (%) 0.82945 No

Maximum daily temperature at 2m above

ground level (◦C)

0.00533 Yes

Minimum daily temperature at 2m above

ground level (◦C)

0.00544 Yes

TDP for mean daily temperature (◦C) 0.14743 No

Mean daily temperature (◦C) 0.01411 Yes

Minimum daily temperature at 5 cm above

ground (◦C)

0.07481 No

TDP for minimum daily temperature at 5 cm

above ground

0.20424 No
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FIGURE 1 | Pearson correlation chart showing the linear correlations between individual weather parameters and bleeding days.

by weather data alone. This is measured by the AUROC.
In our scenario, the accuracy of the test depends on how
well the test separates bleeding from non-bleeding days using
meteorological data. The highest AUROC value was produced by
Dense Autoencoder, with a value of 60.2 (Figure 2). LSTM and
LSTM+CNN models that take past values and Bi-LSTM model,
which also considers future values, also had similar outcomes
(Table 2). This provides strong evidence that the incidence of
aSAH has no relevant correlation with meteorological factors.

DISCUSSION

Weather and climate changes have been attributed to influence
aSAH events. Several studies using classical statistics have been
published in the past decades with contradicting results. To our
knowledge, this is the first study using deep-learning analysis
utilizing several weather parameters simultaneously. Deep
learning models each have specific strengths and weaknesses.
Therefore, six different deep learning models were evaluated to

find the most suitable solution for our problem with the highest
sensitivity and specificity. The largest analysis on the topic to this
date is a multicenter, retrospective study based on the admission
diagnosis of 155 US hospitals during the calendar years 2004
to 2008 (N = 7,758) (21). Analyzing temperature, pressure,
and humidity, Cowperthwaite and Burnett found no influence
of these parameters on the incidence of aSAH. The biggest
limitation of this study is the possible discrepancy between
the date of aneurysm rupture and hospital admission. On the
other hand, the large nationwide study design allowed for the
correction of local biases. Several single-center studies found
a correlation of aSAH events and environmental pressure, low
temperatures, and sudden temperature change. Van Donkelaar
et al. investigated the influence of environmental pressure
changes on aneurysm rupture. They reported that an increase in
pressure on the second and third days before ictus was correlated
with a higher incidence of aSAH. They assumed that pressure
changes were a delayed trigger of aSAH (18). Several other
studies supported these findings (8, 17). Analyzing sequences
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FIGURE 2 | Area under the curve for all six networks created. In our study, it was used to predict bleeding events within our dataset.

TABLE 2 | Overview of the precision*, recall*, F1*, and AUROC values for all six

deep learning models *(weighted average).

Precision* Recall* F1* AUROC*

Dense Autoencoder 72 62 65 60.2

Bi-LSTM 71 80 72 55.9

LSTM Autoencoder 73 80 75 53.8

Dense 64 80 72 53.4

CNN 69 77 72 52.1

LSTM 67 82 74 50.8

of 5 days before the ictus allowed us to detect the possible
influence of even very small weather changes. Neither pressure
changes nor any other parameters were identified as a trigger
of aSAH. In accordance with our results, Landers et al. did not
find any association between aSAH and an increase in barometric
pressure either (22). Other authors reported sudden temperature
changes to be a relevant risk factor for aSAH. Gill et al. state
that a 1◦F temperature drop from 1 day to the next is associated
with 0.6% increased risk of aSAH (12). This subtle increase is
most likely explained by selection bias and the relatively small
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study cohort. Backes et al. matched 18,714 patients from the
Dutch SAH registry with corresponding ICD codes to the average
weekly temperature and found low temperatures to be connected
with an increase in aSAH frequency (9). These results support
a seasonal dependency of aSAH incidence that we did not find
in our cohort. On the other hand, Rivera-Lara et al. found
an increase in aSAH incidence also on warm days, but only
when the temperature significantly dropped within that same day
(15). Their results were supported by two other research groups
(19, 45). Our data does not support these findings, and from our
experience, it remains questionable if it is possible to determine
the time of the ictus with the required accuracy, especially in
retrospective datasets. Muroi et al. showed a seasonal variation
only in patients younger than 59 in their prospective study with
489 patients from Zurich (14). Chyatte et al. described relevant
seasonal fluctuations as well, with a peak in spring for both men
and women in their single-center study from the United States
(10). In contrast, there were no seasonal variations in hospital
admissions in our patient cohort. On the one hand, this could be
explained by the moderate central European climate in western
Germany, with only subtle weather changes from day to day,
but from our analysis it is more likely that the weather and
climate changes have no relevant influence on the frequency
of aSAH. In summary, previous research on the influence of
weather and climate changes on the frequency of aSAH yielded
contradictory results. During the data preprocessing stage of the
present study, ictus dates and certain weather parameters showed
some correlation. However, the applied deep-learning models
were neither able to reproduce or predict bleeding days nor able
to detect a pattern in the influence of weather and climate as a
whole or individually for each parameter.

There are some limitations to our study. The analysis is
based on a prospective aSAH dataset starting in 2003. Individual
habits and social and working conditions that have not been
assessed might have changed during the observation period and
therefore bias the analysis. The presented results are only valid for
moderate weather and climate conditions like the ones prevalent
in central Europe. More extreme conditions could potentially
lead to different results. Patients who died before admission

or patients who were admitted at surrounding neurosurgical
departments were not included within the analyzed dataset.

CONCLUSION

The myth of special weather and climate conditions influencing
the frequency of aSAH is disenchanted by this long-term big data
and deep learning analysis. After all, the weather does not appear
to influence the risk of aneurysm rupture.
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