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The current treatments for neurodegenerative diseases are mostly symptomatic without

affecting the underlying cause of disease. Emerging evidence supports a potential

role for immunotherapy in the management of disease progression. Numerous reports

raise the exciting prospect that either the immune system or its derivative components

could be harnessed to fight the misfolded and aggregated proteins that accumulate in

several neurodegenerative diseases. Passive and active vaccinations using monoclonal

antibodies and specific antigens that induce adaptive immune responses are currently

under evaluation for their potential use in the development of immunotherapies. In

this review, we aim to shed light on prominent immunotherapeutic strategies being

developed to fight neuroinflammation-induced neurodegeneration, with a focus on

innovative immunotherapies such as vaccination therapy.
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INTRODUCTION

Inflammation of nervous tissue, termed neuroinflammation, occurs in response to diverse cues,
such as infection, traumatic brain injury, toxic metabolites, or autoimmunity. Neuroinflammation,
which is an important process for maintaining healthy central nervous system (CNS) function
following injuries such as physical trauma and infections, is highly regulated due to the lack
of regenerative ability of post-mitotic cells of the nervous system. It also constitutes a major
component of many neurodegenerative (1) and psychiatric disorders (2).

Inflammatory responses in the CNS are induced by microglia, the resident innate immune cells,
and further exacerbated by reactive astrocytes and infiltrating leukocytes (3). They are usually
brief and followed by the recruitment of other immune cells to the affected area, clearance of
the insulting agent, and tissue repair or scarring, leading to immune resolution. These events
together constitute acute neuroinflammation, as opposed to chronic neuroinflammation, which
may persist for decades. The majority of neurodegenerative disorders display low-grade chronic
neuroinflammation, which can result in collateral damage worse than the original insult (4).
In addition to disrupting the neurocircuitry, these conditions ultimately may cause permanent
neuronal damage and brain atrophy, which are thought to result from the sustained release
of cytotoxic factors by activated microglia, astrocytes and other immune cells, leading to
neurodegeneration (4).

Neurodegenerative diseases are characterized by a progressive loss of neurons in several areas
of the CNS; and are associated with cognitive, psychiatric, and motor deficits due to atrophy of the
affected regions (5). Together, neurodegenerative diseases exert a major global disease burden, with
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dementia being a public health challenge in many developed
countries. As aging is a strong risk factor for the most common
neurodegenerative conditions, the global economic and social
impact of these diseases on healthcare systems will likely continue
to surge significantly in the coming decades due to increasingly
aging populations and longer life spans (6). It has been projected
that by the year 2050, the population of individuals over the age
of 60 will rise from 901 million in 2015 to 2.1 billion people
worldwide (7). The increased life expectancy will be accompanied
by higher age-related diseases, with the elderly expected to spend
most of their later years in ill-health. In fact, a main cause of
disability in the elderly is dementia, affecting 44 million people
globally, and expected to surpass 135 million people by the
year 2050 (8). Over 36 million people worldwide are diagnosed
with Alzheimer’s disease (AD) or Parkinson’s disease (PD), the
two most common neurodegenerative disorders. The absence of
effective disease-modifying treatments and the failure of most
clinical trials for new therapies highlight the need to identify
new therapeutic targets to halt disease progression. An important
challenge in the developing treatment strategies for most
progressive neurodegenerative diseases is their multi-factorial
etiology and diverse disease course (9–11). For the most common
neurodegenerative diseases, such as AD, PD, amyotrophic lateral
sclerosis (ALS), and Huntington’s disease (HD), the causes
of disease occurrence and progression are not fully known.
Moreover, the disease course and severity varies significantly
among patients, which complicates the challenge of efficient
therapeutic interventions.

Common pathological mechanisms identified in most
progressive neurodegenerative diseases involve neurotoxic
proteinmisfolding, oxidative stress, and proteasomal impairment
(4, 12). Increasing evidence suggests the presence of causal
mechanistic links between toxic misfolded protein assemblies
and neurodegeneration. Atypical protein aggregates are currently
considered a main feature of most neurodegenerative disorders
including PD, ALS, and HD, although their pathological
significance is still debated (13).

Most articles in the literature describing immunotherapies
for neurodegenerative diseases have typically focused on
auto-immune neurodegenerative disorders such as multiple
sclerosis (14). Until recently, little was known about
immunotherapeutic interventions targeting aging-associated
as well as other non-auto-immune neurodegenerative
diseases. In this review, we therefore highlight recent
immunotherapeutic strategies being developed to treat
neuroinflammation-induced neurodegeneration, with a focus
on immunotherapies.

PATHOGENESIS OF
NEUROINFLAMMATION

Role of Microglia and Astrocytes
Microglia are resident macrophages in the brain and spinal
cord and the primary immunocompetent cells in the CNS
(15). Microglia constitute ∼15% of the total cells in the brain,

and their numbers and densities change depending on the
brain region (16, 17). In the normal adult brain, microglia
usually exist under different phenotypic states depending on the
brain activity, plasticity, and response to challenges throughout
life. Cutting-edge fate mapping and imaging techniques, along
with RNA-seq expression profiling and other complementary
technologies, have helped to decipher the origins, functions,
and different phenotypes adopted by microglial cells (18, 19).
During CNS surveillance, microglia dynamically remodel the
structure of their processes and shift from a “surveying” ramified
state to reactive amoeboid form in response to disturbances
in homeostasis. Cells depart from the surveillance mode and
acquire a reactive profile tailored to cope adequately with each
specific trigger. This includes chemotactic reorientations, up-
regulation of several cell surface proteins, release of numerous
secreted factors and other transcriptional adjustments, which
can occur in minutes or within a few hours post activation
(20). With adjacent microglia surveying the brain parenchyma,
studies estimate that the entire neuronal network of the
brain can be scanned within hours (20–22). These cells
are critical for proper brain development and maintenance
of brain homeostasis throughout the life span, and their
activation processes seem to be more diverse and dynamic than
previously anticipated at all cellular levels (23). Based on the
rapidly growing literature and the remaining gaps in microglial
incontrovertible status within the CNS, there is an urgent
need to create an updated microglial terminology that takes
into consideration previous and newly discovered knowledge,
including transcriptomic and proteomic profiles in both brain
health and disease.

Astrocytes are the most abundant glial cell type in the
CNS, providing mechanical and metabolic support to neurons,
and helping in the regulation of critical biochemical activities
including maintenance of the neural network, ionic and
extracellular space volume homeostasis, synaptic plasticity,
and blood flow (24). In response to a pathologic insult,
astrocytes modify their morphological and functional state
and become activated, which can be beneficial (radial glial-
like astrocytes) or detrimental (reactive astrocytes) (24). Upon
activation, astrocytes promote a pro-inflammatory environment
by releasing mediators, such as IL-6 and TNFα. They can
also recruit peripheral and CNS immune cells to the site of
neuronal injury and degeneration (25). Furthermore, because
astrocytes are the gatekeepers of the blood-brain barrier (BBB),
they are associated with its pathological breakdown, which
occurs during progressive neurodegeneration. The breakdown
of BBB is thought to facilitate the entry of peripheral
immune cells and blood components, which can exacerbate
CNS neuroinflammation and neurodegeneration (26, 27).
Nonetheless, the main functions of astrocyte activation and
inflammatory responses aim to limit CNS damage and tissue
remodeling, and to enhance neuronal recovery. Some studies
have highlighted the role of astrocytic degeneration and
atrophy in the early stages of neurodegenerative diseases,
which may have implications for neuronal loss and disease
progression (26).
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MECHANISMS OF NEUROINFLAMMATION
MEDIATED NEURODEGENERATION

The main feature of neuroinflammation in the CNS is the
presence of persistently-activated primary immunocompetent
glial cells, microglia, and astrocytes, at the areas of
neurodegeneration. The progressive neuronal loss is typically
accompanied by the presence of hypertrophic microglia and
dystrophic astrocytes. The primary functions of this reactive
gliosis were thought to be phagocytic clearance and immune
surveillance in the case of activated microglia, and neurotrophic
support for astrocytes. This holds true in most cases of acute
brain injury or infection, where neuroinflammatory responses
are regulated and usually subside when the infection clears or
homeostasis is restored at the location of injury. This transient
activation of microglia mediates a microenvironment which can
promote neuronal survival and recovery of CNS homeostasis
(28–30). Acute and regulated microglial activation drives
anti-inflammatory and neurotrophic responses, and protects
neuronal populations from excitotoxic injury (31, 32). The
pro-homeostatic effects of microglia is also evidenced by in
vivo studies of microglia depletion and replenishment (33, 34).
Thus, it is thought that acute neuroinflammatory responses
are beneficial in the CNS, since they halt additional injury and
facilitate the survival of neurons (35).

In contrast to the response seen during acute neuronal
injury, chronic microglial activation observed in progressive
neurodegenerative disorders is morphologically and
functionally distinct. Persistent reactive microgliosis has
been seen in postmortem brains of patients in all progressive
neurodegenerative disorders (4, 36).

While the brain was widely regarded as an immune-
privileged site where inflammation only occurred in the context
of direct infection or BBB breakdown, it has now been
proven that all endogenous CNS cell types express specialized
pattern recognition receptors (PRRs) that can trigger an innate
immune response to specific host-derived molecules called
danger/damage associated molecular pattern (DAMPs) (9, 37,
38). Endogenous DAMPs can directly induce neuroinflammation
in the CNS, shifting immunocompetent cells from their beneficial
roles to a chronically reactive state, thus contributing to the
progression of neurodegeneration (9). This view has changed our
understanding and therapeutic approach to neurodegenerative
disorders from a neuron-centric perspective of preventing
neuronal death or providing trophic support for degenerating
neuronal populations. An important common aspect of most
progressive neurodegenerative diseases is the presence of
persistent insoluble protein aggregates. These aggregates may
function as DAMPs to activate PRRs [Toll-like receptors (TLRs);
nucleotide-binding domain (NOD) leucine-rich repeat (LRR),
and pyrin domain–containing 3 (NLRP3); receptor for advanced
glycation end products (RAGE), etc.] onmicroglia and, thus, they
mediate chronic reactive gliosis and neuroinflammation.

Another finding commonly seen in neurodegenerative
diseases is an exaggerated release of pro-inflammatory
cytokines and chemokines in the CNS such as TNFα and
the over expression of IL-1β (39–42). Numerous cytokines and

chemokines of the TNF and IL superfamily are also increased
in the cerebrospinal fluid (CSF) and serum of patients with
neurodegenerative diseases, making them potential markers
of disease onset, progression, or treatment efficacy. However,
no selective biomarkers have been established for progressive
neurodegenerative diseases to this date.

The complement system is an additional major player of
the innate immune system that can have a pathogenic role
in progressive neurodegenerative diseases (43–46). Specific
complement factors and receptors are also up-regulated in the
serum and on circulating immune cells of neurodegenerative
disease patients, suggesting that complement activation and
signaling could be an important link between the CNS and
peripheral arms of innate immune system in neurodegenerative
diseases (47).

MATERIALS AND METHODS

A literature search was conducted to investigate the existence of
candidate immunotherapies for neurological disorders by using
key terms to identify relevant articles on the subject. No date
restrictions had been set for the articles to be retrieved from the
search. The terms used for the search strategy were grouped into
three broad categories based on key concept words “neurological
disorders” and “immunotherapy.” Combinations of terms from
each category were grouped together and joined with the terms
from the other categories to be used in our database search.

Category 1: Alzheimer’s disease, Parkinson’s disease,
Synucleinopathy Amyotrophic lateral sclerosis and
Huntington’s disease

Category 2: Active immunotherapy, Passive immunotherapy,
inflammatory mediators, pattern recognition receptors (PRRs),
pathogen-associated molecular patterns (PAMPs).

Eligibility Criteria
Studies of interest consisted of human clinical trial results and
results acquired from trials on animal models. The following
electronic databases were used: PubMed, OVID Medline, Web
of Science, and Google scholar. Articles that did not assess the
efficacy of the immunotherapy compared to untreated controls
were excluded. All study designs were included; except case
series, case reports, reviews, short communications, and letters
to the editors. Studies that recruited patients with multiple
comorbidities were excluded. In addition, studies conducted in
non-English languages were also excluded.

RESULTS: THERAPEUTIC STRATEGIES
TARGETING NEUROINFLAMMATION IN
THE MANAGEMENT OF
NEURODEGENERATIVE DISEASES

Targeting Inflammatory Mediators
TNFα

A major therapeutic strategy is to target the production
of secreted and cell surface inflammatory mediators driving
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neuronal dysfunction and death. Inhibition of soluble TNFα
via small-molecule inhibitors or by viral over-expression has
proven to be efficient in several experimental models of
neurodegenerative disorders, including AD and PD (48, 49).
Yet, in a randomized double-blind phase II clinical trial, weekly
subcutaneous injections of Etanercept (a TNF inhibitor) did
not improve cognition, global function, or behavior in a small
group of subjects with mild-to-moderate AD dementia (50).
The presence of safe and effective TNFα inhibitors, currently
used for systemic inflammatory diseases, renders them potential
therapeutic candidates if tested at earlier disease stages or in
combination with other anti-inflammatory therapeutics (48).

NLRP3 and Interleukins

Some populations of neurons were found to be susceptible to
the chronic production of IL-1β in the CNS (Godoy et al.,
2008). Viral over-expression of IL-1β at low levels leads to DA
degeneration in the substantia nigra; furthermore, inhibition
of NLRP3-driven IL-1β secretion is protective in transgenic
AD models (51). Inhibition of the NLRP3 inflammasome
can constitute an effective way to block downstream IL-1β
production, which is thought to be a master regulator of pro-
inflammatory responses in the CNS (52). Tested in a preclinical
mouse model of multiple sclerosis, the first small-molecule
inhibitor of the NLRP3 inflammasome (MCC950) demonstrated
therapeutic efficacy (53). Endogenous ketone bodies were also
found to strongly inhibit the NLRP3 inflammasome, suggesting
that CNS permeable compounds, such as β-hydroxybutyrate,
may have a therapeutic role for neuroinflammatory diseases
(54). In experimental models of AD, IL-12, and IL-23
were associated with neutralizing antibodies capable of some
therapeutic benefit when given systemically (55). Additional
studies are needed to evaluate the efficacy of these mechanisms
in other neurodegenerative diseases. As US FDA-approved IL-
12 neutralizing drugs are currently used in the management
of psoriasis, it may be worthwhile to evaluate these drugs in
AD and other neurodegenerative diseases (56). Deposition of
complement around plaques and degenerating neurons were also
seen in several neurodegenerative disorders (57–59). In models
of AD, ALS, and HD, pharmacological inhibition of the receptor
for the terminal complement component, C5a, was found to limit
disease pathology and progression (60).

Novel research aimed at attenuating neurodegenerative
disease pathology examines possible anti-inflammatory and
immunomodulatory roles of molecules such as granulocyte-
macrophage colony-stimulating factor (GM-CSF), peroxisome
proliferator-activated receptor gamma (PPAR-γ) and glucagon-
like peptide 1 (GLP-1).

GM-CSF

GM-CSF is an immunomodulatory growth factor and cytokine
that is deregulated in neurodegenerative diseases. In fact,
GM-CSF elicits its effects on dendritic cells to control the
induction and proliferation of regulatory T (Treg) cells, as
well as inducing microglial proliferation, ultimately controlling
microglial homeostasis and regulating inflammation (61–
64). GM-CSF has exhibited an extensive neuroprotective

potential in both preclinical and clinical studies in AD.
Administration of GM-CSF therapy to AD mouse models
successfully attenuates neuroinflammation and cognitive decline
by rescuing hippocampal neuronal pathways and enhancing
Aβ clearance by recruiting microglia to amyloid plaques (65,
66). Data from clinical trials shows significant cognitive and
memory improvement in groups treated with the 127-amino-
acid synthetic recombinant form of GM-CSF, Sargamostim (GM-
CSF Leukine), when compared to controls. Moreover, phase
2 trials (NCT01409915) involving Sargamostim have deemed
it safe and tolerable for all AD patients (67). Sargamostim’s
immunomodulatory and neuroprotective roles are also being
investigated in PD. Preliminary results are promising, as
preclinical and phase 1 trials (NCT01882010) have shown
significant reduction in PD associated motor symptoms, and
that GM-CSF rescues and protects nigrostriatal dopaminergic
neurons via Treg induction (68, 69). Additionally, Sargamostim
is safe and generally well-tolerated among patients, aside from
mild injection site reactions (68).

The efficacy of GM-CSF remains controversial in treating
ALS patients due to inconsistencies in clinical results, with some
studies showing that GM-CSF does not benefit ALS patients
and does not slow down disease progression (70, 71). Current
preclinical data suggest that GM-CSF extends the lifespan of
transgenic mouse models and has potent anti-inflammatory
capabilities by downregulating TNFα and reducing microglial
activation (72, 73). Moreover, GM-CSF is neuroprotective;
hence, it promotes microglial migration and recruitment to
damaged axon segments and preserves large myelinated axons
(72, 73). Current clinical studies have yielded conflicting results
as disease mechanisms remain to be clearly understood. Aside
from being safe and tolerable, the efficacy of GM-CSF in
attenuating motor symptoms and alleviating ALS pathology
seems rather inconsistent (74, 75). In this regard, GM-CSF has
been reported as a potent anti-inflammatory agent in ALS, as
it upregulates anti-inflammatory cytokines such as IL-10 and
reduces pro-inflammatory cytokines such as TNFβ, monocyte
chemoattractant protein-1, interferon-γ, IL-7 and IL-17 (76, 77).
Furthermore, Johannessen et al. (77) and Zhang et al. suggest
(78) that GM-CSF could play a role in attenuating motor decline
and enhancing patient survival. On the other hand, Amirzagar
et al. (70)and Nefussy et al. (71) provide evidence that GM-
CSF offers no improvement to ALS-related clinical outcomes,
with Amirgazar et al. reporting aggravation of disease status and
acceleration of disease course, especially in females, in response
to GM-CSF treatment.

GLP-1 and PPAR- γ

Despite GLP-1 agonists and PPAR- γ agonists being primarily
anti-diabetic drugs, recent findings indicate that these molecules
execute neuroprotective and anti-inflammatory functions, which
alleviate symptoms of AD and PD as well as rescuing Akt-1 and
m-TOR, and insulin signaling in the brain (79–84).

GLP-1 agonists reduce proinflammatory cytokines and reduce
disease burden in AD and PD mouse models. The mechanisms
detailing the mode of action of these drugs and their
pathways have been extensively reviewed (85–87). Nevertheless,
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recent results obtained from AD and PD clinical trials for
GLP-1 agonist drugs have shown minor improvements in
disease pathophysiology, if any (88–91). These results are still
preliminary and therefore warrant further investigation before
proper conclusions can be drawn.

Pre-clinically, PPAR- γ agonists have been shown to
reduce neuroinflammation, Aβ-42 load, phosphorylated tau,
and synaptophysin, ultimately enhancing spatial memory and
motor function in AD mouse models (81–93). Furthermore,
two promising PPAR-γ agonists currently under phase II
clinical trials, T3D-959 (NCT04251182), and Pioglitazone
(NCT00982202), have proven their safety and tolerability among
patients (94, 95). Moreover, T3D-959 significantly enhanced
cognition and insulin metabolism in AD patients (94). Pre-
clinically, Pioglitazone has shown promising results in PD, where
it has markedly reduced neuroinflammation and microglial
proliferation in multiple PD models; but these results are yet to
be validated in clinical trials (96–98).

Targeting the Interaction Between PRRs
and DAMPs
PRRs, such as RAGE, Mac1, and TLRs, constitute potential
targets for treatment, given the view that DAMPs and
misfolded proteins mediate neuroinflammation by interacting
with multiple PRRs. Moreover, stimulating PRRs with neuronal
DAMPs was found to be associated with the activation of
downstream pro-inflammatory pathways, such as NOX2, iNOS,
and TNFα (1). Thus, efficient targeting of PRRs involved in each
neurodegenerative disease could be a possible strategy to decrease
reactive gliosis and chronic self-perpetuating neuroinflammation
and neurotoxicity. An inhibitor of RAGE, PF-04494700, showed
promising results in pre-clinical models, but results from clinical
trials were inconclusive (99). Using transgenic AD models,
NLRP3 inhibitors, such as MCC950, showed promising results,
providing evidence that NLRP3 is an important intracellular
PRR, which detects aggregated misfolded proteins (51).

Vaccine Therapy
The mainstay in vaccine therapy consists of passive and
active immunization with either monoclonal antibody infusion,
or vaccination with specific antigens that induce adaptive
immune responses, respectively. Passive immunization with
monoclonal antibodies offers a reduction of the target molecules
with a robust dosage management, but the drawbacks of
this approach are high cost, frequent administration, and
adverse side effects. In contrast, active immunization relies
on the use of specific antigens, which induce production
of antibodies or the modulation of inflammatory responses
(100). Here, we summarize the status of vaccine therapy in
neurodegenerative diseases.

Synucleinopathies
Passive Immunization

The treatments for synucleinopathies aim to reduce α-syn
accumulation and cell-to-cell transfer, and can be combined with
drugs to reduce neuroinflammation, expecting synergistic effects.

Trials in Transgenic Mice
Passive immunization against synucleinopathies relies on
different monoclonal antibodies against specific to different
regions of α-syn. One such approach consists of using antibodies
that target the N-terminal or the central region of α-syn. Rats
with nigrostriatal degeneration were subjected to intraperitoneal
administration at 2-week intervals with α-syn antibodies
during a total 3-month period. Both types of antibodies exerted
neuroprotective effects in terms of a reduction in α-syn-induced
nigral cell death and a decrease in activated microglia in
the substantia nigra, with the antibody targeting the α-syn
N-terminal being the most efficient (101). Recently, a new
monoclonal antibody, mAb47, has been developed against the
protofibril structures of α-syn. This antibody could decrease
the intracellular oligomerization of α-syn in vitro (102), and
decreased the levels of α-syn protofibrils in the spinal cord in vivo
(103). In an attempt to develop a novel passive immunization
technique, naturally occurring anti-α-syn autoantibodies,
NAbs-α-syn, were purified and isolated from intravenous
immune globulin (IVIG) of healthy individuals and used to
immunize A53T transgenic PD mouse model. NAbs-α-syn
significantly reduced the levels of soluble α-syn, α-syn oligomers,
and intracellular phosphorylated α-syn deposits. Ultimately,
NAbs-α-syn successfully attenuated memory and motor deficits
and neuroinflammation associated with PD (104).

Clinical Trials
Prasinezumab. Prasinezumab, also known as PRX002, a C
terminus targeting monoclonal antibody is currently under
phase II clinical study, in which targeting α-syn aggregates
was shown to significantly reduce free serum α-syn, but
without any significant reduction of free CSF α-syn (105,
106). Preclinical results from the mouse monoclonal antibody
9E4, the precursor of PRX002, showed that internalization
of the antibody-α-syn aggregates complex occurs via the Fc-
γ receptors on the surface of microglial cells, leading to a
reduction in α-syn concentration (106). Results of the phase
I clinical trial showed that PRX002 antibody levels increased
in patient CSF in a dose-dependent manner, which might
indicate that PRX002 might target α-syn extracellular aggregates
in the CNS (105). PRX002 was shown to be safe and well-
tolerated, and does not cause immunogenicity in the host
(105, 107).

BIIB054. BIIB054 is an N-terminus targeting monoclonal
antibody currently under phase II clinical study that
preferentially targets α-syn aggregates (108). The current
study showed that BIIB054 formed complexes with serum α-syn
and described it as a safe and tolerable candidate monoclonal
antibody against α-syn (109).

Active Immunization

Mice vaccinated with recombinant human α-syn produced high
affinity α-syn antibodies mainly targeting the C-terminus of α-
syn (110). Interestingly, the immunized mice showed reduced
accumulation of α-syn in neuronal cell bodies and synapses in
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the temporal cortex and a higher conservation of synaptophysin-
positive nerve terminals (110). It was proposed that α-syn
is degraded by lysosomal processing. Immunization against
α-syn has also been explored in a rat model of PD based
on the viral delivery of human α-syn into the nigrostriatal
pathway. Interestingly, this form of active immunization
resulted in an adaptive immune response mediated by CD4–
positive, Foxp3–positive cells that successfully infiltrated the
nigrostriatal system. As a result, decreased α-syn inclusions in
the substantia nigra were observed in the experimental group,
indicating that the observed adaptive immune responses possess
therapeutic potential (111). Moreover, AFFITOPE consists of
active vaccination with short α-syn peptides, which has provided
promising results in-vivo. AFFITOPE successfully generated
anti-α-syn antibodies that infiltrated the CSF and plasma in
high titres, targeted α-syn aggregates, and reduced neuronal
degeneration by attenuating oligomeric α-syn accumulation
in neurons (112–114). AFFITOPE is currently undergoing
extensive phase I clinical trials that are yielding promising results
displaying its safety and tolerability among patients (114).

Overall, the outcomes from preclinical studies investigating
both active and passive immunization strategies in several models
of α-synucleinopathies are considered as promising.

Amyloid β and Tau
Passive Immunization

Passive immunization against AD is currently the most advanced
immunotherapy under development.

Amyloid β Targeting Therapies
Trials in Transgenic Mice. An anti-Aβ antibody targeting the
Aβ 31–35 sequence showed positive immunological results and
reduction of disease pathology in transgenic mice. The antibody
effectively bound to Aβ-42 species and attenuated their toxicity
and prevented Aβ-42 induced cell death as well as restoring
hippocampal synaptic plasticity. Furthermore, anti Aβ31–35
antibody rescued spatial learning and memory, which makes
targeting the Aβ31–35 sequence a promising candidate for future
investigation in the quest for passive immunization therapies for
AD (115).

Clinical Trials
Bapineuzumab. The first studied candidatemonoclonal antibody
was bapineuzumab, which targets the Aβ N-terminus and
possesses a higher affinity for deposited amyloid plaques than
soluble Aβ monomers (116, 117). However, multiple studies
and a meta-analysis conducted by Abushouk et al. assessing
the potential use of bapineuzumab in the treatment of AD,
reported significant association with severe adverse events and
no enhancement of cognitive decline, and therefore concluded
that bapineuzumab is not recommended for use in the treatment
of AD and clinical trials have since then been discontinued
(117–123).

Solaneuzumab. Solanezumab is a monoclonal antibody that
targets the mid domain of the Aβ peptide and selectively binds
to monomeric, soluble Aβ (123–126). However, due to its failure

in reducing Aβ burden and in light of recent shortcomings in
phase III trials that revealed that solaneuzumab did not improve
cognitive decline in patients with mild AD, current trials were
terminated due to less and less promising results (127, 128).

Gantenerumab. Gantenerumab is a monoclonal antibody that
targets aggregated Aβ in the brain. It targets the N terminus
as well as the mid-domain of the Aβ peptide, and shows high
affinity for aggregated amyloid β species. The evaluation of
this candidate in a phase III clinical trial indicated a dosage–
dependent reduction of Aβ plaques in the brain below threshold
for healthy levels (129, 130). Moreover, it has been shown
to ameliorate mental status and decrease cognitive decline in
patients, especially in early stages of the disease (130, 131).

Crenezumab. Crenezumab is a monoclonal antibody targeting
the mid-domain of Aβ with reduced effector function, and it
binds to Aβ oligomers, fibrils, and plaques, limiting aggregation
and facilitating disaggregation (132). One advantage of this
antibody is that it is an IgG4 antibody, which shows reduced pro-
inflammatory activity and limited risk of vasogenic edema (132–
134). Despite evidence of tolerability of Crenezumab among
patients and Aβ plaque reduction (135), overall cognitive decline
and disease pathology were not improved, and therefore the
efficacy of the treatment remains in question (136, 137). After
launching a phase III investigation for Crenenzumab’s potential
use as treatment or preventive therapy for patients suffering from
familial AD (138), an interim analysis, showed that it was unlikely
to meet primary endpoints. Clinical trials involving Crenezumab
have been since then terminated.

Aducanumab. Aducanumab is a monoclonal antibody that is
currently under phase III testing. It can bind the N-terminal
of both soluble and insoluble Aβ species, with recent evidence
emphasizing its strict high affinity binding to aggregated
and pathogenic forms of Aβ (139). Studies conducted on
aducanumab collectively agree on the tolerability of the antibody
and report minimal treatment-induced adverse effects. In
addition, aducanumab has been shown to infiltrate different
brain regions and reduce Aβ plaques as well as slowing disease
progression (140–142). Trials involving Aducanumab have been
since then terminated due to futility of analysis.

Ponezumab. Ponezumab is a monoclonal antibody that targets
soluble amyloid beta by binding to the C-terminal of the sequence
(143). It is speculated to reduce CNS amyloid beta species by
sequestration of free blood Aβ and therefore shifting the blood-
brain Aβ equilibrium toward the blood (144, 145). In the study
conducted by Landen et al., the tolerability and effectiveness
of treatment with ponezumanb was assessed. It was found that
ponezumab had a reduced likelihood of inducing adverse events
and was therefore tolerated in patients of the study group. On the
other hand, ponezumab showed no effect on cognitive abilities
in patients and did not reduce the severity of disease pathology
(146–148). Notably, ponezumab showed an increase of free Aβ

species in the blood without infiltrating the CSF. This increase
was explained by the mode of action of ponezumab, which was
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discussed above (147). Based on the above, ponezumab clinical
trials have been discontinued.

Tau Targeting Therapies
Trials on Transgenic Mice. CBTAU-22.1 In a novel approach,
and in an effort to enhance the therapeutic potential of
a naturally occurring tau specific human antibody CBTAU-
22.1, van Ameijde et al. successfully improved the affinity
of CBTAU-22.1 through random mutagenesis and a variant,
dmCBTAU-22.1, was generated. In vitro, dmCBTAU-22.1
reduced pathological tau aggregation, seeding and spread. In
vivo, P301L transgenic mice were treated with dmCBTAU-
22.1, which successfully reduced tau paired helical filaments as
compared to controls (149).

43D, 77E9, and Antibody D. Mouse monoclonal antibody 43D,
which targets the N terminal projection of tau, produced the
most pronounced results of the three. Triple transgenic (3xTG)
mice treated with antibody 43D exhibited reduced total tau, p-
tau, p-tau seeding and propagation, as well as attenuation of
the amyloid beta and amyloid precursor protein load in the
hippocampus (150, 151). Moreover, antibody 77E9 exhibited
similar effects as 43D in attenuating disease pathology, excluding
the effects of 43D seen on p-tau and amyloid beta (151).
Dai et al. evaluated the effect of a combined dose of 77E9
and 43D antibodies, but the results were less effective than
the sole use of each antibody (151). Both antibodies reduced
short-term and spatial memory impairments in 3xTG mice
(151). The third of these antibodies, antibody D, is a tau
antibody that recognizes the central region of tau protein. In
the context of passive immunization, antibody D reduced tau
seeding and propagation of tau pathology to different brain
regions (152).

Anti-Phosphorylated Tau Antibodies. Passive immunization
with specific monoclonal antibodies targeting phosphorylated
tau is another promising approach to treat AD; however,
their use is currently limited to test animals. D’Abramo
investigated the use of three anti-phosphorylated tau
antibodies: RZ3, CP13, and PG5 as antibody therapies for
AD in JNLP3 transgenic mice. Of these three antibodies,
CP13, which targets phosphorylated Serine residue 202 of
tau, was the only one to successfully reduce insoluble or
soluble tau species in the cortex and hindbrain of transgenic
mice (153).

TOMA. Gerson et al. was the only team that investigated
the use of anti-tau oligomer antibodies in treatment of
PD. Using A53T transgenic mice overexpressing mutated
α-synuclein, they found that the use of tau oligomer-
specific monoclonal antibody (TOMA) significantly reduced
toxic tau oligomers, which in turn reduced α-synuclein
oligomers with fibril-like characteristics as well as reducing
Lewy Body structures. Ultimately, TOMA protected the
immunized mice from cognitive and motor deficits related
to PD (154). Moreover, TOMA was also tested on different
AD mouse models, JNLP3, Htau mice and Tg2576, and
yielded promising results. TOMA successfully targeted

toxic oligomeric tau species, reduced memory deficits and
cognitive decline, ultimately slowing down disease progression
(155–157).

Clinical Trials
Monoclonal antibodies targeting tau protein have started tomake
the leap from animal testing to clinical trials. From these, C2N
8E12, gosuranemab, zagotenemab, and semorinemab are worthy
of mention, as they are currently being assessed for clinical
tolerability in phase II trials. Preliminary safety and tolerability
results are promising thus far; however, information on these
treatments remains rudimentary at best, hence further research
is required to evaluate their clinical efficacy and safety (158–162).

Active Immunization

Amyloid β Targeting Therapies
Amyloid β Targeting Therapies. AN-1792 The first vaccine tested
in humans (starting in 2000), called AN-1792, consisted of a
full-length pre-aggregated amyloid peptide (Aβ1–42). AN-1792
successfully cleared Aβ40, Aβ42 and Aβ43 from AD plaques.
This vaccine, however, led to severe side effects, including aseptic
meningoencephalitis, in∼6% of AD patients (100, 163–167). Due
to these side effects, AN-1792 trials have since been terminated.

ACI-24. ACI-24 is a liposome-based vaccine designed to induce
an antibody response against aggregated Aβ peptides. In
preclinical studies, repeated subcutaneous injection of ACI-24
into AD transgenic mice yielded high titers of anti-Aβ antibodies,
reducing the concentration of insoluble Aβ1-40, and Aβ1-42
(168). Preliminary phase I results are promising, with ACI-24
being well-tolerated among patients, additionally, the vaccine
has successfully triggered an immune response in patients (169).
ACI-24 is currently under phase II clinical trial for safety,
tolerability and immunogenicity for its use on patients with AD.

CAD 106. CAD106 is an anti-Aβ vaccine generated from
multiple copies of the Aβ1–6 peptide. In a phase II study,
CAD106 was well-tolerated in the study group with a minimal
number of treatment related adverse effects, which did not
negatively affect treatment tolerability and safety. CAD106
successfully increased anti-Aβ antibody titers, which successfully
targeted and cleared Aβ species. Moreover, the treatment did not
cause occurrences of meningoencephalitis, autoimmune disease
or CNS inflammation (170–172).

ACC-001. ACC-001, constituted of N terminal (Aβ1-7) peptide,
is another vaccine that has successfully undergone phase II
trials. ACC-001 was shown to be well-tolerated by patients
enrolled in the study, and to induce a robust immune response
mediated by anti-Aβ IgG. Coupling ACC-001 with QS-1 as
an adjuvant further increased the robustness of the observed
immune response (173–176).

ABvac40. ABvac40 is a vaccine formulated from repeats
generated fromC-terminus fragments of Aβ40. It has successfully
generated specific anti-Aβ40 antibodies in patients with mild
to moderate AD. Initial tolerability and safety tests have been
successful, with minor injection site reactions and adverse events
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being recorded; moreover, treatment did not trigger vasogenic
edema or microhemorrhage. Based on the promising phase I
results, ABvac40 has moved to phase II clinical trial testing in
which its efficacy and impact on cognition will be assessed (177).

Tau Targeting Therapies
Trials in Transgenic Mice. Tau379–408[P-Ser396, 404] In
a different approach, the effectiveness of phosphorylated
tau peptide, Tau379–408[P-Ser396, 404], as an immunogen
was tested in 3xTG mice. This study demonstrated that
phosphorylated tau peptide vaccine triggered the generation
of anti-tau antibodies which led to reduction of pathological
tau aggregates, clearance of both soluble and insoluble tau
species, and the reduction of Aβ deposition (178). These
preliminary results show the potential use of tau peptide in
active immunization against AD pathology and the need to
assess the potential clinical application of these vaccines through
clinical trials.

Clinical Trials
AADvac1. Tau active immunization approaches represent
another path under exploration. AADvac1 is a new vaccine
that can specifically recognize pathological tau oligomers.
Active immunotherapy with this vaccine decreased the extent
of oligomers and of neurofibrillary pathology in the brains of
transgenic rats (14). The formulation comprises a synthetic
peptide from the tau aggregation domain. AADvac1 successfully
triggered anti-tau antibody production, and adverse effects were
limited to injection site reactions. Moreover, preliminary data
indicated a reduction in cognitive decline in patients undergoing
the treatment. A phase II clinical trial involving AADvac1 has
been launched to assess its efficacy (179–181).

ACI-35. ACI-35 is a liposomal-based vaccine consisting of a
synthetic tau peptide phosphorylated on pathological residues
S396 and S404 thus resembling the phospho-epitope of tau.
The evaluation in test animals, wild-type C57BL/6, and P301L,
indicated a positive immunogenic activity specifically targeting
pathological phosphorylated tau species with no neurological
side effects or inflammation of neural tissue (182). Preliminary
findings from phase I trial indicated that the treatment is tolerable
and safe, but was not efficiently immunogenic; therefore, a
second-generation vaccine, ACI-35.030, has been generated.
ACI-35.030 is 5 times more immunogenic than its predecessor
and will replace ACI-35 in the phase I/II safety and tolerability
clinical trial (183).

Superoxide Dismutase 1
Active Immunization

Superoxide dismutase 1 (SOD1), an enzyme known for its role in
relieving oxidative stress, has been studied thoroughly as a target
for mutations in ALS. The cause of 20% of familial ALS cases has
been attributed to mutated SOD1 (184). Currently, there is no
consensus on mutant SOD1’s pathological function in ALS, but
evidence suggests that mutant SOD1might interfere with cellular
metabolism (185–189) and oxidative stress pathways (190), and
might cause metal dyshomeostsis (191–194). Takeuchi et al. have

investigated the efficiency of a vaccine targeting extracellular
SOD1 in immunizing transgenic mice against ALS (195). In
their experiment, they tested the efficiency of mutant SOD1
(G93A mutant SOD1) and wild-type SOD1 (wt-SOD1) vaccines
in relieving the symptoms and reducing the pathogenicity of ALS.
Takeuchi et al. generated the vaccine based on these two types of
SOD1 due to the diversity of mutations that typically affect this
enzyme in ALS (196–198). Upon inoculation, wt-SOD1 vaccine
extended life expectancy and delayed disease onset, while both
wt-SOD1 and mutant SOD1 vaccinations reduced anterior horn
motor neuron loss (195). A similar vaccine was modeled based
on mutant SOD1 and tested on G37R SOD1 and G93A SOD1
transgenic mice and resulted in significant life span extension
and delay in disease onset in mice that do not suffer from
an overexpression of the mutant SOD1 phenotype, i.e. G37R
SOD1 (199).

Passive Immunization

Antibody therapy has been investigated against SOD1 mutant
oligomers. Passive immunization of SOD1-G93A mice with anti-
SOD1 antibody (W20) targeting toxic soluble SOD1 oligomers
protected motor neurons from apoptosis and extended their
survival. This was achieved by reducing neurotoxic SOD1
oligomer aggregates and substantially inhibiting gliosis and
neuroinflammation in the spinal cords and brain stems of
transgenic mice. Ultimately, W20 improved motor neuron
survival and motor performance (200).

C9orf72
Passive Immunization

C9orf72 is a protein coding gene involved in endosomal
trafficking (201). Mutation of the hexanucleotidic GGGGCC
(G4C2) intronic repeat, upstream the C9orf72 coding sequence,
leads to the expansion of this repeat from 2 to 22 copies to 700–
1,600 copies (202, 203). The G4C2 expansion can be translated
by repeat-associated non-ATG (RAN) translation to generate
dipeptide repeat protein aggregates (DPR): poly GA, poly GP,
poly GR, poly PA, and poly PR (204, 205). Poly GA has been
described as an abundant and cytotoxic DPR in brain and spinal
cord neuronal inclusions in ALS patients (205–207). The exact
role of Poly GA and its contribution to disease pathology remains
under study. It was shown to act as a nucleation seed to promote
DPR aggregation, it enhanced G4C2 repeat expression and
translation, and it could be transmitted between neurons (Qihui
207). This indicates that poly GA potentially aids in the spread of
disease pathology in affected individuals. Poly GA causes reduced
dendritic branching, proteasomal inhibition, apoptosis, and
endoplasmic reticulum stress (206, 207). Zhou et al. investigated
poly GA as a candidate target for immunotherapy for ALS.
Treatment of poly GA transfected cells with anti-GA antibody
showed a significant decrease in poly-GA seeding, aggregation
and spread, suggesting the potential application of anti-poly GA
antibodies as immunotherapies for ALS (208). Recently, Nguyen
et al. investigated the potential use of anti-GA RAN antibodies
in treating Frontotemporal Dementia (FTD) and ALS. Herein,
passive immunization of FTD/ALS C9-BAC transgenic mice
with anti-GA RAN antibodies, α-GA1, α-GP1, and α-GA2, has
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FIGURE 1 | Summary of active immunization therapies assessed in clinical trials for different diseases. Discontinued trials highlighted in red and ongoing trials

highlighted in green. Therapies have been categorized according to each pathology they target. The target of each therapy along with its current clinical trial phase

have been stated for each therapy.

effectively reduced neuroinflammation and neurodegeneration
in the anterior and posterior horns of the lumbar spine
(209). Moreover, anti-GA RAN antibodies successfully rescued
proteasome activity and subsequently reduced pathogenic poly-
GA aggregates. Collectively, these changes significantly reduced
physical and behavioral pathology, as well as survival, thus anti-
GA RAN antibodies qualify as promising candidate therapies for
ALS and FTD thatmerit further assessment in clinical trials (209).

Active Immunization

Novel findings indicate the possible use of poly-GA coupled
with ovalbumin, OVA-(GA)10, as an active immunization
agent. OVA-(GA)10 successfully elicited a robust immune
response and induced an increase in anti-GA antibody
titres in transgenic GA-CFP mice (210). Moreover, the
produced anti-GA antibodies exhibited a high specificity
to poly-GA aggregates resulting in their reduction in the
brains of transgenic mice, ultimately reducing motor deficits
and neurodegeneration (210). OVA-(GA)10 also attenuated
neuroinflammation by normalizing the number of activated

microglial cells and macrophages and reversing TDP-43
cytoplasmic mis-localization in the spinal cord. These findings
corroborate the possible application of OVA-(GA)10 as a
candidate vaccine to reduce disease severity and pathology in
ALS and FTD (210).

Mutant Huntingtin Protein
Active Immunization

Current reports on active and passive immunization against
mutant Huntingtin (m-Htt) proteins remain inconclusive.
Results obtained for active immunization are preliminary. A
study conducted on a candidate plasmid vaccine administered
to HDR6/2 mice proved to have no effect on the number
of m-Htt aggregates (211). Another study examined the
use of peptide, protein, and DNA plasmid vaccines against
m-Htt and detected a robust antibody production after
vaccination with a combination of three non-overlapping
HTT exon1 peptides. However, this study did not assess
the efficacy of the developed vaccine in reducing m-Htt
aggregates (212).

Frontiers in Neurology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 654739

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mortada et al. Neuropathology, Neuroinflammation, Immunotherapy, Neurodegenerative Diseases

TABLE 1 | Study characteristics of active immunotherapy clinical trials.

References Therapeutic

molecule

Disease Target Latest trial identifier Results to date

McFarthing and

Simuni (114)

AFFITOPE Parkinson’s

disease

α-syn Phase I: NCT01568099 Safe and well-tolerated

Immunogenic

Bayer et al. (164),

Nicoll et al. (165),

Nicoll et al. (166),

Sakai et al. (167)

AN-1792 Alzheimer’s

disease

Full-length pre-aggregated

Aβ

Terminated Not safe

Aβ40, Aβ42, and Aβ43 clearance

Immune (169) ACI-24 Alzheimer’s

disease

Aggregated Aβ peptides Phase II: 2018-000445-39 Safe and tolerated

Farlow et al. (170),

Vandenberghe et al.

(171), Winblad et al.

(172)

CAD 106 Alzheimer’s

disease

Aβ1–6 peptide Phase II: NCT01023685

NCT00795418

Safe and tolerated

Production of anti-Aβ antibodies

Hull et al. (173),

Ketter et al. (174),

Pasquier et al. (175),

van Dyck et al. (176)

ACC-001 Alzheimer’s

disease

N terminal (Aβ1-7) peptide Phase II: NCT00479557

NCT01227564

NCT01284387

Safe and tolerated

Production of anti-Aβ antibodies

Lacosta et al. (177) ABvac40 Alzheimer’s

disease

C-terminal fragments of

Aβ40

Phase II: NCT03461276 Safe and tolerable

Increase in anti-Aβ40 antibodies

Kontsekova et al.

(179), Novak et al.

(180), Novak et al.

(181)

AADvac1 Alzheimer’s

disease

Synthetic tau aggregation

domain peptide

Phase II: NCT02579252 Safe and tolerable

Triggers anti-tau antibody

production

Reduction of cognitive decline

Ayalon et al. (183) ACI-35 Alzheimer’s

disease

Synthetic tau S396 –S404

phospho-epitope

Phase II: NCT04445831 Safe and tolerated

Mild anti-tau antibodies

DISCUSSION

Emerging evidence supports the use of immunotherapeutic
agents in the management of neurodegenerative diseases.
Our understanding of immunomodulatory mechanisms in
the CNS has greatly evolved in recent years. In this work,
we discussed the pathogenesis of neuroinflammation and its
role in neurodegeneration. The switch from a succinct limited
immune response to a sustained chronic response appears to
be the initiating event in disease onset. Understanding the
exact mechanism behind this switch is essential to halt its
progression and prevent occurrence of disease. Increased release
of cytokines and chemokines by overactive immune cells further
exacerbates the damage and accentuates neurodegeneration.
We then discussed immunotherapeutic modalities that
could revolutionize the management of so far intractable
neurodegenerative diseases, with a focus on passive and active
therapies targeting hallmark disease biomarkers due to the
availability of extensive reviews covering neuroinflammatory
targets. Vaccination therapy is an interesting approach as
vaccines are considered main players in preventive medicine
and public health (Figure 1, Table 1). More research on the
pathophysiology and structures of Aβ, tau, and α-syn will
bring us a step forward toward tailoring stronger vaccines
capable of mounting specific immune responses against the
accumulation of these proteins. Of major importance is
the avoidance of serious secondary adverse events such as
meningoencephalitis or possibly the induction of seizures
upon introducing the abnormal protein aggregates. In this

regard, Aβ42-specific T-cell activation has been demonstrated
to cause multiple undesirable effects in AD patients including
meningoencephalitis which could potentially exacerbate
patient health status (213, 214). Since Aβ active immunization
introduces Aβ peptides into the blood stream, these could serve
as an immunogenic activator of an anti-Aβ T-cell mediated
immune response. A suggested mechanism to bypass this
undesirable response was to design a chimeric Aβ vaccine
where Aβ immunogen presentation is carried out by Norovirus
particles. This approach significantly enhanced immunogenicity
and antibody production without Aβ42-specific T-cell activation
(215, 216). Another suggested mechanism to bypass Aβ42-
specific T-cell activation was by using peptide fragments as
immunogenic particles for active immunization against AD
instead of full-length peptides (171, 173). These findings
further substantiate the necessity for future investigation
to focus on the type of immunogenic particle, mode of
delivery, and antigenic presentation of the immunogen by
the vaccine.

The mode of administration of the vaccine represents
another important consideration for ameliorating efficacy.
Recently, there has been a focus on passive immunization
with monoclonal antibodies, which may represent a safer
approach than active immunization (Figure 2, Table 2).
Overall, therapeutic antibodies are one of the fastest
growing areas in the pharmaceutical industry for the
treatment of cancer, autoimmune disorders, and now also
for neurodegenerative disorders. Furthermore, another pivotal
factor related to peptide based vaccines is the choice of
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FIGURE 2 | Summary of passive immunization therapies assessed in clinical trials for different diseases. Discontinued trials highlighted in red and ongoing trials

highlighted in green. Therapies have been categorized according to each pathology they target. The target of each therapy along with its current clinical trial phase

have been stated for each therapy.

the carrier protein which has been shown to impact the
duration and extent of the elicited humoral immune response
(217, 218).

The search for novel targets for the administered passive and
active immunization therapies might provide new strategies for
treatment. In a novel approach, Thomas et al. examined the
possibility of indirectly targeting dysfunctional tau peptide by
passively immunizing transgenic mice against BIN1 (bridging
integrator 1) gene product (219). The gene BIN1 has been
associated with AD, and its product, Myc box-dependent-
interacting protein 1, has been shown to co-localize and interact
with tau and enhance its pathogenicity by promoting tau release
and neurotoxicity (220–223). Anti-BIN1 antibody reduced p-
tau species and increased survival in P301S transgenic mice
(219). In light of these findings, immunotherapeutic strategies
might benefit from exploring novel targets to indirectly reduce
disease pathology rather than exclusively target conventional
disease biomarkers, which have so far provided limited promise
and success.

Understanding the different steps of neuroinflammation
provided useful insights into possible options to break the
chain of events leading to disease. Modulating the innate
immune system remains a plausible approach in managing
neurodegeneration, similarly to several other autoimmune
and inflammatory diseases. Nevertheless, new approaches
currently under investigation could become pivotal therapeutic
options in the future. Recent reports suggested that microglial
modulation by the gut microbiota can be an exciting novel
therapeutic target (224). In fact, PD patients were found
to have an altered gut microbiota compared to matched
healthy cohorts (225). Furthermore, dysregulation in sleep
patterns is seen in several neurodegenerative diseases, and
recent data support the view that altered sleep can affect
neuroinflammation (226). The exact mechanisms by which
dysregulated sleep modulates pro- or anti-inflammatory
responses in the CNS are not fully understood yet. Lastly,
the effects of systemic immune responses in modulating
acute and chronic neuroinflammation are being elucidated.
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TABLE 2 | Study characteristics of passive immunotherapy clinical trials.

References Therapeutic

molecule

Disease Target Latest trial identifier Outcome

Jankovic et al. (105) Prasinezumab

(PRX002)

Parkinson’s

disease

α-syn C-terminal Phase II: NCT03100149 Safe and well-tolerated

Brys et al. (109) BIIB054 Parkinson’s

disease

α-syn N-terminal

α-syn aggregates

Phase II: NCT03318523 Safe and well-tolerated

Abushouk et al.

(118), Bard et al.

(119), Farlow and

Brosch (120), Lu and

Brashear (121),

Salloway et al. (117),

Salloway et al. (122),

Siemers et al. (123)

Bapinezumab Alzheimer’s

disease

Aβ N-terminal Terminated Severe adverse events

No effect on cognitive decline

Doggrell (127), Honig

et al. (128)

Solanezumab Alzheimer’s

disease

Aβ mid domain

Monomeric Aβ

Terminated Does not reduce Aβ plaques

No effect on cognitive decline

Klein et al. (130),

Ostrowitzki et al.

(131), Jia et al. (129)

Gantenerumab Alzheimer’s

disease

Aβ N-terminal

Aβ mid domain

Aβ aggregates

Phase III: NCT01224106 Reduction in Aβ plaques

Decrease in cognitive decline

Cummings et al.

(136), Salloway et al.

(137), Tariot et al.

(138)

Crenezumab Alzheimer’s

disease

Aβ mid domain

Aβ oligomers

Aβ fibrils

Aβ plaques

Phase III: NCT03491150 Safe and tolerable

Reduction in Aβ plaques

No effect on cognitive decline

Budd et al. (140),

Ferrero et al. (141),

Sevigny et al. (142)

Aducanumab Alzheimer’s

disease

Aβ N-terminal

Aβ soluble

Aβ insoluble

Aβ aggregates

Phase III: NCT02477800 and

NCT02484547

Safe and tolerable

Reduction in Aβ plaques

Landen et al. (146),

Landen et al. (147),

Landen et al. (148)

Ponezumab Alzheimer’s

disease

Aβ C-terminal

Aβ soluble

Terminated Safe and tolerable

No effect on cognitive decline

No effect on disease severity

The recently discovered lymphatic vessels in the brain
which can transport fluid and immune cells from the CSF
constitute another relevant finding (227). These CNS lymphatic
networks interconnected to deep cervical lymph nodes could
play a role as peripheral immune mediators in regulating
neuroinflammatory responses.

The burden of neurological disease is growing globally, and
neurodegenerative disorders represent major unmet medical
needs and costs to healthcare systems worldwide. The challenges
of translating scientific advances into new therapies in neurology
are increasing, which are partly due to the lack of patients’
willingness to participate in clinical trials and the complexity
of developing neurotherapeutics due to a paucity of validated
biomarkers (228), longer duration of clinical trials, and higher
failure rates due to lack of efficacy (229). Examples of
factors determining the ability of a therapeutic candidate to
be considered as a potential successful drug include efficient
delivery of this candidate, with the appropriate dosage to
act on the intended cell or tissue for a specific duration
of time; obviously when the target is within the CNS,
difficulties and uncertainties arise due the complexed nature
of the brain, the intricacies of models mimicking human
neurological diseases and the poor functional outcome measures

(230). Nevertheless, in searching for more efficient treatments,
immunotherapy targeting abnormal protein aggregates or
inflammatory molecules is emerging as a promising therapeutic
strategy. Our basic understanding of innate immune responses
in the CNS during healthy aging and in neurodegenerative
diseases has largely progressed in the last two decades. Yet,
significant knowledge gaps still exist in understanding the full
mechanisms of beneficial and pathologic neuroinflammatory
responses tilting the balance toward healthy or diseased aging.
With the emergence of additional insights into neuron–glial
and glial–glial interactions in the CNS, targeted and potentially
more effective therapeutic strategies can be attained. So far,
late intervention seems to be the most important cause for
treatment failure in several trials, meaning that to battle these
diseases, the treatment essentially needs to be started at an
early stage. Thus, in addition to the development of more
efficacious drugs, better diagnostic strategies are warranted
to diagnose these disorders at a time when there still has
been no or only limited damage to the CNS. Recent research
efforts surrounding neurological diseases are directed toward
discovering valid disease biomarkers from body fluids; and
good candidates (other than blood and CSF) offering promise
as a biomarker pool for neurological disease diagnosis and
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monitoring, are urine and saliva (231). Finally, limitations in
our understanding of the interplay between the innate response
in the CNS and systemic immunity are challenges that need to
be overcome. The innate immune system, therefore, provides
exciting opportunities for disease-modifying treatments in the
CNS that are both innovative and feasible. As our knowledge
of the precise underling immune mechanisms advances, more
effective therapies will be developed in managing these so far
intractable neurodegenerative diseases.
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