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Immunological Interfaces: The
COVID-19 Pandemic and Depression
Austin Perlmutter*

Independent Researcher, Portland, OR, United States

Since the start of the spread of the coronavirus disease 2019 (COVID-19) pandemic,

an international effort has sought to better characterize associated extra-pulmonary

health sequelae. The acute and or chronic detrimental impact of SARS-CoV-2 infection

on mental health, especially depression, is increasingly described. Simultaneously

the pandemic has influenced depressive symptomatology by modifying economic,

social and political structures, in addition to affecting daily routines. In both cases,

associated immunological perturbations favoring a pro-inflammatory state could underlie

an increased risk for depressive symptomatology. A resultant elevation in global

depressive burden could further tax mental health care infrastructure and contribute to

a range of worse health outcomes including diminished quality of life. This suggests

a critical and time-sensitive need to better understand immune interfaces between

depression and COVID-19.
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INTRODUCTION

The unprecedented spread of SARS-CoV-2 has created a global emphasis on the immune system
and its role in COVID-19 disease risk, outcomes and therapeutics (1). Yet the importance of
immunity in human health has increasingly expanded beyond infectious diseases. Alterations
in immunological activation are now recognized for their role in diverse disease states (2–4).
Cytological patterns of innate and adaptive immunity can indicate severity of disease burden
and risk for complications in infectious and non-infectious conditions (5, 6). In the field of
mental health, various immune cell and cytokine subsets are implicated in the pathogenesis
of schizophrenia, anxiety and depression (7, 8). Among these data, an immunologic milieu
characterized by elevated systemic inflammation has been repeatedly associated with the
development of depressive symptomatology (9).

Prior to SARS-CoV-2, depression was already a worldwide epidemic with considerable negative
impact on morbidity and mortality. It is estimated that globally 350 million people are affected
by depression, and it is a leading cause of disability (10, 11). In addition to lowered quality of
life, depression may also contribute to a shortened lifespan (12). Over the last century, a variety
of hypotheses have explored biological underpinnings of depression and potential opportunities
for treatment and prevention. Alterations in immunological pathways, especially increased low-
grade systemic inflammation, are now the subject of extensive academic research (13). In a subset
of patients with depression, elevated systemic inflammation is proposed to play a substantial role
in disease pathogenesis (14).
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COVID-19 has the potential to induce widespread
immunological effects as a direct result of infection and
indirectly, independent of infection by modifying behavior
and thought patterns. This may preferentially shift the
immunological milieu toward an inflammatory state and
predispose to higher rates of depressive symptomatology. The
present review focuses on immune pathways linking COVID-19
infection with risk for depression as well as putative non-
infectious immune mechanisms by which SARS-CoV-2 could
increase depressive burden (Figure 1).

REVIEW OF RECENT LITERATURE

As the data around short and long-term consequences of
the COVID-19 pandemic accumulate, evidence suggests an
urgent need to focus on neuropsychiatric sequelae. Though over
1,800 publications jointly mention COVID-19 and depression,
fewer than 100 discuss the terms “immunity,” “depression”
and “COVID-19.” Themes in these articles include: the role
of complementary therapies, the beneficial role of physical
activity, and pharmacological consideration and bidirectional
interactions between COVID-19 and depression with a focus
on stress, cytokine storm, and long-term depressive outcomes
related to SARS-CoV-2 infection.

The extant research includes mention of several
complementary therapies purported to target shared
immunological pathways in depression and COVID-19.
These include the use of Ayurveda (15) traditional Chinese
medicine (TCM) (16), and dietary interventions of curcumin
(17) and omega-3 fatty acids (18). The use of selective serotonin
reuptake inhibitors (SSRIs) (19) and oxytocin (20) in COVID-19
have also been considered for their immunomodulatory and
mood-related properties, and the importance of exercise as
an immunomodulator and potential anti-depressive has also
been described (21).

Two recent reviews have focused specifically on molecular
mechanisms linking immunity, COVID-19 and depression.
In the first (22)) the authors emphasize parallel pathways
of kynurenine (KYN) pathway activation by COVID-19
cytokine storm and angiotensin-converting enzyme 2 (ACE2)
receptor effects in increased risk for depression. In the second
(23), the authors emphasize the role of cytokine storm in
potential psychological outcomes from COVID-19. Related
molecular pathways are also briefly discussed in a recent
cohort analysis (24).

EXISTING LINKS BETWEEN DEPRESSION
AND SARS-COV-2

Worldwide, millions of cases of the infectious disease SARS-
CoV-2 have been reported (25), accompanied by a near universal
exposure to political, social and economic ripple effects. Early
in the course of the pandemic, the immunological effects
of the virus on human physiology were characterized by
respiratory symptoms including severe pneumonia (26). In the
coming months, extra-pulmonary manifestations of the virus

were better described. These included cardiovascular, metabolic,
hematologic, neurologic and dermatologic pathologies (27).
Additional research highlighted a tax on mental health as a
potential consequence of acute infection (28).

Academic and public focus has also expanded to the long-
term effect of SARS-CoV-2 infection on human health (29).
This has been called “post-acute COVID-19” or “long COVID”
(30). Those who experience persistent symptoms for weeks or
months after acute infection number in the thousands, and have
created Facebook self-help groups, adopting the terminology
“Long-Haul COVID” to describe their ongoing battle with health
issues including worse cognition, low exercise tolerance, sleep
problems, autonomic dysfunction as well as worsened mental
health and autoimmunities (31–33). A recent study (34) more
explicitly linked depressive psychopathology 3 months after
hospitalization for COVID-19 pneumonia with elevated baseline
scores on an index of immune activation and inflammation.

Finally, attention has increasingly turned to the indirect
ramifications of the virus. In globally disrupting routines, the
economy, access to care and social dynamics, the pandemic
could alter health outcomes for billions. Early data suggest
these impacts may prove especially relevant for mental health.
Health care workers managing COVID-19 patients in China
reported increased psychological strain, including higher rates
of depressive symptoms (35). A population-based analysis of
depressive symptoms in the US found a 3-fold increase in
symptoms during the COVID-19 pandemic compared to before
(36). In a recent survey of 130 countries, the World Health
Organization (37) reported widespread disruption of mental
health service for vulnerable populations (25). Patients with
preexisting mental health and physical health conditions may be
at particular risk for pandemic-related depression, and low social
support and socioeconomic position may also confer increased
risk (38). Additionally depression may itself confer heightened
risk for further immune-mediated depressive symptoms through
increased vulnerability to inflammatory immune activation after
psychosocial stress (39). A summary of recently published themes
linking COVID-19, immunity and depression can be found
in Figure 2.

IMMUNE DYSFUNCTION AND
DEPRESSION

Early evidence that inflammation could precipitate depressive
symptoms was derived from hepatitis patients receiving
immunotherapy with interferon alpha. Many of these patients
developed psychiatric symptoms including symptoms of
depression (40). Subsequent research showed that administration
of low-dose endotoxin (e.g., lipopolysaccharide (LPS)) increases
systemic markers of inflammation including tumor necrosis
factor alpha (TNFα) and interleukin 6 (IL-6) and symptoms of
depression (41). Research additionally demonstrates correlation
between elevated inflammatory cytokines and depressive
symptoms (9), and increased levels of the inflammatory markers
high-sensitivity C-reactive protein (hs-CRP) and IL-6 have been
shown to be risk factors for subsequent depression (42, 43).
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FIGURE 1 | Immunological pathways linking depression and COVID-19: Two convergent pathways connect the COVID-19 pandemic with altered immune function

and depression. These include direct immunological implications of SARS-CoV-2 infection and indirect, non-infectious pandemic-related changes in immune function

induced by poor diet, sedentary behavior and psychological stress. Both pathways may act to increase risk for depression by elevation of CNS cytokines and

subsequently microglial activation, altered tryptophan metabolism and deficits in neuroplasticity and neurogenesis.

Brain alterations are central to the current understanding of
depression pathophysiology (44). However, the brain is generally
regarded as having immune privilege, which limits its exposure
to peripheral immune states including inflammation (45). It is
now understood that there are threemethods by which peripheral
inflammation may reach and influence the brain (46). These
include cytokine passage through the blood brain barrier (BBB),
cytokine activation of peripheral afferent nerve fibers returning
to the central nervous system (CNS) and the trafficking of
immune cells into the brain. In addition, CNS immune function
can be directly activated when antigens enter thorough cranial
nerves. For example, pathogens may reach the CNS by way
of the olfactory and trigeminal nerves (45), and vagal afferent
fibers convey immune-modulating signals from gut bacteria to
the brain (46).

NEUROLOGICAL IMMUNE RESPONSE IN
SARS-COV-2 INFECTION

In investigating the SARS-CoV-2 virus, research efforts have
focused on the role of pre-existing immunological states as well
as immune changes subsequent to infection. Direct correlations
between COVID-19 outcomes and individual cytokines and
immune cell populations indicate symptoms of COVID-19
are associated with elevations in interleukin 1 beta (IL-1β),
IL-6, interleukin 10 (IL-10), and TNFα), as well as a general

lymphopenia (47–49). Increased IL-6 may especially correlate
with severity of COVID-19 (50).

An infection-related surge in proinflammatory mediators in
COVID-19 has been called the cytokine storm or cytokine
release syndrome. While consensus on the exact definition of
the cytokine storm is debated, it is characterized by elevation
in a range of immunological markers including interleukins,
interferon-γ, TNF, chemokines and plasma proteins including
complement and C-reactive protein (CRP) (51). In cytokine
storm, hyperactivation of the inflammatory immune response
may lead to significant collateral damage including respiratory
distress, renal failure, liver injury and cardiomyopathy as well as
neuropsychiatric issues (51). Up to 40% of people with COVID-
19 have been reported to experience significant central nervous
system (CNS) symptoms (52).

At this time, the precise methods by which the SARS-
CoV-2 virus influences the CNS remain unclear. However,
the widely cited symptoms of anosmia and dysgeusia suggest
a high prevalence of CNS involvement (53), potentially via
retrograde olfactory nerve transport (54). Research in prior
coronaviruses has demonstrated coronavirus RNA in the
human brain, suggesting a degree of neuroinvasion despite
the virus’s label as a respiratory pathogen (54). Peripheral
immunological activation as a result of COVID-19 could also
reach the CNS by transport through or disruption of the
BBB (55, 56).
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FIGURE 2 | Summary of existing literature relating COVID-19, depression and immunity. Proposed mechanisms triggering depression related to COVID-19 include

elevated inflammation (best represented in cytokine storm), pathways related to angiotensin-converting enzyme 2 (ACE2) receptors, decreased physical activity and

increased psychological stress. Proposed interventions include a range of complementary therapies as well as pharmaceutical [(SSRIs (selective serotonin reuptake

inhibitors) and oxytocin] in addition to increasing physical activity.

On entering the CNS, peripherally generated inflammatory
mediators may amplify their effects on the brain by acting
on microglial cells. Microglial activation represents a transition
from a state of relative quiescence to a “primed” state in
which the microglia increase production of cytokines and other
inflammatory mediators (57). Microglia are implicated in both
acute and chronic neurological complications of COVID-19
infection (58), and increased microglial activation has been
demonstrated in post-mortem neuropathological analysis of
brain samples from COVID-19 patients (59, 60).

Those with existing neuroimmunological diseases may have
heightened vulnerability to depressive symptomatology as
a result of the COVID-19 pandemic. For example, people
with multiple sclerosis demonstrated elevated rates of
psychological distress including depression after easing of
lockdown measures (61). Parkinson’s disease has been strongly
correlated with neuroimmune alterations including increased
neuroinflammation (62), and a recent survey demonstrated high
rates of depressive symptomatology in this demographic (63).

Additionally, patients with preexisting psychiatric diagnoses have
been found to experience high rates of psychiatric symptoms
including those related to depression in the context of COVID-
19 lockdown measures, and immunological mechanisms have
been proposed as a potential contributor (64).

Data demonstrating the long-term impact of COVID-19 on
neuroimmune function remain limited. However, early survey
results suggest that after acute infection, some experience residual
symptoms of including fatigue, headache and anosmia, indicating
a degree of persistent neurological alteration (65). Animal
research implies a possibility for coronavirus-mediated neuronal
damage as a result of alterations in glutamate homeostasis
as well as potential for T cell-mediated demyeliation in
susceptible hosts (66). SARS-CoV-2 infiltration of the olfactory
bulb and subsequent polarization of microglial cells toward an
inflammatory phenotype has also been proposed as a mechanism
promoting neurodegenerative disease (67). As microglia mediate
multiple neurological processes, chronic alterations in microglial
populations as a result of COVID-19 could have significant
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impact on multiple health outcomes including depression. While
much investigative focus has been on direct links between viral
infection and neuroimmune alterations in otherwise healthy
individuals, those with existing neuroimmunological conditions
may be especially vulnerable to non-infectious psychological
stressors stemming from the pandemic.

NEUROPLASTICITY AND NEUROGENESIS

Neuroplasticity describes neural synaptic reorganization in
response to environmental input. It is thought to form the
basis for memory and learning (68). Impaired neuroplasticity is
implicated in the pathogenesis of depression (69), a mechanism
supported by alterations in brain functional connectivity (70) as
well as loss of synapse-related genes and synapses in postmortem
brain tissue of patients with depression (71).

Immune function is thought to exert a degree of control over
neuroplasticity (72). This may occur in a dose-dependentmanner
with opposing effects at extremes of immune activation, as a
low basal level of neuroinflammatory cytokines IL-1β and TNFα
appears necessary for healthy neuroplasticity, with suppression at
higher levels (73).

As regulators of CNS immunity, microglial cells are implicated
in neuroplasticity. Microglia are thought to influence this
process through glutamate homeostasis and production of
inflammatory cytokines (74). On detection of homeostatic
disturbance (e.g., metabolic, stress-related and pathogen-induced
signals), microglia become activated, proliferating and producing
inflammatory mediators (75). This may present a convergent
mechanism by which peripheral immune activation and
psychosocial stress could induce neuroinflammation, defects in
neuroplasticity and eventually, depression.

Neurogenesis is the process of creating new neurons. Once
thought restricted to early life, human research now shows
that neurogenesis occurs in discrete zones of the brain into
adulthood, including the hippocampus and lateral ventricle (76,
77). Like neuroplasticity, neurogenesis may underlie mechanisms
of learning and memory (78). The neurogenesis hypothesis of
depression proposes changes in the rate of neurogenesis in the
subgranular zone of the dentate gyrus of the hippocampus in the
pathophysiology of the disease (77).

Neuroplasticity and neurogenesis are affected by neurotrophic
factors, compounds that bind to tyrosine kinase receptors and
augment neuronal function, survival and development (79).
Of these, much research has specifically focused on the role
of brain-derived neurotrophic factor (BDNF) and its role in
neuroplasticity, neurogenesis and depression (80, 81). Lowered
levels of BDNF protein and BDNF gene expression are reported
in both post-mortem brain tissue and in peripheral blood from
depressed patients (82), and BDNF is increased by antidepressant
therapies ranging from conventional antidepressants to electro-
convulsive treatment (ECT) (83, 84).

Immunity plays a role in both BDNF expression and function.
Administration of LPS reliably induces inflammation, including
in the CNS (85). In animal models, LPS increases expression
of inflammatory markers in the hippocampus and microglia

(86) and decreases levels of BDNF (87). It is also notable that
microglial cells regulate release of BDNF (88).

The aforementioned pathway suggests a molecular
mechanism by which infection with COVID-19 could directly
downregulate levels of BDNF. However, non-infectious effects of
the pandemic may also play a role, as chronic stress is thought
to have a deleterious effect on BDNF expression (89). This
implies that healthy neuroplasticity and neurogenesis may be
compromised as a result of infection and psychological stressors
generated by COVID-19 pandemic.

SEROTONIN AND TRYPTOPHAN
METABOLISM

Decreased brain bioavailability of the tryptophan (TRP)
metabolite serotonin (5-HT) underpins the psychopharmacology
of the most commonly prescribed antidepressants (90). TRP
metabolites including 5-HT engage in bidirectional interactions
with the immune system.

5-HT may directly influence immune homeostasis by
suppressing Th17 differentiation, increasing expression of T
regulatory cells (Tregs) and promoting M2-polarization of
macrophages (91). These immunological changes favor decreased
inflammation and may speak to a role for serotonin in mediating
inflammation-associated depressive symptoms.

More robust research focuses on the effects of immunity
on TRP metabolism, including 5-HT availability. Enzymatic
action on the essential amino acid TRP determines whether it
is converted in 5-HT or shunted into the kynurenine (KYN)
pathway. In general, the majority of tryptophan enters the
KYN pathway, creating downstreammetabolites including KYN,
kynurenic acid (KYNA) and quinolinic acid (QUIN) (92).

Initiating enzymes in the KYN pathway are tryptophan
2,3-dioxygenase (TDO) and indolamine-2,3-dioxygenase (IDO).
Notably, IDO is highly expressed in immune cells (93) and
compared to TDO it is far more responsive to immunological
signals (94). In the context of elevated pro-inflammatory
cytokines including IL-1β and TNFα, IDO converts TRP to KYN,
and shunts available TRP away from 5-HT production (95).
Conversely, anti-inflammatory cytokines including interleukin 4
(IL-4) and IL-10 deactivate the IDO enzyme (96, 97). Recently,
it has been proposed that by inducing cytokine storm and
downregulating ACE2, the SARS-CoV-2 virusmay increase levels
of KYN pathways metabolites in the brain, increasing risk for
depression (22).

The relative increase in KYN pathway activation as a
result of inflammatory immune activation has been proposed
to contribute to depression through 5-HT depletion, though
more recent focus has shifted to the differential neuroactive
effects of KYN metabolites (96). For example, KYNA may exert
anti-depressant effects through N-Methyl-D-aspartate (NMDA)
antagonist mechanisms resembling those of ketamine, while the
NMDA agonist QUIN may have pro-depressive effects (96).
While individual human trials are variable, there is some support
for a decrease in KYNA and an increase in QUIN levels
in depression (98).
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FIGURE 3 | In the context of elevated inflammatory cytokines as a result of the COVID-19 pandemic, CNS tryptophan (TRP) may be preferentially converted into

kynurenine (KYN) and its metabolites including kynurenic acid (KYNA) and quinolinic acid (QUIN). This may decrease availability of serotonin (5-HT). KYN metabolites

may also contribute to depression. When anti-inflammatory cytokines are present, TRP may be preferentially converted into 5-HT.

In sum, an elevation in systemic inflammation as the direct
result of infection with SARS-CoV-2 or as a result of pandemic-
related behavioral changes and psychological stressors could
predispose to relative brain 5-HT depletion and imbalance in
KYN pathway metabolites that increase risk for depression
(Figure 3).

PSYCHOLOGICAL STRESS

Increased psychological stress has been widely documented in
response to COVID-19. Personal diagnosis of or the diagnosis of
a close contact with COVID-19 have each been associated with
elevated stress as well as with increased symptoms of depression
(99). Political measures taken to reduce the spread of the virus
have been associated with elevated stress internationally (100,
101). Exposure to content related to COVID-19 has also been
linked to increased psychological stress. In a survey of American

adults without prior history of a mental health condition, 15%
reported 2 symptoms of psychological distress for at least 3 days
in the past week, most commonly the sense of feeling nervous,
anxious, or on edge (102). These symptoms were positively
associated with social media and internet engagement with
coronavirus content. Widespread food scarcity and economic
instability as a result of the pandemic also pose a significant risk
for elevated psychological stress (103).

Alterations in stress pathways including the
hypothalamic-pituitary-adrenal (HPA) axis and sympathetic
nervous system (SNS) are known risk factors for mental health
conditions including anxiety and depression (104, 105). Early
life exposure to major life stressors predicts a higher chance
of developing depression in adulthood (106). At a cellular and
molecular level, multiple stress-related alterations are seen in
depression, including changes in levels of stress hormones,
receptor expression of neurons and HPA responsiveness to
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glucocorticoids (107–109). These changes may exert their effects
on mood by way of immune modulation in the CNS (110).

Elevated psychological stress is proposed to induce
immunological alterations through a variety of dose and
duration-dependent mechanisms. Acute as well as chronic
psychosocial stressors are associated with elevated inflammation
(111). Acute stress correlates with elevation in plasma IL-6,
TNFα, IL-1β and IL-10, while chronic stress has been linked
to low-grade inflammatory activation including elevations in
CRP, IL-6 and TNFα (111, 112). It is particularly topical that
caregiving stress correlates with elevations in IL-6, while teacher
burnout has been correlated with systemic inflammation along a
continuum of symptom severity (Rohelder, 2019) (113).

Compared with acute stressors, chronic stress may better
predict the low-grade inflammatory immune activation
correlated with depression (114). Proposed linking mechanisms
include glucocorticoid receptor resistance and subsequent
inability to down-regulate inflammatory pathways as well
as stress-induced production of inflammatory cytokines
from visceral fat (115). Visceral fat expresses high levels
of stress-related adrenergic receptors and produces pro-
inflammatory cytokines including TNFα and IL-6 (116).
Chronic stress may additionally cause microglia to adopt a pro-
inflammatory phenotype, contributing to neuroinflammation
(117). Inflammation may in part be mediated through stress
activation of the NLRP3 inflammasome (118). Taken together,
multiple mechanisms link COVID-19 pandemic-related
psychological stress with an inflammatory immune state that
could promote depressive symptomatology.

PHYSICAL ACTIVITY

COVID-19 related restrictions have sparked concern for
decreased physical activity. In a recent survey of American
adults, people active prior to COVID-19 restrictions reported
a 32% reduction in physical activity (119). It is also notable
that in this report, increased inactivity correlated with an
increase in depressive symptoms. Similar results in American
children suggest a decrease in physical activity and increase in
sedentary activity since the spread of the pandemic within the
United States (120).

Physical activity has been shown to be an effective
therapy for unipolar depression, with a benefit comparable to
antidepressants and psychotherapy (121, 122). Recently, existing
data have been supplemented by Mendelian randomization
techniques showing a potential causative role for the protective
effect of physical activity in depression (123).

Physical activity is thought to positively affect multiple aspects
of immune function, with a beneficial suppressive effect on
inflammation (124). As exercise induces a transient elevation
in inflammatory markers, these effects can appear paradoxical,
and various explanations have been proposed. While acute
exercise may rapidly increase inflammation, including levels
of interleukin 1 (IL-1), TNFα and IL-6, these muscle-derived
cytokines (myokines) may have local anti-inflammatory effect
(125, 126). Though exercise increases IL-6 in the CNS, this is
accompanied by a decrease in TNFα (127). It is suggested that IL-
6 may therefore act as an anti-inflammatory cytokine in regions

of the CNS by inhibiting TNFα, with an overall protective effect
on neurons. Finally, exercise-induced elevation in inflammatory
cytokines may be systemically balanced by a parallel increases in
anti-inflammatory molecules, leading to a net anti-inflammatory
effect (128).

DIET

Early research during the COVID-19 pandemic suggests the
potential for a negative impact on dietary patterns, potentially
as a response to increased chronic stress and changes in
habits (129, 130). For example, an increased consumption of
“comfort foods” has been reported in response to COVID-
19 (131). A survey of Italians found that unhealthy dietary
choices were driven in part by a desire to alleviate poor
mental health (132).

In both children and adults, data indicate a COVID-19-
related increase in intake of prototypically inflammatory foods
including refined carbohydrates and sugary drinks and in adults,
a decreased intake of fish and fruit (133–135). This change
suggests that in response to the pandemic, there may a trend
toward a Western pattern diet, which predicts higher levels of
inflammatory markers including CRP and IL-6 (136) as well as
increased risk for depression (137).

Dietary influences on immune function are diverse. The
role of macro and micronutrient deficiency in immune
dysfunction is well-characterized, and dietary fiber, omega-3
fatty acids and polyphenols are also purported to play a role
in healthier immune function (138). Conversely, preclinical
data suggest a deficit in dietary fiber could promote lower
levels of Treg cells (139). Increased dietary saturated fat
may facilitate inflammation by activation of the toll-like
receptor (TLR4) signaling pathway, while omega-3 fats have
the opposing effect (140). Additionally, immunity may be
affected by changes in the gut microbiome (141) as well
as more acutely by a lipid, glucose or dietary LPS-mediated
postprandial inflammatory response (142). In the context of
the aforementioned, it is notable that interventional trials
promoting dietary patterns rich in whole foods and low in refined
carbohydrates, fast foods, sweetened drinks and processed
meats have demonstrated efficacy in decreasing depressive
symptoms as well as in lowering inflammatory burden (143–
146).

As a whole, these data suggest that changes in dietary patterns
may represent a behavioral variable in inflammatory modulation,
and that psychological stress-mediated trends during COVID-
19 could have a detrimental effect on mood by increasing
preference for less healthful foods. Emphasis on the consumption
of a less processed diet and increased access to more nutrient-
rich foods could represent a potential offset to diet-related
immunological effects on depressive symptoms as a result of
the pandemic.

DISCUSSION

Depression and COVID-19 demonstrate shared patterns of
immunological function, especially around a pro-inflammatory
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state characterized by elevation in cytokines including IL-6,
TNFα, and IL-1β. SARS-CoV-2 may increase immunological risk
for depression through direct infection-related influences on the
CNS, or through associated behavioral shifts in diet, physical
activity and psychological stress which subsequently promote
an inflammatory immune state. Insight into the immunological
intersections between depression and SARS-CoV-2 may help in
the creation of strategies to mitigate of depression risk during the
COVID-19 pandemic.
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