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Background: Monocarboxylate transporter 8 (MCT8) is a thyroid hormone

transmembrane transporter protein. MCT8 deficiency induces severe X-linked

psychomotor retardation. Previous reports have documented delayed myelination

in the central white matter (WM) in these patients; however, the regional pattern of

myelination has not been fully elucidated. Here, we describe the regional evaluation of

myelination in four patients with MCT8 deficiency. We also reviewed the myelination

status of previously reported Japanese patients with MCT8 deficiency based on

magnetic resonance imaging (MRI).

Case Reports: Four patients were genetically diagnosed with MCT8 deficiency at the

age of 4–9 months. In infancy, MRI signal of myelination was observed mainly in the

cerebellar WM, posterior limb of internal capsule, and the optic radiation. There was

progression of myelination with increase in age.

Discussion: We identified 36 patients with MCT8 deficiency from 25 families reported

from Japan. The available MRI images were obtained at the age of <2 years in 13

patients, between 2 and 4 years in six patients, between 4 and 6 years in three patients,

and at ≥6 years in eight patients. Cerebellar WM, posterior limb of internal capsule,

and optic radiation showed MRI signal of myelination by the age of 2 years, followed by

centrum semiovale and corpus callosum by the age of 4 years. Most regions except for

deep anterior WM showed MRI signal of myelination at the age of 6 years.

Conclusion: The sequential pattern of myelination in patients with MCT8 deficiency

was largely similar to that in normal children; however, delayed myelination of the deep

anterior WM was a remarkable finding. Further studies are required to characterize the

imaging features of patients with MCT8 deficiency.

Keywords: magnetic resonance imaging, thyroid hormone transporter, white matter, Allan-Herdon-Dudlley

syndrome, reginal analysis, delayed myelination, monocarboxylate transporter 8 deficiency
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INTRODUCTION

Monocarboxylate transporter 8 (MCT8) is a thyroid hormone
(TH) transmembrane transporter protein encoded by the MCT8
(SLC16A2) gene located on human chromosome Xq13.2 (1,
2). Males affected by MCT8 deficiency exhibit severe cognitive
deficit, spastic or dystonic quadriplegia, and axial hypotonia,
known as the Allan–Herndon–Dudley syndrome (AHDS) (3).
An estimated prevalence of MCT8 deficiency is 1 in 70,000
men (4). Disease features in large cohorts have been reported,
including brain magnetic resonance imaging (MRI) (4, 5).
Brain MRI of patients with MCT8 deficiency shows delayed
myelination in the central white matter (WM) (4, 6, 7).

MCT8 is crucial for the transport of triiodothyronine (T3)
and thyroxine (T4) in several tissues, including the brain (4).
MCT8 is highly expressed in neuronal populations of the cerebral
and cerebellar cortex, hippocampus, striatum, and hypothalamus
(8). MCT8 is also expressed in the choroid plexus and large
capillaries, indicating its involvement in TH transport across
the blood–brain barrier (BBB) (9) and/or blood–cerebrospinal
fluid (CSF) barrier (8). MCT8 protein is present in neurons
and astrocytes of the paraventricular and infundibular nuclei
at the human blood–hypothalamus border. Therefore, MCT8 is
believed to provide T3 to the central nervous system (CNS) (8).

Oligodendrocytes are the myelinating glia in the CNS
(6, 10, 11). Oligodendrocyte precursor cells (OPCs) are
established during pre- and perinatal development (6). TH
receptors are expressed in the oligodendrocytes in the CNS
during embryonic and adult lives (10). The differentiation of
OPCs is thought to be regulated by T3 (12). T3 transferred
via MCT8 is reported to induce OPC differentiation into
mature oligodendrocytes and facilitate the formation of
myelin extensions (13). Lack of MCT8 at the OPC level
induced reduction of intracellular T3 action, blocking the OPC
differentiation to mature and myelinating oligodendrocytes (13).
Therefore, abnormal myelination in MCT8 deficiency may be
caused by the disruption of OPC differentiation.

Myelination starts early, but the big acceleration phase occurs
postnatally up to 2 years of age and is dependent on the brain
region. During normal brain development, myelination begins
from the 2nd trimester of the fetal life (14–16). Myelination
of WM in the brain can be evaluated by conventional MRI.
By the age of 3 months, normal infants exhibit high signal
intensity in the anterior limb of the internal capsule on brain T1-
weighted images (T1WI) (15). On T2-weighted images (T2WI),
the splenium of the corpus callosum shows low signal intensity by
6 months of age, the genu of the corpus callosum by 8 months of
age, and the anterior limb of the internal capsule by 11 months
of age (15). With the exception of the subcortical WM, adult
appearance of cerebral WM is seen by the age of 18 months (15).

Patients with MCT8 deficiency are known to exhibit delayed
myelination (4). Children with MCT8 deficiency aged <5 years
usually show MRI signal of severely delayed myelination, which
improve gradually with increase in age (17). MCT8 deficiency
was found in 6 of 53 families affected by hypomyelinating
leukodystrophies of unknown etiology (18). Nevertheless,
analysis of the myelination status in patients with MCT8

deficiency has led to conflicting interpretations (6). The patient
heterogeneity in WM phenotype was described (5). Different
groups have made different interpretations of the same MRI
(7, 19). Hypomyelination rather than delayed myelination has
been reported in another study (5). In addition, few studies have
characterized the specific myelination pattern in different brain
regions in these patients (5). Therefore, regional evaluation using
a standardized methodology is necessary to determine the status
of myelination in patients with MCT8 deficiency.

In the present study, we describe the regional pattern of
myelination in four patients with MCT8 deficiency, based on
conventional MRI. In addition, we reviewed the previous case
reports of Japanese patients with MCT8 deficiency and assessed
the myelination status based on MRI findings.

SUBJECTS AND METHODS

Patients’ Background
Case 1 was a nine-month-old child with developmental delay
and abnormal thyroid function test (TFT). The child was
referred to the Aichi Medical University from regional core
hospital (Fukuchiyama City Hospital) for genetic analysis due
to suspected MCT8 deficiency. Case 2 was diagnosed as MCT8
deficiency at the age of 9 months due to poor head control
and abnormal TFT at the University hospital (Nagoya City
University). He was referred to the Aichi Medical University for
continuing medical care at the age of 9 months. Cases 3 and 4
were referred from University hospitals (Hamamatsu University
Hospital and Shinshu University Hospital) to the Aichi Medical
University at the age of 2 years and 3 years, respectively, for the
evaluation of TFTs in the neonatal period and the myelination
status on MRI.

The clinical course and the TFTs of the four patients with
MCT8 deficiency are summarized in Table 1. A cousin of Case 3’s
mother and the half-brother of Case 4’s mother had intellectual
disability. Missense mutation of the MCT8 gene was identified
in Cases 1 and 4, while a non-sense mutation was identified
in Case 2, and a frameshift mutation was identified in Case
3. All patients showed normal thyroid stimulating hormone
(TSH), increased free triiodothyronine (FT3), and decreased free
thyroxine (FT4) levels.

Ethical Compliance
This study was approved by the Institutional Review Board
Committee at the Aichi Medical University (H2015-H359).
Written informed consent was obtained from the parents. All
study evaluations and procedures were performed in accordance
with the Declaration of Helsinki.

Description of Mutations in MCT8
MCT8 encodes two potential proteins comprising of 539 and 613
amino acids depending on the use of two alternative translational
start sites in exon 1 (1). Since MCT8 mutations have traditionally
been numbered based on the long MCT8 protein, we adhered to
this system (1, 16).
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TABLE 1 | Summary of the clinical course, thyroid function tests, and myelination status in brain T1- and T2-weighted MRI images of the four patients with MCT8 deficiency.

Case FH Mutation At birth At initial presentation Current condition

GA BW (g) NBS for

IEMs

Age Initial symptoms TSH

(mIU/mL)*a
FT3

(pg/mL)*b
FT4

(ng/dL)*c
Age TSH

(mIU/mL)

FT3

(pg/mL)

FT4

(ng/dL)

Speech Walk Gastric

tube

1 Not remarkable c.661G>A,

p.G221R

41w 3,190 Normal 4m Hypotonia, poor head

control, spastic

paraparesis

4.979 6.88 0.61 3 y 4.286 7.86 0.54 – – –

2 Mother and

grandmother had

CFS. Father had

epilepsy

c.733C>T,

p.R245X, the

mother shared the

same mutation

40w and

1 d

3,041 Normal 9m Poor head control,

hypotonia, spastic

paraparesis with

dystonic/athetoic

movements

4.95 8.09 0.75 6 y 3.735 5.63 0.62 – – –

3 Mother’s cousin

had intellectual

disability

c.985_986insG,

p.D329Gfs*2,

mother shared the

same mutation

37w 2,790 Normal 4m Poor intake, failure to

thrive, poor head

control, hypotonia, and

spastic paraparesis

with dystonic/athetoic

movements

4.2 9.9 0.5 2 y NA NA NA – – +

4 Mother’s

half-brother had

intellectual

disability and died

at age of 19 years

c.1556C>T,

p.S519L

42w and

3 d

3,622 Normal 4m Poor head control,

poor intake, failure to

thrive, hypotonia of the

trunk, and increased

deep tendon reflexes in

the extremities

2.92 6.29 0.60 3 y NA NA NA – – –

Case Age at

MRI

Imaging

sequence

Cerebellar

WM

Internal capsule Optic

radiation

Corpus callosum Occipital WM Midfrontal WM Anterior frontal WM Centrum

semiovale

Posterior limb Anterior limb Genu Splenium Deep Subcortical Deep Subcortical Deep Subcortical

1 8m T1 High Partial high Iso high Iso Iso High Partial high High High High High High

T2 Iso Partial low Iso Low Low Low High High High High High High High

3 y 1m T1 High High High High High High High High High High High High High

T2 Low Low Iso Low Low Low High High High High High High Low

2 1 y 4m T1 High High Iso High Iso Iso Partial high Partial high Partial high Partial high Partial high Partial high High

T2 Low Low Iso Low Low Low High High High High High High High

6 y T1 High High High High High High High High High High High High High

T2 Low Low Low Low Low Low Low Low Low Low Low Low Low

3 5m T1 High High Low High Low High Low Low Low Low Low Low High

T2 Low Low High Low High Low High High High High High High Low

4 6m T1* NA NA NA NA NA NA NA NA NA NA NA NA NA

T2 Low Low Iso Low High Low High High High High High High High

FH, family history; CFS, chronic fatigue syndrome; GA, gestational age; BW, birth weight; NBS for IEMs, newborn screening for inborn errors of metabolism; *anormal range: 0.440–4.000 mIU/mL; *bnormal range: 2.20–4.10 pg/mL;

*cnormal range: 0.80–1.90 ng/dL; NA, not available.

*T1 weighted image (T1WI) of this patient was not available because routine examination did not include T1WI.
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Review of the Literature
We also reviewed previously published cases of MCT8
deficiency reported from Japan. Case reports of Japanese
patients with MCT8 deficiency were identified in PubMed
and Ichushi-Web (Japanese database of medical literature
updated by the Japan Medical Abstracts Society) using the
following search terms: Allan–Herndon–Dudley syndrome;
MCT8; monocarboxylate transporter 8; SLC16A2. Articles
written in English or Japanese published between 2003 and
2020, which described patients with a genetically confirmed
MCT8 mutation, were retrieved and the phenotypic and
genotypic descriptions were analyzed. If a mutation was
described based on a short protein, it was converted to a long
protein, as described in the previous section (Description of
mutations in MCT8).

Regional Evaluation on MRI
The initial and current MRI of the four cases and all MRI
images available from the published literature were re-evaluated
in terms of myelination by two pediatric neurologists. It should
be noted that all MRI images of our study’s cases were available,
whereas for the cases reported in the literature, only those
published in the paper were available. Sequential MRIs were
available for ten patients. First, two pediatricians, AO and
HI, who are authors of this study independently interpreted
the MRI images of our four cases and those available in the
literature. Subsequently, a consensus on the interpretation was
reached after discussion. Cerebellar WM, posterior limb of the
internal capsule, anterior limb of the internal capsule, optic
radiation, genu corpus callosum, splenium corpus callosum, deep
and subcortical occipital WM, deep and subcortical midfrontal
WM, deep and subcortical anterior frontal matter, and centrum
semiovale were selected for regional evaluation. Signal intensity
of WM on T1WI was classified into four grades: high, partial
high, iso, and low. Signal intensity ofWM on T2WI was classified
into four grades: high, iso, partial low, and low. The myelinated
appearance was defined as WM showing high intensity on T1WI
and low intensity on T2WI.

RESULTS

Myelination Status in the Brain MRI Studies
of Four Cases
In Case 1, optic radiation was myelinated at the age of 8 months
(Figures 1A,B). However, other regions were not myelinated
(Table 1). At the age of 3 years, MRI signal of myelination was
seen in all regions except for the anterior limb of the internal
capsule, and the deep and subcortical WM (Figures 1C,D;
Table 1).

In Case 2, the cerebellar WM, the posterior limb of the
internal capsule, and the optic radiation showed MRI signal
of myelination at the age of 16 months (Figures 1E,F). Other
regions were not myelinated (Table 1). Brain MRI at the age of
6 years showed myelination of all regions (Figures 1G,H).

In Case 3, MRI signal of myelination was observed in the
cerebellar WM, posterior limb of the internal capsule, the optic
radiation, splenium corpus, and centrum semiovale at the age

of 5 months (Figures 1I,J; Table 1). In Case 4, the cerebellar
WM, posterior limb of the internal capsule, and optic radiation
showed myelination at the age of 6 months (Figure 1K; Table 1).
Follow-up MRI was not available for Cases 3 and 4.

Review of MRI Images
We identified a total of 36 Japanese patients with MCT8
deficiency from 25 families (Table 2). The median age of patients
at the time of reporting was 6.5 years. The age at which MRI
and other tests, including TFT, were performed varied in each
case. TFT revealed slightly elevated TSH, elevated FT3, and
decreased FT4 levels. We reviewed myelination status on T1WI
and T2WI. MRI images were available for 30 patients. MRI
was performed at the age of <2 years in 13 patients, 2–4
years in 6 patients, 4–6 years in 3 patients, and >6 years in 8
patients (Table 3).

On T1WI performed at the age of <2 years, cerebellar WM
and centrum semiovale showed high intensity in all patients and
posterior limb of internal capsule and optic radiation showed
high intensity in most patients. The other regions infrequently
exhibited high intensity. In contrast, all regions showed high
intensity on T1WI at the age of ≥2 years.

On T2WI performed at the age of <2 years, low intensity
was mostly restricted to the cerebellar WM, corpus callosum,
posterior limb of the internal capsule, and optic radiation. At
the age of 2–4 years, additional low intensity was observed
in centrum semiovale. At the age of 4–6 years, low intensity
appeared in anterior limb of the internal capsule and deep
occipital WM in 2 of 3 patients, and in subcortical occipital, and
anterior frontal WM in 1 of 3 patients. At the age of ≥6 years,
low intensity was mostly seen in all regions other than the deep
anterior WM.

After integration of T1WI and T2WI sequences, cerebellar
WM, posterior limb of the internal capsule, and optic radiation
were myelinated at the age of <2 years. Then, centrum semiovale
and corpus callosum were myelinated at the age of 2–4 years. At
4–6 years of age, anterior limb of the internal capsule and the
occipital deep WM had become myelinated. At age >6 years,
most regions were found to be myelinated. Considering only
T2WI, 50% of patients aged >6 years showed low intensity in
the deep anterior WM (Table 3), indicating that myelination was
particularly delayed in that area.

DISCUSSION

We examined regional differences in myelination in four patients
with MCT8 deficiency. At the age of <2 years, MRI signal of
myelination was observedmainly in the cerebellarWM, posterior
limb of the internal capsule, and the optic radiation. There
was gradual increase in myelination with further increase in
age. On review of MRI images of previously reported Japanese
patients, the cerebellar WM, posterior limb of the internal
capsule, and optic radiation were myelinated by the age of 2
years, followed by centrum semiovale and corpus callosum by
the age of 4 years. Thereafter, most regions with the exception of
deep anterior WM showed MRI signal of myelination at the age
of 6 years.
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FIGURE 1 | Brain MRI of patient 1 (A,B) 8 months, (C,D) 3 years and 1 months, patient 2 (E,F) 1 year and 4 months, (G,H) 6 years, patient 3 (I,J) 5 months, and

patient 4 (K) 6 months. Arrow and arrow head indicates myelination and lack of myelination, respectively. The regional myelination status can be found in Table 1.

Myelination in Patients With MCT8
Deficiency
Postnatal myelination begins in the cerebellar WM (14–16). In
the next few months, posterior limb of the internal capsule,
optic radiation, genu corpus callosum, and splenium corpus
callosum are myelinated. The anterior limb of the internal
capsule is myelinated a little later, by 7–11 months. Myelination
progresses from deep and postnatal myelination begins in the
cerebellar occipital lobe to the frontal lobe, consecutively. Finally,
myelination of the subcortical anterior frontal WM is completed
within 2–2.5 years of age.

One of the difficulties in the cases of MCT8 deficiency is that
myelination is extremely slow and is therefore often classified as
true hypomyelination. In fact, it might take years, but in some
cases, myelin restores eventually, against expectations. Autopsy
of MCT8-deficient fetus showed a delay in cortical and cerebellar
myelination (32). The expression of myelin basic protein (MBP),
which is important in the process of myelination, was found to
be very low or absent in the MCT8-deficient fetal cerebellum,
compared to the control fetus.

Vancamp et al. reviewed data on all literature cases available
at that time (6). Abnormal or delayed myelination was reported
in 26 out of 31 (84%) patients with MCT8 deficiency aged
≤2 years (6). Among patients in the age group of 2–6 years,

63% displayed some form of myelination delay. In our study,
delayed myelination was observed in all patients aged <6 years.
After the age of 6 years, 67% of patients caught up with the
delay and showed full myelination, whereas 33% of patients did
not show full myelination but showed partial myelination (6).
Remerand et al. reported that out of ten patients with MCT8
deficiency aged >6 years, three had hypomyelination (5). In our
study, low intensity on T2WI was not observed in some patients
aged <6 years. These data indicated is the presence of patient
heterogeneity in myelination after the age of 6 years.

Other papers report subregion differences in myelination

(5, 33). Remerand et al. performed regional examination such
as enlarged ventricular spaces and hypoplasia of the corpus

callosum or cerebellum (5). They also reported a general view of

T2 hypersignal on MRI. Matheus et al. reported the myelination

status based on the anatomy of WM (33). A comprehensive
analysis of myelination status based on WM anatomy will help
understand myelination in MCT8 deficiency.

Autopsy study of an 11-year-old boy with MCT8 deficiency
showed deficient myelination (32). MRI performed at the
age of 6.5 years did not show delayed myelination, although
hypomyelination was observed on histopathology at the age of
11 years. Paler MBP staining in the cerebellum was observed in
this patient as compared to the control subject. Several other
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TABLE 2 | Summary of the previously reported Japanese patients with MCT8 deficiency.

Case Author Year Mutation Age TSH FT3 FT4 Note

1 Kakinuma et al. (20) 2005 p.S107P 6 3.49 6.82 0.56

2 Namba et al. (16) 2008 p.Y550Sfs*17 3 4 5.5 0.5

3 Tsurusaki et al. (21) 2011 p.R368X 13 1.2 6.4 1.2

4 Tsurusaki et al. (21) 2011 p.R368X 8 NA NA NA Sibling to case 3

5 Tsurusaki et al. (21) 2011 p.R368X Died at 27 y NA NA NA Cousin to case 3

6 Tsurusaki et al. (21) 2011 p.R368X Died at 7m NA NA NA Cousin to case 3

7 Goto et al. (22) 2013 p.P99Gfs*5 4.67 3.782 6.48 0.69

8 Goto et al. (22) 2013 p.P99Gfs*5 NA NA NA NA Sibling to case 7

9 Yamamoto et al. (23) 2013 Partial deletion 26 2.18 6.3 0.4

10 Yamamoto et al. (24) 2014 p.P538X 0.58 3.647 7.73 0.52

11 Yamamoto et al. (24) 2014 p.A224V 0.67 5.93 6.37 0.75

12 Kobayashi et al. (25) 2014 p.G541C 26 1.3 TT3 2.4* TT4 5.9*

13 Kobayashi et al. (25) 2014 p.G541C 22 1.5 TT3 2.31* TT4 5.7* Cousin to case 12

14 Kobayashi et al. (25) 2014 p.G541C Died at 32 y NA NA NA Cousin to case 12

15 Kobayashi et al. (25) 2014 p.G541C Died at 24 y NA NA NA Cousin to case 12

16 Morimoto et al. (26) 2014 p.V309L 0.67 6.42 7 0.7

17 Ono et al. (27) 2016 p.R445S 8 3.1 6.5 0.77

18 Ono et al. (27) 2016 p.G196E 20 48.5 6.1 0.3

19 Ono et al. (27) 2016 p.R355Pfs*64 21 3.48 5.7 0.6

20 Shimojima et al. (28) 2016 p.G196V 19 0.8 5.1 0.7

21 Shimojima et al. (28) 2016 p.G295S 0.5 4.72 10.74 0.59

22 Yamamoto et al. (29) 2017 p.A252P 1.75 2.23 4.12 1.03

23 Honda et al. (30) 2017 p.E114X 2 NA NA NA

24 Islam et al. (31) 2019 p.P561X 7 3 5.56 0.607

25 Islam et al. (31) 2019 p.P561X 0.9 7.67 7.26 0.81

26 Islam et al. (31) 2019 p.D498N 0.9 5.95 6.78 0.52

27 Islam et al. (31) 2019 p.G276R 0.5 4.09 7.5 0.7

28 Islam et al. (31) 2019 p.G276R 1 3.29 9.22 0.64

29 Islam et al. (31) 2019 p.G276R 1 1.55 6.6 0.65

30 Islam et al. (31) 2019 p.G401R 2 1.73 7.8 0.5

31 Islam et al. (31) 2019 p.G312R 1 5.05 8.53 0.65

32 Islam et al. (31) 2019 p.G312R 1 3.97 9.67 0.66

33 Iwayama 2020 p.R245X 1.2 4.42 7.41 0.8 This study

34 Iwayama 2020 p.G221R 0.3 4.979 6.88 0.61 This study

35 Iwayama 2020 p.D329Gfs*2 0.42 4.2 9.9 0.5 This study

36 Iwayama 2020 p.S519L 0.5 2.92 6.29 0.6 This study

Total 25 families 6.47 5.14 7.05 0.65

*Increased total T3 and total T4 within normal range; NA, not available.

reports have indicated persistence of hypomyelinated areas in
some regions in later life (6).

High-resolution MRI detected abnormalities in WM

throughout adolescence, suggesting permanent hypomyelination
(6). These facts indicate that MRI signal of myelination do not

necessarily imply histopathologically complete myelination.

Diffusion tensor imaging is reportedly useful in the evaluation
of demyelination disease (34) or leukodystrophy (35). More

advanced methods for assessment of myelination such as
diffusion tensor imaging may help clarify minute abnormalities
in myelination in patients with MCT8 deficiency.

Difference of Myelination According to the
Region of the Brain
The myelination status varies in different regions of the brain.
In normal brain, MRI signal of myelination is observed in the
cerebellar WM, posterior limb of the internal capsule, and the
optic radiation by 2 years of age. Myelination of corpus callosum
and anterior limb of the internal capsule is observed by the age
of 1 year. Subsequently, myelination of WM becomes obvious
initially in the deepWM followed by subcortical WM. This study
showed the sequential pattern of myelination in patients with
MCT8 deficiency was largely similar to that in the normal brain.
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TABLE 3 | Myelination status in brain T1- and T2-weighted MRI images in published literaturea*.

Cerebellar

WMb*

Internal capsule Optic

radiation

Corpus callosum Occipital WM Midfrontal WM Anterior frontal WM Centrum

semiovale

Posterior

limb

Anterior

limb

Genu Splenium Deep Subcortical Deep Subcortical Deep Subcortical

High intensity on T1WI

<2 years 3/3

(100%)

6/8

(75%)

2/8

(25%)

7/8

(88%)

3/8

(38%)

1/3

(33%)

5/8

(63%)

2/8

(25%)

1/3

(33%)

1/3

(33%)

3/8

(38%)

3/8

(38%)

3/3

(100%)

2–4 years 1/1

(100%)

2/2

(100%)

2/2

(100%)

2/2

(100%)

2/2

(100%)

2/2

(100%)

2/2

(100%)

2/2

(100%)

1/1

(100%)

1/1

(100%)

2/2

(100%)

2/2

(100%)

1/1

(100%)

4–6 years NAc* 1/1

(100%)

1/1

(100%)

1/1

(100%)

1/1

(100%)

NA 1/1

(100%)

1/1

(100%)

NA NA 1/1

(100%)

1/1

(100%)

NA

>6 years 1/1

(100%)

5/5

(100%)

5/5

(100%)

5/5

(100%)

5/5

(100%)

2/2

(100%)

5/5

(100%)

5/5

(100%)

1/1

(100%)

1/1

(100%)

5/5

(100%)

5/5

(100%)

1/1

(100%)

Low intensity on T2WI

<2 years 3/4

(75%)

11/13

(85%)

1/13

(8%)

11/13

(85%)

9/12

(75%)

4/6

(67%)

1/13

(8%)

0/13

(8%)

0/4

(0%)

0/4

(0%)

0/13

(0%)

0/13

(0%)

1/4

(25%)

2–4 years 1/1

(100%)

3/5

(60%)

1/5

(20%)

2/5

(40%)

5/5

(100%)

2/2

(100%)

0/5

(0%)

0/5

(0%)

0/2

(0%)

0/2

(0%)

0/6

(0%)

0/6

(0%)

1/1

(100%)

4–6 years NA 3/3

(100%)

2/3

(67%)

2/2

(100%)

3/3

(100%)

2/2

(100%)

2/3

(67%)

1/3

(33%)

NA NA 0/3

(0%)

1/3

(33%)

NA

>6 years 1/1

(100%)

7/7

(100%)

7/7

(100%)

7/7

(100%)

8/8

(100%)

2/2

(100%)

7/7

(100%)

6/7

(86%)

3/3

(100%)

2/3

(67%)

4/8

(50%)

7/8

(88%)

3/3

(100%)

Myelinated on MRI

<2 years 2/3

(67%)

6/8

(75%)

0/8

(0%)

6/8

(75%)

3/7

(43%)

1/3

(33%)

0/8

(0%)

0/8

(0%)

0/3

(0%)

0/3

(0%)

0/8

(0%)

0/8

(0%)

1/3

(33%)

2–4 years 1/1

(100%)

1/2

(50%)

0/2

(0%)

1/2

(50%)

2/2

(100%)

2/2

(100%)

0/2

(0%)

0/2

(0%)

0/1

(0%)

0/1

(0%)

0/2

(0%)

0/2

(0%)

2/2

100%

4–6 years NA 1/1

(100%)

1/1

(100%)

1/1

(100%)

1/1

(100%)

NA 1/1

(100%)

0/1

(0%)

NA NA 0/1

(0%)

0/1

(0%)

NA

>6 years 1/1

(100%)

5/5

(100%)

5/5

(100%)

5/5

(100%)

5/5

(100%)

2/2

(100%)

5/5

(100%)

5/5

(100%)

1/1

(100%)

1/1

(100%)

4/5

(80%)

5/5

(100%)

1/1

(100%)

a*This list consists of literature data on all patients with MCT8 deficiency on Japanese territory; b*WM, white matter; c*NA, not available.

However, it is remarkable that the MRI signal of myelination was
not seen in the deep anterior WM even at the age of 6 years,
although subcorticalWM showedmyelination. T2WI in a 6-year-
old patient with MCT8 deficiency showed iso-intensity in the
deep anterior WM (33). Conversely, T2WI in a patient with the
same age showed low intensity in the deep anterior WM (5).

The primary function of the deep anterior WM is cognition

(36). The examples that we have include patients with frontal

lobotomy who lose their cognitive capability and become “calm”
(37). Furthermore, these symptoms are similar to the patients

with MCT8 deficiency. Therefore, we believe that this may

explain the good nature of MCT8 deficient children.
The absence ofmyelination in deep anteriorWMhas also been

proposed in Alexander’s disease, which presents as a progressive

leukodystrophy (38). The demyelination in Alexander’s disease
differs from that of MCT8 deficiency in terms of progression and

having a remarkably high signal on T1WI. Although the reason

for the delayed myelination in the deep anterior WM in patients
with MCT8 deficiency is not clear, this finding may be unique to
MCT8 deficiency and can be a clue to diagnosis. Further studies
are required to validate whether delayed myelination in deep
anterior WMmay be an imaging feature of MCT8 deficiency.

Mechanism of Hypomyelination and
Recovery of Myelination in MCT8
Deficiency
Oligodendrocytes are the myelinating glia in the CNS (6, 10, 11).
OPCs are established during pre- and perinatal development
(6). TH receptors are expressed in the oligodendrocytes in the
CNS during embryonic and adult lives (10). The differentiation
of OPCs is thought to be regulated by T3 (12). T3 transferred
via MCT8 was reported to induce differentiation of OPCs into
mature oligodendrocytes, and facilitate the formation of myelin
extensions (6, 11). Lack of MCT8 at the OPC level induced
reduction of intracellular T3 action, blocking the differentiation
of OPCs to mature and myelinating oligodendrocytes (6, 11).
Therefore, abnormal myelination in MCT8 deficiency may be
caused by the disruption of OPC differentiation.

T3 was reported to drive cascade that regulated the timing
of OPC differentiation and remyelination of toxic demyelination
(39). 3,5-diiodothyropropionic acid (DITPA), which is the analog
of TH, can bypass such a deficiency to salvage OPCs and still
promote their maturation toward myelinating oligodendrocyte
(11). Besides the CNS, hypomyelination occurs in the peripheral
nerve system (PNS) due to the lack of T3 in the cell (10).
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Schwann and satellite glial cells, which are the glial cells of the
PNS, transiently express TH receptor only for limited periods
of development and regeneration (10). A previous study reports
that T3 administration had a positive effect on remyelination in
PNS rodentmodels of inflammatory-demyelinating diseases (40).
These data indicate that hypomyelination in MCT8 deficiency
might be reversible in the CNS and PNS.

It is difficult to further discuss themechanisms of spontaneous
recovery of myelination, as demonstrated by MRI, and
specifically delayed myelination of deep anterior WM as shown
in this study. Contrary to the humanMCT8 deficiency, a decrease
in myelination in a murine MCT8 deficiency model has been
reported as permanent (41). In addition, no in vitro or animal
studies have demonstrated specifically delayed myelination of
deep anterior WM. Therefore, the mechanism of spontaneous
recovery of myelination and specifically delayed myelination of
deep anterior WM remains to be clarified.

Possible Treatments for MCT8 Deficiency
Physiological or high doses of TH administered postnatally, for
most patients even a few years after birth, could not correct
hypothyroidism in the brain and psychomotor retardation in
MCT8 deficiency (8). Research on several TH analogs, such
as DITPA or 3, 3’, 5-tri-iodothyroacetic acid (Triac), are still
ongoing. DITPA is relatively MCT8 independent for entry into
the brain of the MCT8-deficient mouse model (8). Progression in
psychomotor development was observed in 2 of 4 patients treated
with 22 months of DITPA (42), although their advancement
remained at about the same level when expressed as percentage
of the chronological age. In two cases with improvement,
MRI at 47 months of age showed delayed myelination, which
normalized at 62 months of age. It has been reported that
motor function in children younger than 4 years treated with
Triac was improved (43); however, due to the lack of a
control group and the open-label study design, whether the
improvement was due to Triac remains unclear. Pre- and post-
treatment MRI findings were not reported in the study. Prenatal
treatment of intra-amniotic instillation of levothyroxine induced
neurodevelopmental improvement and near-normalmyelination
in the MRI (44). The timing and route of administration, as well
as the type of drug, may affect the prognosis. These types of
information provide a deeper understanding of myelination in
MCT8 deficiency.

Limitations of This Study
This study had several limitations. First, some of the articles
reviewed reported T2WI only. If MRI images were limited to
T2WI, fewer MRI images were analyzed. Table 3 shows high
intensity at T1WI, low intensity at T2WI, and myelination on
MRI. High intensity on T1WI and low intensity on T2WI
were considered myelination. However, since imaging changes
of myelination occur later in T2 than in T1, even the case
of low intensity at T2WI alone was considered as myelination
when considering deep anterior WM. Therefore, results in this
study may be slightly different from the actual percentage of

myelination. Second, due to limited research resources, we
evaluated four cases and representative MRI images reported in
the literature. The myelination of regions not reported in the
literature was evaluated only in our cases. Therefore, results in
these regions may not be generalizable. For future study, we
plan to centrally evaluate images from Japanese patients with
MCT8 deficiency.

CONCLUSION

The present study demonstrated regional differences in
myelination in patients with MCT8 deficiency based on MRI.
The sequential pattern of myelination in different regions of
brain in MCT8 deficiency was largely similar to that in normal
brain; however, delayed myelination in deep anterior WM was
a remarkable feature of MCT8 deficiency. Further studies are
required to characterize the imaging features of patients with
MCT8 deficiency.
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