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Ischemic stroke is a leading cause of death and disability worldwide with effective acute
thrombolytic treatments. However, brain repair mechanisms related to spontaneous or
rehabilitation-induced recovery are still under investigation, and little is known about
the molecules involved. The present study examines the potential role of angiogenin
(ANG), a known regulator of cell function and metabolism linked to neurological disorders,
focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was
examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which
were exposed to exogenous ANG treatment during neurosphere formation as well
as in other neuron-like cells (SH-SY5Y). Additionally, male C57BI/6 mice underwent
a distal permanent occlusion of the middle cerebral artery to study endogenous and
exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show
that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not
in nestin+NSCs. In vitro, treatment with ANG increased the number of SVZ-derived
NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally,
physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ
niche after ischemia, where DCX-migrating cells increased as part of the post-stroke
neurogenesis process. Our findings position for the first time ANG in the SVZ during
post-stroke recovery, which could be linked to neurogenesis.

Keywords: stroke, angiogenin, neural stem/progenitor cells, neurogenesis, neurorepair, exercise

INTRODUCTION

Stroke affects 15 million people worldwide annually, and it is a leading cause of long-term disability
in industrialized countries (1, 2). Thrombolytic and endovascular thrombectomy are the only
available treatments during the acute phase of ischemic stroke to reduce mortality and minimize
functional and motor disabilities (3-5). However, the narrow time window limits these strategies,
and only a small number of patients benefit from them. Although these vessel-recanalization
strategies are effective, a large percentage of stroke survivors still suffer from motor disabilities and
neurological deficits. With this scenario, the only proven effective treatment for disabled stroke
patients is rehabilitation, which aims to compensate for the affected sensory-motor function and
improve life quality and independence for daily activities (6, 7). In spite of the proven benefits
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of multidisciplinary rehabilitation programs, these do not
guarantee complete recovery for all patients, and individuals
exhibit variable responses to similar treatments (8). In this
regard, the biological responses responsible for the individual
functional improvements have been investigated to identify
brain plasticity mechanisms and targets to modulate the
natural evolution of brain repair by rehabilitation (9-11), but
are not fully elucidated. In this regard, a few pre-clinical
studies have associated rehabilitation with restorative brain
plasticity, including mechanisms of neuroangiogenesis (12-16);
however, current knowledge on the molecules modulated by
rehabilitation and potentially associated with brain plasticity
is incomplete.

To further explore the molecular implications of tissue
repair, we have focused on angiogenin (ANG), a ribonuclease
protein that promotes cell proliferation and migration (17, 18)
and related to excitotoxic motoneuron death in angiogenin
loss-of-function mutations associated with ALS (19). We have
previously shown ANG role in secretome-based therapies on
brain endothelial cells (20), demonstrated the ANG upregulation
in the blood of stroke patients under rehabilitation related
to better outcomes at long term, and the angiogenin mRNA
overexpression in the infarct tissue of ischemic mice also after
rehabilitation (21). However, previous studies reported that
neamine treatment (a blocking agent of the ANG activity) was
neuroprotective after stroke in a rat model of type I diabetic rats
and that the failure of bone-marrow-derived cell therapy after
stroke in the same model of diabetic rats was potentially linked
to an increase in periinfarct and vascular ANG in infiltrating
macrophages (22, 23). Non-diabetic animals did not show ANG
expression linked to vascular dysfunction (23). Its implications in
neurogenesis are still unknown. In the present study, we aimed
at investigating ANG in the subventricular zone (SVZ) niche
after stroke by studying its tissue expression, effects on SVZ-
derived neural stem cells (NSC), and its modulation after cerebral
ischemia and rehabilitation.

MATERIALS AND METHODS

Brain Tissue Samples

All animals used in the present investigation are C57BL/6 male
mice (6-12 weeks old). To investigate SVZ neurogenesis and
ANG cellular expression, we used brain tissue slices from a
previous protocol in which cerebral ischemia was induced also
by the permanent electrocauterization of the distal branch of
the middle cerebral artery and mice were submitted to physical
exercise rehabilitation (n = 6) or non-rehabilitation (n = 6)
(21). New mice were also used to obtain SVZ tissues in naive
animals (n = 4) or after ischemia/rehabilitation (treadmill, n =
6) or ischemia/non-rehabilitation (n = 6). Finally, frozen NSC
obtained from mouse SVZ cultures following published protocols
(24) were also used. The experimental protocols were approved
(Protocol Number 21.16) and supervised by the Animal Ethics
Committee of Vall d'Hebron Institut de Recerca according with
the Spanish legislation and the Directives of the European Union.
ARRIVE guidelines were followed.

Mouse Habituation and Permanent Focal

Cerebral Ischemia Model

Briefly, C57BL/6 mice were purchased from Janvier Laboratories
(Saint Berthevin, France). Mice were housed in a temperature-
/humidity-controlled room and maintained on a 12-h light-dark
cycle and given water and food ad libitum. The habituation
protocol for the treadmill was conducted to all mice before
ischemia to avoid neophobic behaviors during exercise therapy.
Briefly, the week before ischemia and for 3 consecutive days, all
mice were placed in a stationary treadmill apparatus 10 min/day
(from 3:00 to 6:00 p.m.).

The distal occlusion of the middle cerebral artery (MCAo)
was conducted under body temperature and cortical cerebral
flood flow (CBF) monitoring as described (25). Animals were
anesthetized with isoflurane (Abbot Laboratories, Spain) for a
maximum of 30 min via face mask (4% for induction and 1-
2% for maintenance in Medicinal Air, 79% N»/21% O;), and
eyes were protected using an ophthalmic ointment (Lipolac™,
Angelini Farmaceutica, Barcelona, Spain). A small craniotomy
was performed between the eye and ear area to expose the distal
part of the MCA after temporal muscle retraction. The MCA was
compressed using a 30-G needle and indirectly electrocauterized
by heating the compressing needle. CBF was monitored using
a laser-doppler flowmetry (Moor Instruments, Devon, UK), and
only animals with a reduction in CBF below 80% were included.
Buprenorphine (0.05 mg/kg) was administered subcutaneously
during surgery, the skin was sutured, and mice were allowed to
recovery from anesthesia under body temperature control.

Pre-clinical Treadmill Rehabilitation

For the study of SVZ neurogenesis, rehabilitation began 48h
after MCAo and consisted of 12 days of treadmill exercise or
non-exercise (No-RHB). For treadmill, mice received 30 min of
exercise by increasing the speed every 10 min (10, 15, and 20
cm/s) without any aversive stimulus (such as the electric shock),
and a plastic barrier was placed between the shock grid and the
treadmill line to prevent animals from resting on the top of the
grid during the rehabilitation protocol. The No-RHB group was
placed at the treadmill apparatus (0 cm/s) for 30 min the same
days of treatment, but only free movements were allowed.

For the ANG molecular analysis of the SVZ, a new group
of mice were habituated to the treadmill as described above,
and 48 h after pMCAO, mice received treadmill rehabilitation or
no rehabilitation for 3 consecutive days. The day after the last
session, mice were euthanized for brain processing.

Infarct Volume Assessment

During the euthanasia procedure, brains were removed by
intracardiac perfusion with cold saline and under deep anesthesia
as described. Brains were cut into 1-mm-thick coronal sections
and stained with 2.5% of 2,3,4-triphenyl-2H-tetrazolium chloride
(TTC; Sigma, St. Louis, MO, USA) for 10-15min at room
temperature when TTC solution was replaced by cold saline, and
images were acquired for infarct quantification by the Image] free
software as described previously correcting for brain edema (21).
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Angiogenin ELISA

To determine the angiogenin levels in the SVZ, we dissected
two middle sections of TTC-stained brains corresponding to the
SVZ area along the wall of the lateral ventricles of the ipsilateral
and contralateral hemispheres. Tissues were snap frozen in dry
ice and stored at —80°C. Brain homogenates were prepared
with 150 pl ice-cold lysis buffer (50 mM Tris-HCI, 150 mM
NaCl, 5mM CaCl,, 0.05% BRIJ-35, 0.02% NaN3, 1% Triton X-
100, 1% phenylmethanesulfonyl fluoride, and 0.5% aprotinin),
and protein content was collected from the supernatant after
centrifugation at 15,000 g for 12 min at 4°C. Total protein was
determined by duplicate in each sample by the bicinchoninic
acid (BCA) assay (Thermo Fisher Scientific Inc., Waltham,
MA, USA). Finally, Mouse Angiogenin SimpleStep ELISA®
Kit (ab208349, Abcam, Cambridge, UK) was used following
manufacturer’s instructions (sample dilution 1/5, and coefficient
of variation of replicates <25%). Data are expressed as picograms
of angiogenin per microgram of total protein per sample.

Immunohistochemistry
Mice of the SVZ neurogenesis study received daily
intraperitoneal injections of 5—br0mo—2/—deoxyuridine (BrdU,
50 mg/kg in saline, B9285, Sigma-Aldrich, St. Louis, MO,
USA) beginning 48h after MCAo until euthanasia to label
proliferating cells. For euthanasia, transcardial perfusion with
cold paraformaldehyde (4% PFA) was performed under deep
anesthesia (isoflurane). Brains were removed and fixed with
4% PFA for 2h, followed by 30% sucrose for cryoprotection,
embedded in optimal cutting temperature (OCT) (Tissue-Tek,
Fisher Scientific, Waltham, MA, USA), and frozen at —80°C until
use. Slices (12-pm thick) were cut in a cryostat, placed at room
temperature for 30 min, washed three times [0.1% phosphate-
buffered saline (PBS)-Tween, 0.3% PBS-Triton X-100, and 0.1%
PBS-Tween]| and further incubated for 1 h with 2M HCI-PBS
followed by 10 min in 0.1 M borate buffer and 5min in 0.1%
PBS-Tween for the detection of nuclear BrdU of dividing cells.
Sections were blocked using 0.1% PBS-Tween containing 1%
BSA (Sigma-Aldrich, St. Louis, MO, USA) and 5% goat serum
(Merck Millipore, Billerica, MA, USA) for 1h. Then, slices were
incubated with the following antibodies, namely, 1:400 rabbit
anti-DCX (ab18723, Abcam, Cambridge, UK), 1:100 mouse
anti-DCX (sc-271390, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), 1:100 rat anti-BrdU (ab6326, Abcam, Cambridge,
UK) or 1:100 rabbit anti-angiogenin (NBP2-41185, Novus,
Centennial, CO, USA), or 1:100 mouse anti-nestin (556309; BD
Biosciences, San Jose, CA, USA), and washed three times with
0.1% PBS-Tween prior to secondary antibody incubation. Alexa
fluor 488 goat anti-rabbit IgG, Alexa fluor 488 goat anti-rat IgG,
Alexa fluor 647 goat anti-rabbit IgG, or Alexa fluor 633 goat
anti-mouse IgG (Invitrogen, Carlsbad, CA, USA) were used as
secondary antibodies at 1:500 for 1h at room temperature and
washed with 0.1% PBS-Tween. Finally, sections were mounted
in Vectashield™ with 4/,6—diamidino—Z—phenylindole (DAPI)
(Vector Laboratories, Burlingame, CA, USA) and visualized
using an Olympus BX61 (Olympus, Tokyo, Japan) or confocal
laser scanning (FV1000, Olympus, Japan) microscopes.

Two brain slices per animal were imaged for the entire
dorsolateral SVZ for the analyses. The total area of DCX+

fluorescence and double-positive cells (DCX+/BrdU+) was
calculated using Image] software by an investigator who was
blinded to the treatment group.

Neural Stem Cells

NSCs were obtained from the SVZ as previously described (24),
Figure 1A. Frozen NSCs were thaw at 37°C and cultured in a
mixture of 1:1 Dulbecco’s modified Eagle’s medium (DMEM) and
F12 (Gibco, Thermo Fisher, Waltham, MA, USA) supplemented
with 0.25% of P/S, 8 wg/ml of heparin (H-3149; Sigma-Aldrich,
St. Louis, MO, USA), 0.02 pg/ml of hFGF-B (PHG0024; Thermo
Fisher, Waltham, MA, USA), 0.02 pg/ml of hEGF (PHG0314;
Thermo Fisher, Waltham, MA, USA), 2% of B27 (12587010;
Thermo Fisher, San Jose, CA, USA), and 1% of L-glutamine
(25030149; Thermo Fisher, San Jose, CA, USA). After 2 days
in culture, 3D-proliferating structures known as neurospheres
were observed (Figure 1C).

For phenotyping purposes, growing neurospheres were
stained for nestin and doublecortin (DCX) at day 2. Briefly,
neurospheres were fixed with 4% PFA for 10min followed
by three washes with 1x Dulbecco’s phosphate-buffered saline
(DPBS) and blocking with DPBS-Tween with 1% BSA (Sigma-
Aldrich, St. Louis, MO, USA) for 1h. The primary antibodies
mouse anti-nestin (1:200, BD-556309, BD Biosciences, San
Jose, CA, USA) and rabbit anti-DCX (1:200, ab18723, Abcam,
Cambridge, UK) were incubated overnight. Cells were washed
three times, and the secondary antibodies Alexa Fluor 568
goat anti-mouse IgG and Alexa Fluor 488 goat anti-rabbit IgG,
respectively, were added for 1h. Finally, cells were mounted in
Fluoroshield™ with DAPI, and pictures were acquired using the
Leica DM IRBE (Leica Microsystems, Wetzlar, Germany).

NSC Counts and Neurosphere Growth

Cell cultures of NSCs forming neurospheres were assessed using
the trypan blue exclusion method and a hemocytometer to
quantify NSCs numbers after angiogenin treatment (Figure 2A).
Single NSCs were seeded at a density of 30,000 cells/ml
and cultured in uncoated 12-well plates to allow neurosphere
formation. Cells were treated on day 0, day 3, or both with 100
or 200 ng/ml of angiogenin. We also treated cells with 100 uM
neomycin (a selective inhibitor of angiogenin, which blocks its
nuclear translocation) on day 3. Three images per well were
captured at x100 magnification on day 5 of treatment using
the Olympus IX71 microscope. Image] software was used to
measure the neurosphere diameter. Afterwards, the neurospheres
were collected and centrifuged at 1,500 rpm for 5 min; the pellet
was resuspended in 300 pl of NSCs media and pipetted to
obtain single NSCs, which were quantified by the trypan blue
method with a hemocytometer. To evaluate the effect of each
independent experiment, data are expressed as a percentage of
the experimental control condition.

SH-SY5Y Culture and Neurite Outgrowth

The human neuroblastoma cell line SH-SY5Y was purchased
from ATCC (ATCC® CRL-2266) since they exhibit a neuron-
like phenotype with outgrowth neurites in the presence of
Retinoic Acid (RA). Cells were maintained in complete medium
containing DMEM/F-12 (Gibco, Thermo Fisher, San Jose,
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FIGURE 1 | Angiogenin expression in the SVZ niche: (A) schematic figure of the SVZ dissection for NSCs isolation. (B) Representative image of Western blot proving
the presence of angiogenin in SVZ niche of different naive mice and in primary NSCs in culture derived from the adult SVZ (see online Supplementary Material for
the full-length Western blot film); (C) Neurosphere immunocytochemistry phenotyping showing expected nestin and DCX markers. ANG, angiogenin; C—, negative
control (NSC culture media); DCX, doublecortin; NSCs, neural stem cells; SVZ, subventricular zone.

CA, USA), 10% fetal bovine serum (FBS), 1% non-essential
amino acids (NEA), and 1% penicillin-streptomycin (P/S). We
seeded 12,500 SH-SY5Y cells onto collagen type-I-coated 24-
well plates with complete media for differentiation. The medium
was replaced with differentiation media after 24h for neurite
outgrowth: DMEM/F-12 (Gibco, Thermo Fisher, San Jose, CA,
USA), 1% FBS, 1% NEA, and 1% P/S supplemented with ANG
(100/200 ng/ml) or 10 um RA to induce neurite differentiation.
The media and treatments were changed after 2 days, and cells
were imaged (three fields/well) on day 6 using an Olympus
IX71 (x100 magnification), Figure3A. Finally, WimNeuron
automated analysis software (Wimasis Image Analysis®) was
used for quantification by measuring the circuitry length and the
total thin neurite length. Data are expressed as a percentage of the
control condition of each independent experiment.

Western Blot

Brain dissections from the SVZ of naive C57Bl/6 mice and cell
pellets from cultured NSCs were homogenized and lysed with
freshly prepared ice-cold lysis buffer containing 50 mM Tris—
HCI, 150 mM NaCl, 5mM CaCl,, 0.05% BRIJ-35, 0.02% NaNs,
1% Triton X-100, 1% phenylmethanesulfonyl fluoride (PMSF;
Sigma-Aldrich, St. Louis, MO, USA), and 0.5% aprotinin (Sigma-
Aldrich, St. Louis, MO, USA). Homogenates were centrifuged at
12,000 rpm for 10 min at 4°C and the protein fraction in the
supernatants assessed by the bicinchoninic acid assay (Thermo
Scientific™, Rockford, IL, USA). A total amount of 10 g protein
was mixed with Laemmli buffer and 5% of 2-mercaptoethanol,
heated for 5min at 95°C, run into 12% polyacrylamide
electrophoresis gels, and transferred into polyvinylidene fluoride
(PVDF) membranes (Thermo Scientific™, Rockford, IL, USA).
Then, membranes were blocked for 1h with 10% non-fat
milk (in PBS, 0.1% Tween 20, Sigma-Aldrich, St. Louis, MO,
USA) and incubated overnight at 4°C on a shaker with
the following antibodies: anti-angiogenin (1:500, NBP2-41185,
Novus, Centennial, CO, USA) or P-actin (1:5,000, A5316,
Sigma-Aldrich, St. Louis, MO, USA). The membrane was then
washed three times (PBS—0.1% Tween 20) and incubated with
corresponding secondary antibodies at 1:2,000 for 1 h at RT with
gentle agitation. Finally, membranes were washed three times
(PBS—0.1%Tween 20) and briefly incubated with Pierce® ECL
Western Blotting Substrate (Thermo Scientific™, Rockford, IL,

USA) to visualize the chemiluminescence signal with Fujifilm
FPM-100A films. Molecular weight markers were also run for
reference values.

Statistical Analysis

The SPSS 20.0 package was used for all statistical analyses,
and GraphPad Software was used for graph representations.
The normality of continuous variables was assessed using the
Shapiro-Wilk-test (N < 30). Normally distributed variables
were analyzed using ANOVA (followed by Tukey post-hoc),
and the Mann-Whitney U-test or Kruskal-Wallis-tests were
used for non-normally distributed variables. For the analysis of
repeated measures, the Wilcoxon test was used in non-normal
distributions. Graphs represent means = SEM or medians
(interquartile range, IQR) according to the normal or non-
normal distribution of the represented variable, respectively.
Extreme values were excluded prior to data analyses of cell
cultures using the mean & 2SD criteria. The results with a p <
0.05 were considered statistically significant.

RESULTS

Angiogenin Is Expressed in the SVZ
Neurogenic Niche and Increases NSCs

Yields in Free-Floating Neurosphere

First, we examined for the first time the presence of ANG in
this SVZ neurogenic site with the hypothesis that angiogenin
could be involved in the regulation of neural precursors, which
are known to respond to brain injury or physical exercise. As
shown in Figure 1B, SVZ-naive tissues were rich in angiogenin
as well as SVZ-derived NSC pools used in the present study for
neutrospheres formation, which, in culture, showed typical nestin
and DCX markers (Figure 1C).

In vitro experiments with primary cell cultures of SVZ-derived
mouse NSCs exposed to exogenous ANG were conducted as
indicated in Figure2A. Only the treatment with the highest
dose of angiogenin (200 ng/ml) after the neurospheres were
formed at day 3 significantly increased NSCs yields (p < 0.001),
whereas cotreatment with neomycin (a well-known angiogenin
activity inhibitor) completely abolished this proliferation (p <
0.001); Figure 2B. Indeed, no toxic evidence of neomycin was
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FIGURE 2 | SVZ-derived NSCs responses to angiogenin: (A) timeline of the experimental procedure of neurosphere cultures and representative images; (B,C) box
plots showing quantification of the NSC-forming neurospheres after angiogenin stimulation (100 or 200 ng/ml) at different time points, the inhibition with neomycin,
and the largest neurosphere diameters obtained with angiogenin treatment; n = 4-9; **p < 0.001 and ***p < 0.001 vs. control. Box plots represent median (IQR) of

the percentage vs. control values of each independent experiment. ANG/A, angiogenin; NSCs, neural stem cells; NMC, neomycin; NF, neurospheres.

observed on NSCs cultures (p > 0.05; Supplementary Figure 1,
Figure 1). We also treated NSCs with the highest angiogenin dose
(200 ng/ml) at the beginning of the culture prior to neurosphere
formation (day 0), during neurosphere growing (day 3 after
seeding), or both, and again, all treatment conditions showed a
significant increase in NSCs yields vs. the control (day 0, p =
0.002; day 3, p = 0.003; and day 0-3, p = 0.004) with a visible
increase in the neurosphere diameter; Figure 2C. In this regard,
the maximum diameter achieved occurred when angiogenin was
added to formed neurospheres on day 3 (p < 0.01 vs. control)
(Figure 2C).

Finally, we investigated whether ANG could also trigger
differentiation of a neuron-like cell line (SH-SY5Y cells) by
its neurite outgrowth (Figure 3A). However, the capacity of
axonal/neurite sprouting was only confirmed in the presence of
retinoic acid, as expected (p < 0.001), but ANG did not show this
mature neuron-like phenotype at any of the tested concentrations
(Figure 3B).

Physical Exercise Increases SVZ
Angiogenin After Ischemia in Areas of
Active Neurogenesis

Three days after ischemia (Figures 4A,B), brain NAD in the SVZ
was altered among the studied areas (p = 0.0014), showing the
largest amount in the ipsilateral SVZ of the treadmill exercise
group (p = 0.0032 vs. treadmill contralateral and p = 0.0034 vs.

No-RHB contralateral SVZs), as seen in Figures 4A,B. This result
was not influenced by potential differences in the ischemic lesion,
since infarct volumes were similar between groups (treadmill
18.03 & 3.2 mm? vs. No-RHB 16.23 + 3.6 mm?>; p = 0.72, see
Supplementary Figures 2A,B.

We also evaluated the presence of DCX+ cells in the SVZ,
since neurogenesis was expected at later time points (12 days of
treadmill exercise, Figures 4A,C). Our results show significant
differences among the studied areas (p = 0.015) with larger
DCX+- signal in the ipsilateral SVZ of treadmill-exercised mice
(p = 0.08 vs. No-RHB ipsilateral and p = 0.013 vs. No-RHB
contralateral, as shown in Figure 4C) but not in BrdU+ nuclei
(p = 0.06, not shown).

The  immunohistochemistry  study  showed  that
the ANG increase detected by ELISA in the SVZ of
treadmill-exercised  ischemic mice was localized in
DCX+ neuroblasts emerging from the SVZ (Figure 4D),

in the vicinity of nestin+ cells, which did not
present ANG colocalizations (see magnifications in
Figure 4D).

DISCUSSION

The present investigation focuses on describing angiogenin
expression in the adult SVZ and its putative effects on neurogenic
responses after stroke. Specifically, we describe that (i) for
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FIGURE 3 | SH-SY5Y neurite differentiation: (A) timeline of the experimental procedure. (B) Box plots and representative images showing axonal/neurite outgrowth in
the presence of Retinoic Acid (RA) as expected, but not with angiogenin stimulation; n = 5-6. The insert in RA shows a micrograph representative of the WimNeuron
analysis. Box plots represent median (IQR) of the percentage vs. control values of each independent experiment, **p < 0.001 vs. control.

the first time, angiogenin is expressed in the adult SVZ, (ii)
angiogenin increases the NSC yields in SVZ-derived neurosphere
cultures, (iii) angiogenin is overexpressed after physical exercise
in the SVZ of the ischemic hemisphere during neurogenesis,
and (iv) SVZ angiogenin is mainly expressed in DCX+
neuroblasts. Our results position angiogenin in the neurogenic
SVZ during stroke recovery, suggesting potential therapeutic
interventions in neurorepair beyond the known actions on
angiogenesis.

Many people survive stroke but exhibit physical and motor
deficits that limit functional independence and quality of life.
Current rehabilitation programs are implemented in developed
countries to reduce stroke-related disabilities to ultimately
compensate for the impaired functions (6-8). Several studies
demonstrated that exercise improved functional recovery and
activated cerebral-repair-associated processes within a plastic
brain (11, 26). These data are supported by pre-clinical
rehabilitation models as emerging strategies to investigate
underlying mechanisms during the recovery phase of stroke
and elucidate the molecular and cellular pathways activated
during the rehabilitation therapies received in the clinical setting
(27-30). Previous investigations in experimental models have
described neurogenesis as a key mechanism regulated after
stroke by showing increased neurogenesis in the SVZ and
the subgranular zone (SGZ) of the hippocampus or reporting
that neuroblasts from the SVZ migrated to infarct boundaries
in response to the ischemic injury (31, 32). Additionally,

studies in rodents under exercise conditions showed enhanced
neurogenesis in the hippocampus (13, 33, 34) related to memory
recovery and in the SVZ of ischemic brains (35, 36). According
to these data, our post-stroke recovery treadmill moderate
exercise also enhanced the DCX pools in the SVZ of the
ipsilateral hemispheres. In this pos-stroke SVZ niche, we report
for the first time the presence of a unique ribonuclease and
potent trophic factor, angiogenin, in migrating neuroblasts in
the active SVZ closely associated with other neural stem cell
pools. Angiogenin is a ribonuclease protein that promotes cell
proliferation and migration, and it is known to be secreted
by endothelial cells (17, 20, 37). The actions of angiogenin
were first described in tumor angiogenesis (38), but it also
acts as a neuroprotectant in neurodegenerative diseases in vitro
and in vivo (39). Furthermore, angiogenin is present during
mouse embryogenesis and neuroectodermal differentiation (40),
and it is also localized in axonal growth cones and neurites,
where its inhibition impacts neural pathfinding (but not in
embryonic cell differentiation). Among the multiple implications
of angiogenin, the most important function described so
far is its regulation of angiogenic-related routes in multiple
experimental cell lines (17). Its role in neurogenic mechanisms
is still unknown, although a close RNase (RNase A) has been
recently described to induce NPC proliferation in embryonic-
derived neurogenic cultures (41). In this argument line, other
authors recently suggested that angiogenin, together with other
proteins, participated in the prevention of neural differentiation
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of neuroepithelial stem cells (42) or demonstrated increased
neurosphere formation in an embryonic carcinoma cell line
after the addition of angiogenin in culture (43). Our study
confirms the neurogenic actions of angiogenin protein in NSC
primary cell cultures from adult SVZ niches for the first time
by increasing the number of cell yields in growing neurosphere
structures, which was further confirmed by adding neomycin
(inhibitor of angiogenin) and suppressing the NSC responses.
Importantly, we observe a dose-response effect that should
be considered in any future therapeutic study design as well
as the fact that the increased number of NSC yields forming
neurospheres could respond to both proliferation and cell

survival actions of angiogenin treatment. Angiogenin has been
recently found to be present in the secretome of EPCs (20),
and several authors reported that culturing NSCs from the SVZ
with endothelial cells or its secretome maintained the stem-like
characteristics and enhanced the proliferation of these cells
(44, 45). However, the same studies demonstrated that NSCs in
culture with endothelial cells under ischemic conditions migrated
and differentiated to a neuroblast-like phenotype, which suggest
that this mechanism serves as a repair response for neuronal
replacement after injury.

SH-SY5Y cells are a subclone of a human neuroblastoma
cell line and exhibit a neuroblast-like phenotype. These cells
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express a marker of stem cell characteristics (46), namely,
nestin, under undifferentiated conditions and differentiate into
neurons in the presence of retinoic acid (47), which allows
investigations on neuronal differentiation via the addition of
drugs or molecules. In our study, we could not prove the
differentiation of SH-SY5Y cells to a mature neuronal phenotype
with neurite outgrowth when treated with angiogenin at the
tested doses since neither circuit or neurite length were enhanced
in the presence of angiogenin. These results are consistent
with a previous report (41) showing that angiogenin was
involved in the prevention of neural precursor maturation.
Here, we should also acknowledge the existence of biphasic
actions of this particular ribonuclease molecule. Initially, stress-
induced responses have been extensively described in response
to angiogenin actions leading to the cleavage of non-coding
transfer RNA (tRNA) anticodons and producing tRNA halves
(tiRNA) with cytoprotective actions involving cell survival
and antiapoptotic mechanisms (48, 49); however, some recent
studies point at existing cytotoxic actions of ANG (50)
linked to the absence of the ribonuclease inhibitor protein,
RNH1 (51).

In conclusion, the present study identifies angiogenin in
the neurogenic SVZ and shows its potential actions on
NSCs during neurogenesis. Additionally, in the context of
stroke, ANG is overexpressed in the ipsilateral SVZ after
pos-stroke exercise coexisting with the migration of SVZ-
derived neuroblasts. Overall, our results support further
investigations on the molecular mechanisms activated by
post-stroke neurorehabilitation and the role of ANG as
a therapeutic target, which should be explored in vivo
in pre-clinical study designs of overexpression/exogenous
therapeutic administration of ANG considering the potential
interaction with comorbid conditions such as diabetes, age,
or hyperglycemia.
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