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Background: Neurite orientation dispersion and density imaging (NODDI) and the

spherical mean technique (SMT) are diffusion MRI methods providing metrics with

sensitivity to similar characteristics of white matter microstructure. There has been limited

comparison of changes in NODDI and SMT parameters due to multiple sclerosis (MS)

pathology in clinical settings.

Purpose: To compare group-wise differences between healthy controls andMS patients

in NODDI and SMTmetrics, investigating associations with disability and correlations with

diffusion tensor imaging (DTI) metrics.

Methods: Sixty three relapsing-remitting MS patients were compared to 28 healthy

controls. NODDI and SMT metrics corresponding to intracellular volume fraction (vin),

orientation dispersion (ODI and ODE), diffusivity (D) (SMT only) and isotropic volume

fraction (viso) (NODDI only) were calculated from diffusion MRI data, alongside DTI metrics

(fractional anisotropy, FA; axial/mean/radial diffusivity, AD/MD/RD). Correlations between

all pairs of MRI metrics were calculated in normal-appearing white matter (NAWM).

Associations with expanded disability status scale (EDSS), controlling for age and gender,

were evaluated. Patient-control differences were assessed voxel-by-voxel in MNI space

controlling for age and gender at the 5% significance level, correcting for multiple

comparisons. Spatial overlap of areas showing significant differences were compared

using Dice coefficients.
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Results: NODDI and SMT show significant associations with EDSS (standardised beta

coefficient −0.34 in NAWM and −0.37 in lesions for NODDI vin; 0.38 and −0.31 for

SMT ODE and vin in lesions; p < 0.05). Significant correlations in NAWM are observed

between DTI and NODDI/SMT metrics. NODDI vin and SMT vin strongly correlated

(r = 0.72, p < 0.05), likewise NODDI ODI and SMT ODE (r = −0.80, p < 0.05). All

DTI, NODDI and SMT metrics detect widespread differences between patients and

controls in NAWM (12.57% and 11.90% of MNI brain mask for SMT and NODDI vin, Dice

overlap of 0.42).

Data Conclusion: SMT and NODDI detect significant differences in white matter

microstructure between MS patients and controls, concurring on the direction of these

changes, providing consistent descriptors of tissue microstructure that correlate with

disability and show alterations beyond focal damage. Our study suggests that NODDI

and SMT may play a role in monitoring MS in clinical trials and practice.

Keywords: multiple sclerosis, spherical mean technique, neurite orientation dispersion and density imaging, MNI

space, diffusion MRI, microstructure

INTRODUCTION

Over the last 20 years, diffusion tensor imaging (DTI) (1) has

established itself as a modality of choice for imaging the cerebral
white matter (WM) with a view to gaining an understanding

of its microstructure in health and disease. DTI relies on the
hypothesis of Gaussian diffusion to evaluate an effective diffusion
tensor for each voxel in an image, from which a number of
rotationally-invariant scalar descriptors are obtained, such as

fractional anisotropy (FA), a measure of diffusion direction
dependence, as well as the mean diffusivity (MD) (2), quantifying
the overall amount of diffusion in a voxel.

DTI is a rapid and robust technique that has proven
useful to assess microstructural damage in a number of
conditions (3). Nonetheless, it is limited by the assumptions
that underlie its model (4). Firstly, DTI does not account for
partial volume effects, an issue at boundaries between different
tissue types where voxels contain a mixture of grey matter,
white matter, and cerebrospinal fluid. Secondly, DTI metrics
lack specificity to different neuropathological substrates. For
example, in white matter, diffusivity is generally significantly
larger parallel to axons rather than perpendicular to them
producing a large FA. However, this anisotropy can be
reduced either by a reduction in the density of axons, an
increase in their orientation dispersion, or a combination of
both. Lastly, the core assumption of DTI, that of Gaussian
diffusion, does not necessarily hold in many areas of white
matter at high b-values, due to the restriction to water
movement created by cell membranes and in regions of
crossing fibres.

Several multi-compartment diffusion MRI approaches

have been developed in the past 15 years to increase the

specificity of techniques such as DTI to key pathophysiological

processes (5–11). These methods make explicit assumptions
on water compartmentalisation in neural tissue to capture
salient characteristics of high-order b-value dependence in

diffusion-weighted signals, thus accounting for departures from
Gaussian diffusion.

Two recent and widely popular such techniques include
neurite orientation dispersion and density imaging (NODDI)
(12) and the spherical mean technique (SMT) (13). Both can
be fitted to the same, clinically feasible, multi-shell scanning
protocols using clinical scanners.

NODDI fits diffusion data to a three-compartment tissue
model: an intra-neurite compartment, in which diffusion is
constrained except along the direction of neurites; an extra-
neurite compartment, in which diffusion is Gaussian with
hindered diffusion perpendicular to the direction of neurites and
a CSF compartment, in which diffusion is Gaussian and isotropic.
Within each voxel, the variability of neurite orientations is
modelled by a Watson distribution.

SMT is another recent technique for microscopic diffusion
anisotropy imaging (13) that maps microstructural tissue
features not confounded by fibre crossing or orientation
dispersion. In this study, we used an SMT method comprising
two tissue compartments (14), i.e., an intra- and an extra-
neurite compartment. This approach provides estimates of the
neural diffusivity and the intra-neurite volume fraction in the
presence of orientation heterogeneity. Subsequently, spherical
deconvolution can be used to recover the fibre orientation
distribution, from which the orientation dispersion entropy is
calculated voxel-by-voxel.

Both techniques were applied to people with Multiple
Sclerosis (MS). MS is a disease of the central nervous system
with a complex and incompletely understood pathophysiology.
It features both an inflammatory demyelinating component,
which leads to discrete focal white matter lesions and a
neurodegenerative component, resulting in generalised diffuse
white and grey matter atrophy (15). Abnormal DTI measures are
seen in both lesions and so-called normal appearing white matter
(NAWM) (featuring no obvious pathology on conventional MRI
scanning) (16–18). There is evidence that validates the use of
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NODDI inMS (19–21), which suggest that while FAmight be the
most sensitivemetric to detect abnormalities, NODDImetrics are
able to detect areas of abnormality where FA is normal (22, 23).
Investigations into NODDI in MS have generally concluded
that intra-neurite volume fraction decreases in both lesions and
NAWM (20, 21, 24) whilst findings on orientation dispersion
vary (23, 24). Considering SMT, differences between lesions and
NAWM in MS patients but not between NAWM and healthy
WM in controls in similar anatomical locations were reported
in the brain (25), and abnormalities were also detected in the
NAWM of the MS cervical spinal cord (26).

Notably, SMT and NODDI provide metrics with similar
biological interpretations that can be obtained from similar
diffusion-weighted MRI data. They are promising biomarkers
in MS and have the potential of increasing the capacity of
MRI to detect MS pathology. Here, for the first time to the
authors’ knowledge, we directly compare NODDI and SMT
metrics in a real clinical setting by analysing the same data,
acquired with a multi-shell diffusion weighted MRI protocol,
and investigating the ability of NODDI and SMT to detect
abnormalities in patients with relapsing-remitting (RR) MS
compared with healthy controls, as well as their association to
physical disability. Our results are informative for the community
and elucidate whether (i) NODDI and SMT detect changes
in similar locations and that these approaches point toward
the same biological alterations; (ii) are the results derived by
the two techniques sufficiently similar as to allow direct cross-
comparison; or (iii) are there differences precluding this or
potentially highlighting an advantage to one or other method in
detecting group differences between MS patients and controls.

METHODS

Participants
This is a retrospective analysis using data previously acquired,
and reported in full elsewhere (27). Sixty-three patients with
RRMS (48 female, 76%) and 28 heathy controls (19 female, 68%)
were recruited. Mean ages were 47 (SD ± 7.6) years for patients
and 35.1 (±10.2) for healthy controls. For RRMS patients, mean
disease duration at the time of assessment was 14.6 years (SD ±

2.4) and Expanded Disability Status Scores ranged from 0 to 6.5,
with a median score of 2. All subjects provided written informed
consent and the study was approved by the institutional Research
Ethics Committee.

MR Image Acquisition
All subjects were scanned with a 3T Philips Achieva MRI system.
The scanning protocol included multi-shell diffusion-weighted
echo-planar imaging scans (resolution: 2.5 × 2.5 × 2.5mm3; TE
= 82ms; TR = 14 s; b = 0 and {8,15,30} directions at b = {300,
711, 2,000} s/mm2, scan time 16’34”), anatomical PD-T2 images
for MS lesion outlining (multi-slice turbo spin echo; resolution:
1 × 1 × 3 mm3, TE = 19/85ms, TR = 3,500ms, scan time
4’01”), and volumetric T1-weighted imaging (3D turbo field echo,
resolution 1 × 1 × 1 mm3, flip angle 8◦, TE = 3.1ms, TR =

6.9ms, TI= 824ms, scan time 6’30”).

Diffusion Metrics Evaluation
The multi-shell diffusion data were corrected for motion and
eddy current distortion using the FSL eddy (28). Non-brain
tissue was eliminated using co-registered T1 images using the
FSL Brain Extraction Tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
BET). The DTI model was fitted to the diffusion data with the
exclusion of the highest b-value shell to limit the contribution
of non-Gaussian diffusion, using FSL dtifit. This provided
the following voxel-wise metrics: Fractional Anisotropy (FA);
axial/radial/mean diffusivities (AD/RD/MD).

Images were analysed using NODDI (12) to obtain maps of
orientation dispersion index (ODI), isotropic volume fraction
(viso) and intra-neurite volume fraction (vin-NODDI). ODI is
defined as (2/π) arctan(1/κ) where κ is the width parameter
of the Watson distribution describing the neurite orientation
distribution. ODI therefore increases with increasing orientation
dispersion. The NODDI model was fitted with the freely
available Matlab Toolbox (29) (http://mig.cs.ucl.ac.uk/index.
php?n=Tutorial.NODDImatlab).

Two-compartment SMT (14) analysis was performed on
the same data used for NODDI with the freely available
SMT fitting routines (30) (https://github.com/ekaden/smt) and
provided voxel-wise intra-neurite volume fraction (vin-SMT)
and neural diffusivity (D). Additionally, orientation dispersion
entropy (ODE) was obtained using in-house Matlab code.
ODE is defined as the Kullback-Leibler divergence of the
axon orientation distribution with respect to the uniform
distribution (14), implying that ODE is reduced as neurite
dispersion increases. As a consequence, ODI and ODE show
reversed contrast: increasing local neurite orientation variability
is mapped to increasing NODDI ODI and decreasing SMT
ODE values. The SMT and NODDI parameters and the main
model constraints are described and summarised in Table 1.
The fitting of both NODDI and SMT was performed using the
same procedure (i.e., same fitting code with same constraints)
across the whole brain, including lesional voxels. AmongNODDI
and SMT parameters, the obvious comparisons are between
ODE and ODI and the SMT and NODDI intra-neurite volume
fraction metrics, as such metrics are designed to capture similar
characteristics of tissue microstructure. In the case of ODI and
ODE the comparison is less direct with the metrics expected to
be approximately inversely proportional to each other. However,
as both are measures of the degree of alignment of axons within
a voxel, from the perspective of identifying voxels showing a
significant difference between MS patients and controls, they are
adequately comparable. Finally, we point out that NODDI and
SMT metrics of compartment-wise fraction (i.e., viso and vin for
NODDI; vin for SMT) are inherently T2-weighted. Therefore,
they technically represent signal fractions, rather than volume
fractions. Nonetheless, the latter definition has become more
popular in the literature and will be adopted here.

Tissue Characterisation
Lesion masks were traced manually by a single rater (WJB)
viewing PD/T2-weighted images using a semi-automated edge-
finding tool (JIM6.0, Xinapse Systems, UK). Afterwards, PD/T2-
weighted images and lesion masks were registered to diffusion
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TABLE 1 | Summary of the diffusion MRI metrics provided by the NODDI and SMT techniques, as well as overview of the constraints adopted in each of the two models.

MRI technique and model constraints Metric Description

NODDI

- 3 compartments (free water; intra-/extra-neurite)

- Free water diffusivity: 3 µm2/ms

- Intra-/extra-neurite parallel diffusivity: 1.7 µm2/ms

- Zero intra-neurite perpendicular diffusivity

- Tortuosity model for extra-neurite perpendicular diffusivity

- Watson distribution for neurite orientations

Intra-neurite volume fraction (vin) Fraction of neural tissue signal (i.e., excluding CSF)

originating inside axons/dendrites

Orientation dispersion index

(ODI)

Variability of axon/dendrite orientations (higher ODI

implies higher orientation variability)

Isotropic volume fraction (viso) Fraction of total signal originating in free water (e.g., CSF)

Two-compartment SMT

- 2 compartments (intra-/extra-neurite)

- Intra-/extra-neurite parallel diffusivity: fixed to same value, but estimated

- Zero intra-neurite perpendicular diffusivity

- Tortuosity model for extra-neurite perpendicular diffusivity

- No assumptions on the distribution of neurite orientations

Intra-neurite volume fraction (vin) Fraction of total signal (i.e., including CSF) originating

inside axons/dendrites. Note that SMT vin is formally

equivalent to NODDI (1 – viso) vin

Orientation dispersion entropy

(ODE)

Coherence of axon/dendrite orientations (higher ODE

implies lower orientation variability, so ODE ∼ 1/ODI)

Neural diffusivity (D) Average neural tissue diffusion coefficient parallel to the

local direction of fibres

space using affine co-registration (NiftyReg reg_aladin tool,
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg). Finally, we
lesion-filled the 3D T1-weighted anatomical scan of each patient,
co-registered it to diffusion space using affine co-registration
with NiftyReg reg_aladin and segmented the brain into different
tissues with the GIF technique (31). Afterwards, we extracted
mean values of NODDI and SMT metrics within each tissue type
(white matter lesions, normal appearing white matter, cortical
grey matter, deep grey matter) for each patient, and obtained
tissue-specific distributions of all NODDI and SMT metrics.

Analysis in Standard Space
We warped all MRI metrics (DTI, NODDI, SMT), lesion masks
and tissue segmentations to the standard MNI152 space (2mm
isotropic resolution; lesions resampled with nearest-neighbour
interpolation. For this purpose, we co-registered non-linearly
the lesion-filled T1-weighted anatomical scans to the MNI
template using NiftyReg reg_f3d. Afterwards we combined such
a registration transformation to that, warping diffusion data to
each subject’s T1-weighted scan, and resampled all parametric
maps, lesion and tissue masks with NiftyReg reg_resample.
Firstly, we investigated associations between all possible pairs
of MRI metrics by calculating Pearson’s correlation coefficients
on the subject-wise WM mean values (NAWM for patients, i.e.,
excluding lesions).

Secondly, we investigated the association between all MRI
metrics and disability, as measured by the EDSS score. We fitted
the model edss = β0 + β1m+ β2age+ β3gender for each MRI
metricm among FA, AD, RD,MD (DTI); viso, vin, ODI (NODDI);
D, vin, ODE (SMT). The models, which consider age and gender
as confounding factors, where fitted with the python statsmodel
module twice for each metric: in one case using metric mean
value in patients’ NAWM, and in the second case using lesions’
mean values.

Afterwards, we tested whether MRI metrics exhibited
differences between RRMS patient and controls. For this purpose,
we fitted voxel-by-voxel the model m = β0 + β1group +

β2age + β3gender with the freely available python statsmodel
module. Above, m is the generic MRI metric (FA, AD, RD, MD

for DTI; viso, vin, ODI for NODDI; D, vin, ODE for SMT). The
models account for age and gender as confounding factors, and
were fitted excluding measurements from lesional voxels, i.e.,
including only normal-appearing tissue. In practise, this was
achieved by excluding patients whose resampled lesion mask
included a specific voxel when fitting our regressionmodel in that
voxel. The p-value maps corresponding to the coefficients β0, β1,
β2, and β3 were corrected for multiple comparisons with FSL fdr.
An MRI metric was considered significantly different between
patients and controls in a voxel if a non-zero β1 showed a p <

0.05 (correcting for multiple comparisons).
Finally, we calculated the volume of the tissue in MNI space

exhibiting statistically significant patient-control differences, and
quantified the overlap among such areas for all possible pairs of
MRI metrics by computing the Dice overlap coefficient (32).

RESULTS

Examples of Lesion Segmentation
Figure 1 shows an example of lesion segmentation in one
patient. Segmentation was performed on the PD-weighted/T2-
weighted axial turbo spin echo scans, which demonstrate
WM lesions as hyperintense as compared to the surrounding
normal-appearing tissue.

Examples of Parametric Maps
An example of parametric NODDI and SMTmaps from a healthy
control and an RRMS patient are provided in Figures 2, 3,
respectively. Visual inspection highlights known between-tissue
contrasts, e.g., higher NODDI and SMT vin in WM than in
GM, lower/higher NODDI ODI/SMT ODE in GM than in WM
(control); hypointense lesions in both NODDI and SMT vin
maps (patient).

Tissue-Specific Distributions and
Correlations
Supplementary Figure 1 shows tissue-specific distributions of all
NODDI and SMTmetrics. Between-tissue contrasts are apparent
in all metrics, and agree well with previously reported numerical
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FIGURE 1 | Example of lesion segmentation on the T2-weighted fast spin

echo 2D anatomical scan of one patient. Top: axial views; bottom: coronal

views. Left: scan; right: scan with lesions outlined in yellow.

values (21, 25). NODDI vin and NODDI (1 – viso)vin show
similar between-tissue contrasts as compared to SMT vin, while
NODDI ODI show between-tissue contrasts that follow opposite
directions as compared to SMT ODE. Numerical values of both
NODDI vin andNODDI (1 – viso)vin are qualitatively higher than
SMT vin in all tissues.

Figure 4 shows correlations between all possible pairs of MRI
metrics, as evaluated on WM values (WM for controls, NAWM
for patients, i.e., excluding lesions). NODDI and SMT metrics
exhibit strong correlations with DTI indices, as well as with
themselves. For example, NODDI viso is positively associated
with all DTI diffusivities and with SMT neural tissue diffusivity
D. NODDI vin is positively associated with FA and negatively
associated with DTI AD, RD MD, while the opposite holds for
ODI. For SMT, D is positively associated to NODDI viso, while
both SMT ODE and viso are positively associated with DTI FA
and negatively with DTI diffusivities. The strongest correlation
for NODDI vin is with SMT vin (r= 0.72, p< 0.05), with NODDI
vin also being the strongest correlate for SMT vin. The strongest
correlates of NODDI ODI are DTI FA and SMT ODE (r =−0.83
with FA and r = −0.80 with ODE, p < 0.05). FA and NODDI
ODI are the strongest correlates of SMT ODE (r = −0.78 with
FA and r =−0.80 with ODE, p < 0.05).

Association With Disability
Table 2 shows the association between EDSS and DTI, NODDI
and SMT metric mean values in NAWM and within lesional
WM. The table reports standardised coefficients, which are
therefore comparable across metrics (the closer to 1 in absolute
value, the stronger the association with EDSS). In NAWM,
we observe significant associations for DTI metrics (negative
association for FA; positive association for diffusivities) and

NODDI (negative association for vin). In lesions, similar results
are seen for DTI (negative association for FA; positive association
for MD and RD) and NODDI (negative association for vin),
while in this case also observe associations for SMT (positive
association for ODE, negative for vin). DTI indices show
the strongest association with EDSS in both NAWM and
lesional WM.

Group Comparison
Figure 5 shows the results of the voxel-wise patient-control
comparison in MNI space. The figure illustrates voxels where
significant differences between patients and controls are detected,
colouring them according to the sign of the difference.
Patient-control differences are observed mainly at the level of
cerebral WM, although some scattered voxels are also observed
in GM and in the cerebellum. For DTI, it is seen that FA
is in general reduced in patients compared to controls, while
AD, RD and MD are generally increased, although in some
regions small clusters of decreased diffusivities are also seen.
Both increases and decreases of NODDI viso and ODI and
SMT D and ODE are seen, while both NODDI vin and SMT
vin show extensive, widespread reductions in patients compared
to controls.

Table 3 reports the volume of the tissue in MNI space where
significant patient-control differences were detected for all MRI
metrics. The three metrics that detect differences in the largest
portions of tissue are SMT vin (229.8ml) and NODDI vin
(217.5ml) and DTI RD (141.5ml). The three metrics that detect
differences in the least volume of tissue are instead SMT ODE
(87.4ml), NODDI ODI (67.1ml) and, above all, NODDI viso
(62.0ml).

Finally, Table 4 reports the spatial overlap of the areas where
significant differences are detected, considering all possible pairs
of MRI metrics. The largest overlap is seen for DTI FA and MD
(0.71). For NODDI vin, the largest overlap is seen with SMT vin
(0.42), while for SMT vin the largest overlap is the NODDI vin.
For NODDI ODI, the largest overlaps are with DTI FA (0.36) and
SMT ODE (0.31). Findings were similar for SMT ODE (overlap
of 0.40 with FA and 0.31 with ODI). NODDI viso and SMT D are
each the other’s largest overlap (0.42).

DISCUSSION

Summary
We have investigated the ability of two diffusion MRI-based
techniques, NODDI and two-compartment SMT, to detect group
differences between relapsing remitting MS and healthy controls
as well as the association of their metrics to EDSS, a measure
of physical disability. NODDI and SMT provide metrics with
similar biological interpretation, obtained in different ways (i.e.,
different model assumptions and different parameter estimation
approaches). To our knowledge this is the first time that the two
techniques have been compared directly on the same MRI data
acquired on a 3T clinical scanner in healthy controls and patients
with MS.

Our main findings are that both NODDI and SMT detected
differences in microstructure between MS patients and healthy
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FIGURE 2 | NODDI and SMT metrics as obtained from a healthy control. Top: NODDI (left: intra-neurite volume fraction vin; orientation dispersion index ODI; isotropic

volume fraction viso); bottom: SMT (intra-neurite volume fraction vin; orientation dispersion entropy ODE; neural diffusivity D).

controls. The two techniques provide metrics with similar
biophysical interpretation that correlate strongly with each other.
They generally concur on the nature of alterations seen to
MS pointing toward similar pathological changes. Interestingly,
SMT detected significant difference in patients vs. controls
comparisons in a slightly higher proportion of voxels as
compared toNODDI. Finally, the two techniques providemetrics
that show an association to physical disability when evaluated
across NAWM tissue (NODDI vin) and lesional WM (NODDI
vin and SMT ODE and vin).

DTI Results
In this study we have considered DTI indices, namely FA,
AD, RD and MD, as these provide a well-established reference

to which the performance of NODDI and SMT can be
compared. Our results concur with DTI’s known sensitivity to
MS pathology. DTI metrics reveal widespread differences in
normal-appearing tissues between patients and controls, and
show the strongest association to EDSS. All DTI diffusivities
(e.g., AD, RD and MD) generally show an increase in patients
compared to controls. This is in line with recent literature.
For instance, in (19) increased DTI axial diffusivity ex vivo
was seen, which was driven by a strong demyelination as
seen in histology. In (33) increases in AD was seen in MS
lesions as compared to corresponding healthy tissue in controls,
while in (34) both increases and decreases of AD in the
same cohort of MS patients were observed, compared to
healthy controls.
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FIGURE 3 | NODDI and SMT metrics as obtained from an MS patient. Top: NODDI (left: intra-neurite volume fraction vin; orientation dispersion index ODI; isotropic

volume fraction viso); bottom: SMT (intra-neurite volume fraction vin; orientation dispersion entropy ODE; neural diffusivity D).

NODDI Results
Our data is generally consistent with previous findings. For intra-
neurite volume fraction vin, our results point toward reduction
in this metric in both lesions and NAWM in RRMS patients
compared with healthy controls. Such reductions are consistent
with previous findings (20, 21, 23, 24), and may be indicative of
diffuse axonal loss as well as secondary demyelination (19).

We also report changes in ODI in both NAWM and within
lesions. Previous studies reported both increases and decreases
of ODI in lesions (20, 23, 24). A possible explanation for such
mixed results rests in the observation that studies reporting a
decrease have either looked at lesions individually, comparing
with healthy controls at the same anatomical location or may
have been limited by smaller sample sizes. In addition, T2-
hyperintense lesions possess pathological heterogeneity, ranging

from active inflammation displaying gadolinium-enhancement,
to T1-hypointense “black holes” and therefore have different
underlying tissue microstructures. Here we detect changes in
ODI that go in both directions (i.e., both increased and decreased
ODI values as compared to controls). This suggests that in MS
pathology it is possible that neurites can become either more
coherently aligned or more dispersed as compared to healthy
tissue, possibly reflecting different pathological mechanisms.

SMT Results and Comparison
Previous SMT work has focussed on intra-neurite volume
fraction only and has reported reductions in white matter
lesions in both the cervical spine (26) and cerebral white
matter (25). A reduction in intra-neurite volume fraction in
NAWM compared with healthy controls is seen in the cervical
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FIGURE 4 | Pearson’s linear correlation among all possible pairs of MRI metrics from DTI, NODDI and SMT. (A) correlation values illustrated as a 2D symmetric matrix

(note its symmetry with respect to the diagonal) and calculated using the normal-appearing white matter (NAWM) mean values of the metrics (white matter for

controls). (B) statistically significant correlations, highlighted in white (p < 0.05).

TABLE 2 | Association between EDSS and DTI, NODDI and SMT metrics as obtained from linear regression models.

DTI metrics NODDI metrics SMT metrics

FA AD MD RD viso ODI vin D ODE vin

NAWM Coefficient −0.33

(0.15)

0.35

(0.15)

0.35

(0.14)

0.35

(0.14)

0.25

(0.15)

0.10

(0.15)

−0.34

(0.15)

0.13

(0.16)

−0.28

(0.15)

−0.22

(0.16)

p-value 0.027* 0.020* 0.016* 0.018* 0.105 0.532 0.025* 0.431 0.065 0.170

WM lesions Coefficient −0.47

(0.15)

0.25

(0.15)

0.36

(0.15)

0.41

(0.15)

0.16

(0.16)

0.09

(0.15)

−0.37

(0.15)

−0.03

(0.16)

0.38

(0.15)

−0.31

(0.15)

p-value 0.003* 0.100 0.020* 0.010* 0.313 0.546 0.018* 0.828 0.016* 0.043*

The table reports the estimate, standard error (in brackets) and p-values of the coefficient β1 in the model edss = β0 + β1m+ β2age+ β3gender controlling for age and gender, with

m being the generic MRI metric of interest. The models were fitted to the normal-appearing white matter (NAWM) mean values of the MRI metrics, as well as to the white matter (WM)

lesion mean values. p < 0.05 is flagged by an asterisk ( * ). The table reports coefficients β1as standardised, implying that they are comparable across different MRI metrics.

spine (26) but not in cerebral NAWM (25). We generally
concur with these findings, although the discrepancy over intra-
neurite volume fraction in NAWM may arise from differences
between a region-of-interest (ROI) based approach, confined
to the internal capsule, compared with our whole-brain, voxel-
wise evaluation. Quantitative values of NODDI intra-neurite
volume fraction vin appear qualitatively higher than SMT vin
(Supplementary Figure 1). A similar trend is observed even after
correcting NODDI vin for isotropic water partial volume (which
is not modelled in SMT), i.e., when comparing regional values of
NODDI (1 – viso)vin with SMT vin.

We observe increases and decreases in ODE that concur
with the direction of the change of NODDI ODI (albeit
with opposite sign, given the different metric definition).
This finding gives confidence about the potential existence of
multiple patterns of alteration of neurite fibre dispersion in

MS, being observed in two independent techniques (NODDI
and SMT).

Group Comparison
We compared values of all MRI metrics from DTI, NODDI and
SMT between patients and controls in MNI space, excluding
lesional voxels (i.e., considering only normal-appearing tissue).
Our results demonstrate that all of DTI, NODDI and SMT detect
widespread differences in normal-appearing tissue between the
cohorts, implying that these techniques may play a role in the
assessment of MS damage beyond focal lesions.

NODDI and SMT detect group-wise differences between MS
patients and controls that go in the same direction and point
toward the same underlying pathophysiological features. Our
results also show that SMT detected alterations in a slightly larger
portion of the brain compared to equivalent NODDI-derived
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FIGURE 5 | Results of the voxel-wise group comparison performed in MNI space. The figure visualises voxels at six different axial levels where a specific MRI metric

from DTI, NODDI and SMT differs significantly between patients and controls (blue/red: metric from patients smaller/larger than controls). The model used for this

comparison, in the form of m = β0 + β1group+ β2age+ β3gender with m being the generic MRI metric, adjusts for age and gender. In each MNI voxel, the model

was fitted excluding measurements from focal lesions (i.e., including only normal-appearing tissues). A threshold of p < 0.05, correcting for multiple comparisons with

the FSL fdr tool, was chosen for statistical significance. The figure shows voxels where β1 is statistically different from 0.

metrics. We speculate that this difference may arise from the
lower number of model assumptions in SMT compared with
NODDI (e.g., no fixed value for average neural diffusivity; no
fixed form for the neurite orientation distribution), or could be
a secondary effect due to the lack of a third isotropic diffusion
compartment in the signal model, which can capture several
sources of local free water contamination. Moreover, our analysis
shows that both increases and decreases in dispersion metrics
(i.e., NODDI ODI and SMT ODE), NODDI isotropic volume
fraction viso and SMT neural diffusivity D can be observed in MS
patients compared with healthy controls.

Areas of increased viso and D in MS patients may be a
secondary effect of atrophy, particularly where adjacent to CSF
spaces, resulting from partial volume effects occurring more

frequently in patients. Decreased SMT D is in general not
mirrored by DTI diffusivities (AD, RD andMD). DTI diffusivities
are known to be influenced by the underlying dispersion of neural
fibres, and effect that by construction should be less strong on
SMT D (as fibre dispersion effects are captured by SMT ODE).
This implies that that D may capture alterations in diffusivity
that are unconfounded by changes in orientation dispersion,
unlike DTI diffusivities. Nonetheless, both SMT D and NODDI
viso should be interpreted with considerable care. Estimating the
intrinsic diffusivity of neural tissue is known to be a challenging
task, and viso is known to be poorly reproducible and confounded
by relaxation effects, being heavily T2-weighted (35), which may
explain the high viso (up to 0.2) seen here in control WM. Finally,
it should be remembered that NODDI and SMT are likely to
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TABLE 3 | Volume of tissue in MNI space exhibiting statistically significant differences between patients and controls for all MRI metrics (DTI, NODDI, and SMT).

DTI metrics NODDI metrics SMT metrics

FA AD MD RD viso ODI vin D ODE vin

Volume (ml) 106.8 92.9 142.1 141.5 62.0 67.1 217.5 98.5 87.4 229.8

Fraction of brain mask 5.84% 5.08% 7.77% 7.74% 3.39% 3.67% 11.90% 5.39% 4.78% 12.57%

TABLE 4 | Extent of the spatial overlap, measured by the Dice coefficient (0: no overlap; 1: full overlap), among areas exhibiting statistically significant patient-control

differences for all MRI metrics (DTI, NODDI, and SMT).

DTI metrics NODDI metrics SMT metrics

FA AD MD RD viso ODI vin D ODE vin

DTI FA – 0.09 0.24 0.43 0.08 0.36 0.24 0.13 0.40 0.23

DTI AD – – 0.46 0.32 0.19 0.12 0.15 0.11 0.09 0.14

DTI MD – – – 0.71 0.18 0.11 0.38 0.15 0.14 0.29

DTI RD – – – – 0.17 0.18 0.38 0.16 0.25 0.32

NODDI viso – – – – – 0.06 0.13 0.42 0.06 0.14

NODDI ODI – – – – – – 0.11 0.08 0.31 0.11

NODDI vin – – – – – – – 0.25 0.11 0.42

SMT D – – – – – – – – 0.08 0.34

SMT ODE – – – – – – – – – 0.23

SMT vin – – – – – – – – – –

exhibit different susceptibility to noise given their very different
fitting strategies. This may affect the estimation of metrics such
as viso and D. In future, we plan to employ computer simulation
to characterise extensively the susceptibility to noise of the
two techniques. Moreover, we remark that extensive histological
validation based on multiple stainings in health and disease will
be required for metrics such as NODDI viso and SMT D to
elucidate the relationship with the underlying pathophysiology,
given the lack of a direct, histological counterpart.

Importantly, it should be noted that in our case-control
comparison, classes were slightly imbalanced (i.e., our cohort
features approximately twice as many patients as controls). Tests
show that the differences detected in this study are greatly
preserved after matching the two group sizes by downsampling
the patient group (Supplementary Figure 2). This confirms that
the conclusions of this paper still hold despite the imbalance of
our data set. In future, we will aim for a control group that more
closely matches the characteristics of the patients’ group.

Association With Disability
Having established the presence of group differences between
MS patients and controls, we investigated the relationship
between NODDI and SMT metrics and physical disability, as
measured by the EDSS score. We used a linear regression
model, adjusting for age and gender, to study the association
between mean values of NODDI and SMT metrics obtained
from NAWM and lesional tissue in standard MNI space. We
detect a significant association between NODDI vin in NAWM
and EDSS. We also detect a significant association between
SMT vin and ODE mean values in WM lesions and EDSS.

These results suggest that novel multi-shell multi-compartment
models (e.g., NODDI and SMT) may be able to detect early,
widespread alteration in axonal density and/or myelination
(note that vin is sensitive to both) that play a crucial role
in disability accumulation. Moreover, they may also be able
to give new insight into the microstructural characteristics of
existing focal damage, potentially providing useful information
in practise settings to aid in stratifying patients, potentially and
guiding treatment selection and prognosis. Our NODDI and
SMT findings agree with previous literature, with a number of
studies having reported the potential of microstructural diffusion
MRI techniques to detect MS pathology and association to
disability beyond focal damage (36, 37). They are also confirmed
by DTI metrics, which exhibit strong associations with physical
disability in our RRMS cohort (somewhat stronger than NODDI
and SMT). All in all, our results point toward the utility of
diffusion imaging in the MS clinic alongside routine anatomical
imaging, which is crucial for accurate MS lesion detection.
Lesion distribution heterogeneity may carry important clinical
information per se, and could therefore provide descriptors ofMS
pathology that are complementary to the diffusion metrics focus
of this study.

Diffusion MRI Metrics Correlation
In this study we have investigated the correlation among all
possible pairs of diffusion MRI metrics considered in this study
(DTI, NODDI and SMTmetrics). The analysis shows that indices
of intra-neurite volume fractions vin, derived independently
from NODDI and SMT, correlate strongly with each other
(Figure 4). Considering orientation dispersion metrics, it should
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be noted that NODDI ODI and SMT ODE measure different
features of the underlying neurite orientation distributions,
and therefore are not modelling the same physical quantity
(Figure 4). Nonetheless, qualitative inspection of tissue-specific
distributions (Supplementary Figure 1) and correlation analyses
show that the information provided by ODI and ODE mirror
each other. The two metrics appear approximately inversely
proportional to each other and exhibit a strong negative linear
correlation. Overall, our comparison suggests that NODDI and
SMT metrics carry very similar information and are therefore
likely to offer highly comparable descriptions of the underling
tissue microstructure.

Moreover, our correlation analysis also demonstrates that
NODDI and SMT are strongly correlated to DTI indices (e.g.,
strong, positive correlation between DTI FA and both NODDI
vin and SMT vin; negative/positive correlation between DTI FA
and NODDI ODI/SMTODE). This finding can be understood by
noting thatmetrics provided bymulti-compartmental techniques
such as NODDI and SMT are not only sensitive to the non-
Gaussian characteristics of the diffusion process (emphasised at
high b-value), but also to the Gaussian characteristics, i.e., on
the diffusion tensor and on its metrics (e.g., FA, AD, RD and
MD) (38). Nonetheless, we remark that methods such as NODDI
and SMT aim to disentangle the different pathophysiological
processes that underlying the observed changes in diffusion
tensor characteristics (e.g., is a change in FA driven by a change in
axonal density, axonal orientation configuration or both?), striving
to improve the biological specificity of diffusion MRI.

Limitations
Firstly, we acknowledge that while both NODDI and SMT may
be able to detect alterations due to microstructural pathology,
they both provide estimates of neuronal tissue properties that are
subject to biases, and therefore should be always interpreted with
care (39, 40), especially in grey matter, where model biases and
inaccuracies are the strongest (39, 41).

Secondly, our healthy control group was also not age-matched
to the patient group, with a mean difference of around 10 years.
In studies on the effects of increasing age onWMmicrostructure,
widespread reductions in FA are observed to occur from early
adulthood (42, 43). As both increases in orientation dispersion
and reductions in intra-neurite volume can cause reductions
in FA, this effect represents a potential confounding factor in
this study. For this reason, we have included age as a regressor
in all our MS-control comparisons and EDSS regressions (i.e.,
for all DTI, NODDI and SMT metrics), and made sure to
report differences that appear to be statistically independent
of age (Table 2 and Figure 5). Nonetheless, we acknowledge
that further, non-linear effects may persist and influence our
results (44, 45).

Finally, we acknowledge that several other different models
could have been included in this comparison. We justify our
choice of focussing on NODDI by pointing out that it is
one of the most popular models for clinically feasible neurite
density and morphology mapping, with a considerable literature
establishing its use in MS (20, 21, 46). Similarly, SMT has been
previously used in MS (25, 47) measures similar biophysical

features and offers theoretical methodological advantages over
NODDI. It is therefore scientifically relevant to investigate how
its metrics relate to NODDI in the context of MS, at least
in this first, exploratory comparison. Results from this study
inform MS neurologists about the agreement of such popular
techniques, providing them with useful information to interpret
results that use either of the two techniques. In future, we
plan to include additional techniques in similar comparisons
(e.g., DKI, map-MRI).

CONCLUSIONS

To conclude, both NODDI and SMT detect white matter
microstructural differences between MS patients and controls,
showing alterations in indices representing the underlying
density and orientation dispersion of neurites that correlate with
disability. Importantly, NODDI and SMT metrics with similar
biophysical interpretation are strongly correlated among each
other, and provide results that go in the same direction, giving
confidence to the comparability of findings between studies using
these two techniques.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The study was reviewed and approved by NHS Health Research
Authority, NRES Committee London - City Road & Hampstead,
References: 135700-CIS2014 (13/LO/1413), 13/0231-CIS2013
(13/LO/1762). The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

DJ: data analysis and experiment design. AR: data
analysis/presentation and editor. WB and SC: image preparation,
editor, and data acquisition. BK and FP: image preparation,
editor, and data analysis. EK, AT, and DA: editor and experiment
design. CG and OC: supervisor, senior editor, and experiment
design. FG: data analysis/presentation, editor, and experiment
design. All authors contributed to the article and approved the
submitted version.

FUNDING

This study has received funding under the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 634541 (CDS-QuaMRI) and 666992. This study
has also received support from the Engineering and Physical
Sciences Research Council (EPSRC R006032/1, M020533/1,
G007748, I027084, N018702), Spinal Research (UK), Wings
for Life (Austria), Craig H. Neilsen Foundation (USA) for
INSPIRED and UKMultiple Sclerosis Society (grants 892/08 and

Frontiers in Neurology | www.frontiersin.org 11 June 2021 | Volume 12 | Article 662855

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Johnson et al. NODDI and SMT in MS

77/2017). This study was supported by the National Institute
for Health Research University College London Hospitals
Biomedical Research Centre. FP was supported by a Guarantors
of Brain post-doctoral non-clinical fellowship. AT was supported
by an MRC grant (MR/S026088/1). EK was supported from
the NIHR Great Ormond Street Hospital Biomedical Research
Centre. FG was currently supported by the investigator-
initiated PREdICT study at the Vall d’Hebron Institute of
Oncology (Barcelona), funded by AstraZeneca and CRIS Cancer

Foundation. AstraZeneca was not involved in the study design,
collection, analysis, interpretation of data, the writing of this
article or the decision to submit it for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2021.662855/full#supplementary-material

REFERENCES

1. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and

imaging. Biophys J. (1994) 66:259–67. doi: 10.1016/S0006-3495(94)80775-1

2. O’Donnell LJ, Westin C-F. An introduction to diffusion tensor image

analysis. Neurosurg Clin N Am. (2011) 22:185–96. doi: 10.1016/j.nec.2010.

12.004

3. Goveas J, O’Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, et al.

Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging. (2015)

33:853–76. doi: 10.1016/j.mri.2015.04.006

4. Farquharson S, Tournier J-D, Calamante F, Fabinyi G, Schneider-

Kolsky M, Jackson GD, et al. White matter fiber tractography:

why we need to move beyond DTI. J Neurosurg JNS. (2013)

118:1367–77. doi: 10.3171/2013.2.JNS121294

5. Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion

(CHARMED) MR imaging of the human brain. Neuroimage. (2005) 27:48–

58. doi: 10.1016/j.neuroimage.2005.03.042

6. Fieremans E, Jensen JH, Helpern JA. White matter characterization

with diffusional kurtosis imaging. Neuroimage. (2011) 58:177–

88. doi: 10.1016/j.neuroimage.2011.06.006

7. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional

kurtosis imaging: the quantification of non-gaussian water diffusion by

means of magnetic resonance imaging. Magn Reson Med. (2005) 53:1432–

40. doi: 10.1002/mrm.20508

8. Jespersen SN, Bjarkam CR, Nyengaard JR, Chakravarty MM,

Hansen B, Vosegaard T, et al. Neurite density from magnetic

resonance diffusion measurements at ultrahigh field: comparison

with light microscopy and electron microscopy. Neuroimage. (2010)

49:205–16. doi: 10.1016/j.neuroimage.2009.08.053

9. Novikov DS, Veraart J, Jelescu IO, Fieremans E. Rotationally-

invariant mapping of scalar and orientational metrics of neuronal

microstructure with diffusion MRI. Neuroimage. (2018) 174:518–

38. doi: 10.1016/j.neuroimage.2018.03.006

10. Ning L, Gagoski B, Szczepankiewicz F, Westin C, Rathi Y. Joint relaxation-

diffusion imaging moments to probe neurite microstructure. IEEE Trans Med

Imaging. (2020) 39:668–77. doi: 10.1109/TMI.2019.2933982

11. Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, Hansson O,

Westin C-F, et al. Towards unconstrained compartment modeling in white

matter using diffusion-relaxation MRI with tensor-valued diffusion encoding.

Magn Reson Med. (2020) 84:1605–23. doi: 10.1002/mrm.28216

12. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander

DC. NODDI: practical in vivo neurite orientation dispersion

and density imaging of the human brain. Neuroimage. (2012)

61:1000–16. doi: 10.1016/j.neuroimage.2012.03.072

13. Kaden E, Kruggel F, Alexander DC. Quantitative mapping of the per-axon

diffusion coefficients in brain white matter.Magn ResonMed. (2016) 75:1752–

63. doi: 10.1002/mrm.25734

14. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC. Multi-

compartment microscopic diffusion imaging. Neuroimage. (2016) 139:346–

59. doi: 10.1016/j.neuroimage.2016.06.002

15. Kamm CP, Uitdehaag BM, Polman CH. Multiple sclerosis: current knowledge

and future outlook. Eur Neurol. (2014) 72:132–41. doi: 10.1159/000360528

16. Tóth E, Szabó N, Csete G, Király A, Faragó P, Spisák T, et al. Gray

matter atrophy is primarily related to demyelination of lesions in multiple

sclerosis: a diffusion tensor imaging MRI study. Front Neuroanat. (2017)

11:23. doi: 10.3389/fnana.2017.00023

17. Sbardella E, Tona F, Petsas N, Pantano P. DTI measurements in multiple

sclerosis: evaluation of brain damage and clinical implications.Mult Scler Int.

(2013) 2013:671730. doi: 10.1155/2013/671730

18. Roosendaal SD, Geurts JJG, Vrenken H, Hulst HE, Cover KS, Castelijns JA, et

al. Regional DTI differences in multiple sclerosis patients.Neuroimage. (2009)

44:1397–403. doi: 10.1016/j.neuroimage.2008.10.026

19. Grussu F, Schneider T, Tur C, Yates RL, Tachrount M, Ianus A, et al. Neurite

dispersion: a newmarker of multiple sclerosis spinal cord pathology?Ann Clin

Transl Neurol. (2017) 4:663–79. doi: 10.1002/acn3.445

20. Granberg T, Fan Q, Treaba CA, Ouellette R, Herranz E, Mangeat G, et al. In

vivo characterization of cortical and white matter neuroaxonal pathology in

earlymultiple sclerosis. Brain. (2017) 140:2912–26. doi: 10.1093/brain/awx247

21. Collorone S, Cawley N, Grussu F, Prados F, Tona F, Calvi A, et al.

Reduced neurite density in the brain and cervical spinal cord in relapsing–

remitting multiple sclerosis: a NODDI study.Mult Scler J. (2020) 26:1647–57.

doi: 10.1177/1352458519885107

22. Timmers I, Roebroeck A, Bastiani M, Jansma B, Rubio-Gozalbo E, Zhang

H. Assessing microstructural substrates of white matter abnormalities:

a comparative study using DTI and NODDI. PLoS ONE. (2016)

11:e0167884. doi: 10.1371/journal.pone.0167884

23. Schneider T, Brownlee W, Zhang H, Ciccarelli O, Miller DH,

Wheeler-Kingshott CG. Sensitivity of multi-shell NODDI to multiple

sclerosis white matter changes: a pilot study. Funct Neurol. (2017)

32:97–101. doi: 10.11138/FNeur/2017.32.2.097

24. De Santis S, Bastiani M, Droby A, Kolber P, Zipp F, Pracht E, et

al. Characterizing microstructural tissue properties in multiple sclerosis

with diffusion MRI at 7T and 3T: the impact of the experimental

design. Neuroscience. (2019) 403:17–26. doi: 10.1016/j.neuroscience.2018.

03.048

25. Bagnato F, Franco G, Li H, Kaden E, Ye F, Fan R, et al. Probing axons using

multi-compartmental diffusion in multiple sclerosis. Ann Clin Transl Neurol.

(2019) 6:1595–605. doi: 10.1002/acn3.50836

26. By S, Xu J, Box BA, Bagnato FR, Smith SA. Multi-compartmental diffusion

characterization of the human cervical spinal cord in vivo using the spherical

mean technique. NMR Biomed. (2018) 31:e3894. doi: 10.1002/nbm.3894

27. Brownlee WJ, Solanky B, Prados F, Yiannakas M, Da Mota P, Riemer

F, et al. Cortical grey matter sodium accumulation is associated with

disability and secondary progressive disease course in relapse-onset

multiple sclerosis. J Neurol Neurosurg Psychiatry. (2019) 90:755–60.

doi: 10.1136/jnnp-2018-319634

28. Andersson JLR, Sotiropoulos SN. An integrated approach to correction

for off-resonance effects and subject movement in diffusion MR imaging.

Neuroimage. (2016) 125:1063–78. doi: 10.1016/j.neuroimage.2015.10.019

29. Microstructure Imaging Group. NODDI Matlab Toolbox. Available

from: http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab (accessed

May 29, 2021).

30. Kaden E. Spherical Mean Technique. Available from: https://github.com/

ekaden/smt (accessed May 29, 2021).

31. Cardoso MJ, Modat M, Wolz R, Melbourne A, Cash D, Rueckert D, et al.

Geodesic information flows: spatially-variant graphs and their application

to segmentation and fusion. IEEE Trans Med Imaging. (2015) 34:1976–

88. doi: 10.1109/TMI.2015.2418298

Frontiers in Neurology | www.frontiersin.org 12 June 2021 | Volume 12 | Article 662855

https://www.frontiersin.org/articles/10.3389/fneur.2021.662855/full#supplementary-material
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/j.nec.2010.12.004
https://doi.org/10.1016/j.mri.2015.04.006
https://doi.org/10.3171/2013.2.JNS121294
https://doi.org/10.1016/j.neuroimage.2005.03.042
https://doi.org/10.1016/j.neuroimage.2011.06.006
https://doi.org/10.1002/mrm.20508
https://doi.org/10.1016/j.neuroimage.2009.08.053
https://doi.org/10.1016/j.neuroimage.2018.03.006
https://doi.org/10.1109/TMI.2019.2933982
https://doi.org/10.1002/mrm.28216
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1002/mrm.25734
https://doi.org/10.1016/j.neuroimage.2016.06.002
https://doi.org/10.1159/000360528
https://doi.org/10.3389/fnana.2017.00023
https://doi.org/10.1155/2013/671730
https://doi.org/10.1016/j.neuroimage.2008.10.026
https://doi.org/10.1002/acn3.445
https://doi.org/10.1093/brain/awx247
https://doi.org/10.1177/1352458519885107
https://doi.org/10.1371/journal.pone.0167884
https://doi.org/10.11138/FNeur/2017.32.2.097
https://doi.org/10.1016/j.neuroscience.2018.03.048
https://doi.org/10.1002/acn3.50836
https://doi.org/10.1002/nbm.3894
https://doi.org/10.1136/jnnp-2018-319634
https://doi.org/10.1016/j.neuroimage.2015.10.019
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
https://github.com/ekaden/smt
https://github.com/ekaden/smt
https://doi.org/10.1109/TMI.2015.2418298
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Johnson et al. NODDI and SMT in MS

32. Dice LR. Measures of the amount of ecologic association between species.

Ecology. (1945) 26:297–302. doi: 10.2307/1932409

33. Klistorner A, Wang C, Yiannikas C, Parratt J, Barton J, You Y, et al.

Diffusivity in the core of chronic multiple sclerosis lesions. PLoS ONE. (2018)

13:e0194142. doi: 10.1371/journal.pone.0194142

34. Preziosa P, Rocca MA, Mesaros S, Pagani E, Stosic-Opincal T, Kacar K, et al.

Intrinsic damage to the major white matter tracts in patients with different

clinical phenotypes of multiple sclerosis: a voxelwise diffusion-tensor MR

study. Radiology. (2011) 260:541–50. doi: 10.1148/radiol.11110315

35. Gong T, Tong Q, He H, Sun Y, Zhong J, Zhang H. MTE-NODDI:

Multi-TE NODDI for disentangling non-T2-weighted signal fractions

from compartment-specific T2 relaxation times. Neuroimage. (2020)

217:116906. doi: 10.1016/j.neuroimage.2020.116906

36. Ciccarelli O, Werring DJ, Wheeler–Kingshott CAM, Barker GJ, Parker GJM,

Thompson AJ, et al. Investigation of MS normal-appearing brain using

diffusion tensor MRI with clinical correlations. Neurology. (2001) 56:926–33.

doi: 10.1212/WNL.56.7.926

37. de Kouchkovsky I, Fieremans E, Fleysher L, Herbert J, Grossman RI,

Inglese M. Quantification of normal-appearing white matter tract integrity

in multiple sclerosis: a diffusion kurtosis imaging study. J Neurol. (2016)

263:1146–55. doi: 10.1007/s00415-016-8118-z

38. Jespersen SN, Leigland LA, Cornea A, Kroenke CD. Determination of

axonal and dendritic orientation distributions within the developing cerebral

cortex by diffusion tensor imaging. IEEE Trans Med Imaging. (2012) 31:16–

32. doi: 10.1109/TMI.2011.2162099

39. Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, Sundgren

PC, Nilsson M. Neurite density imaging versus imaging of microscopic

anisotropy in diffusion MRI: a model comparison using spherical tensor

encoding. Neuroimage. (2017) 147:517–31. doi: 10.1016/j.neuroimage.2016.

11.053

40. Jelescu IO, Veraart J, Fieremans E, Novikov DS. Degeneracy in model

parameter estimation for multi-compartmental diffusion in neuronal tissue.

NMR Biomed. (2016) 29:33–47. doi: 10.1002/nbm.3450

41. Henriques RN, Jespersen SN, Shemesh N. Microscopic anisotropy

misestimation in spherical-mean single diffusion encoding MRI. Magn

Reson Med. (2019) 81:3245–61. doi: 10.1002/mrm.27606

42. Rathee R, Rallabandi VPS, Roy PK. Age-related differences in white

matter integrity in healthy human brain: evidence from structural

Mri and diffusion tensor imaging. Magn Reson Insights. (2016)

9:MRI.S39666. doi: 10.4137/MRI.S39666

43. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, et al.

Age-related changes in grey andwhitematter structure throughout adulthood.

Neuroimage. (2010) 51:943–51. doi: 10.1016/j.neuroimage.2010.03.004

44. Hsu J-L, Leemans A, Bai C-H, Lee C-H, Tsai Y-F, Chiu H-C, et al.

Gender differences and age-related white matter changes of the human

brain: a diffusion tensor imaging study. Neuroimage. (2008) 39:566–

77. doi: 10.1016/j.neuroimage.2007.09.017

45. Salat DH, Tuch DS, Greve DN, van der Kouwe AJW, Hevelone ND,

Zaleta AK, et al. Age-related alterations in white matter microstructure

measured by diffusion tensor imaging. Neurobiol Aging. (2005) 26:1215–

27. doi: 10.1016/j.neurobiolaging.2004.09.017

46. Collorone S, Prados F, Kanber B, Cawley NM, Tur C, Grussu F, et al. Brain

microstructural and metabolic alterations detected in vivo at onset of the first

demyelinating event. Brain. (2021). doi: 10.1093/brain/awab043

47. Devan SP, Jiang X, Bagnato F, Xu J. Optimization and numerical evaluation

of multi-compartment diffusion MRI using the spherical mean technique

for practical multiple sclerosis imaging. Magn Reson Imaging. (2020) 74:56–

63. doi: 10.1016/j.mri.2020.09.002

Conflict of Interest: FG is employed by the Vall d’Hebron Institute of Oncology

(Barcelona, Spain) in a study funded by AstraZeneca (PREdICT). AstraZeneca

was not involved in the study design, collection, analysis, interpretation of data,

the writing of this article or the decision to submit it for publication.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Johnson, Ricciardi, Brownlee, Kanber, Prados, Collorone, Kaden,

Toosy, Alexander, Gandini Wheeler-Kingshott, Ciccarelli and Grussu. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurology | www.frontiersin.org 13 June 2021 | Volume 12 | Article 662855

https://doi.org/10.2307/1932409
https://doi.org/10.1371/journal.pone.0194142
https://doi.org/10.1148/radiol.11110315
https://doi.org/10.1016/j.neuroimage.2020.116906
https://doi.org/10.1212/WNL.56.7.926
https://doi.org/10.1007/s00415-016-8118-z
https://doi.org/10.1109/TMI.2011.2162099
https://doi.org/10.1016/j.neuroimage.2016.11.053
https://doi.org/10.1002/nbm.3450
https://doi.org/10.1002/mrm.27606
https://doi.org/10.4137/MRI.S39666
https://doi.org/10.1016/j.neuroimage.2010.03.004
https://doi.org/10.1016/j.neuroimage.2007.09.017
https://doi.org/10.1016/j.neurobiolaging.2004.09.017
https://doi.org/10.1093/brain/awab043
https://doi.org/10.1016/j.mri.2020.09.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Comparison of Neurite Orientation Dispersion and Density Imaging and Two-Compartment Spherical Mean Technique Parameter Maps in Multiple Sclerosis
	Introduction
	Methods
	Participants
	MR Image Acquisition
	Diffusion Metrics Evaluation
	Tissue Characterisation
	Analysis in Standard Space

	Results
	Examples of Lesion Segmentation
	Examples of Parametric Maps
	Tissue-Specific Distributions and Correlations
	Association With Disability
	Group Comparison

	Discussion
	Summary
	DTI Results
	NODDI Results
	SMT Results and Comparison
	Group Comparison
	Association With Disability
	Diffusion MRI Metrics Correlation
	Limitations

	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


