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Frontotemporal dementia (FTD) includes a group of clinically, genetically,

and pathologically heterogeneous neurodegenerative disorders, affecting the

fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by

progressive deficits in behavior, executive function, and language and its diagnosis

relies mainly on the clinical expertise of the physician/consensus group and the use of

neuropsychological tests and/or structural/functional neuroimaging, depending on local

availability. The modest correlation between clinical findings and FTD neuropathology

makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis

or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a

disease and symptom overlap with psychiatric disorders. Despite advances in

understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis

for this disease is still lacking. One of the major challenges is to improve diagnosis

in FTD patients as early as possible. In this context, biomarkers have emerged as

useful methods to provide and/or complement clinical diagnosis for this complex

syndrome, although more evidence is needed to incorporate most of them into

clinical practice. However, most biomarker studies have been performed using North

American or European populations, with little representation of the Latin American

and the Caribbean (LAC) region. In the LAC region, there are additional challenges,
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particularly the lack of awareness and knowledge about FTD, even in specialists.

Also, LAC genetic heritage and cultures are complex, and both likely influence clinical

presentations and may modify baseline biomarker levels. Even more, due to diagnostic

delay, the clinical presentation might be further complicated by both neurological and

psychiatric comorbidity, such as vascular brain damage, substance abuse, mood

disorders, among others. This systematic review provides a brief update and an overview

of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in

LAC countries. Our review highlights the need for extensive research on biomarkers in

FTD in LAC to contribute to a more comprehensive understanding of the disease and

its associated biomarkers. Dementia research is certainly reduced in the LAC region,

highlighting an urgent need for harmonized, innovative, and cross-regional studies with

a global perspective across multiple areas of dementia knowledge.

Keywords: frontotemporal dementia, genetics, neuroimaging, fluid biomarkers, Latin America

INTRODUCTION

Dementia in Latin America and the Caribbean (LAC) countries
has become a major challenge (1–3). The World Neurology
Congress has highlighted that dementia in LAC is a major
public health issue with a predicted four-fold increase of its
prevalence by 2050 (4, 5). This predicted growth, which is
partially due to the increase in life expectancy (6), calls for
better diagnostic procedures. The underdiagnosis of dementia in
LAC remains a challenge (2). Barriers to diagnosis in the region
include inadequate training (7, 8), especially among primary
care physicians (2, 9), together with insufficient access to both
healthcare and specialized services such as neuropsychological
assessment (2, 6).

Epidemiological studies from the LAC region are scarce and
existing evidence is limited, nevertheless making only modest
contributions to global prevalence figures (10). Most of the
literature available on the epidemiology of dementia comes from
North American and European cohorts. The most extensive
studies on the prevalence of dementia in LAC countries identified
frequency rates similar to those reported by western and
eastern countries (11–13). Among neurodegenerative dementia,
Alzheimer’s disease dementia (ADD) and Lewy body dementia
are the leading cause of dementia, following by Frontotemporal
dementia (FTD), the third most common form of dementia
across all age groups, after, and is a leading cause of early-onset

Abbreviations: Aβ, amyloid-beta peptides; AD, Alzheimer’s disease; AnxA1,
Annexin A1; bvFTD, behavioral variant of frontotemporal dementia; C9orf72,
chromosome 9 open reading frame 72; COEP-UFMG, Ethics Committee of
the Federal University of Minas Gerais; CSF, cerebrospinal fluid; EDTA,
ethylenediaminetetracetic acid; FAST, Functional Assessment Staging; GRN,
progranulin; hsCRP, high sensitivity C reactive protein; HWE, Hardy-Weinberg
equilibrium; IATI, INNOTEST amyloid tau index; IL, interleukin; LX4,
lipoxin A4; MAPT, microtubule-associated protein tau; MCI, mild cognitive
impairment; NF, nuclear factor; NFTs, neurofibrillary tangles; PBMCs, peripheral
blood mononuclear cells; PCR-RFLP, polymerase chain reaction-restriction
fragment length polymorphism; SNP, single nucleotide polymorphism; SPM,
specialized pro-resolving mediator; TDP-43, TAR DNA-binding protein 43; TGF,
transforming growth factor; TNF, tumor necrosis factor.

dementia (14, 15), with a prevalence ranging from 3 to 26%
described in North America and European populations (16, 17).

FTD is an insidious neurodegenerative clinical syndrome
characterized by progressive deficits in behavior, executive
function, and language (16, 18, 19). FTD is often underdiagnosed,
due primarily to the lack of awareness as well as clinical overlap
with psychiatric disorders (15, 20). Although the impact of FTD
on LAC countries seems to mirror that of developing countries,
barriers to the diagnosis of and post-diagnostic support for this
type of dementia differ across such countries (2, 3).

Regarding clinical diagnosis, as mentioned, FTD is often
underdiagnosed (15, 20, 21). FTD symptoms typically start
between the ages of 40 and 65 in the majority of cases,
but it can also occur in younger and older individuals
(16, 22). In LAC, the most common approach is to rely
solely on clinical criteria for diagnosis. Unfortunately, for
many clinical subtypes of FTD, there is only a modest
correlation between the clinical features and the underlying
neuropathology of the disease. Other diagnostic support such
as specialized neuropsychological services and/or structural and
functional neuroimaging studies are less readily available in
the region (2). These well-known limitations have traditionally
led to a higher rate of missed diagnosis and when is posed
to significant delay in FTD diagnosis, which increases the
subsequent burden on caregivers (23, 24). Pathologically, post
mortem brains of people who had FTD are characterized with
frontotemporal lobar degeneration (FTLD) and intracellular
depositions of three main proteins: RNA-binding protein
TDP-43 (∼50%), microtubule-associated protein Tau (∼40%),
and, in rare cases, RNA-binding protein (FUS, 5%) (25).
Importantly, FTD has a strong genetic component, with
up to 40% of cases having a family history of dementia,
psychiatric disease, or motor symptoms, and 20–30% of cases
having an autosomal dominant pattern (26, 27). Mutations in
three major genes have been described: C9orf72 (chromosome
9 open reading frame 72), MAPT (microtubule-associated
protein tau), and GRN (progranulin) discussed below in
this review.
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Biomarkers, defined as a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes (28), have emerged as
promissory methods to provide and/or complement clinical
diagnosis for this complex syndrome, although most evidence
is needed to incorporate most of them in the routine clinical
practice (29–31). Biomarkers have been currently classified in
three main topics including genetic, neuroimaging, and fluid
biomarkers (28, 32). In FTD, diagnostic biomarkers could help
discriminate between individuals with FTD, control individuals,
and individuals with other neurodegenerative diseases including
ADD, as has been described in LAC cases (3). Biomarkers
could also help differentiate between clinical, genetic, or
pathological subtypes. Other biomarkers could also be used to
tailor pharmacological treatment or determinate prognosis (30).

The study of biomarkers in FTD requires sophisticated
procedures that only a few research centers have access to in
LAC. Moreover, biomarker measurements or research are not
funded by public health (2, 3). In this scenario, new peripheral
biomarkers constitute a promising possibility to implement, for
e.g., fluid biomarkers because of their accessibility, reduced cost,
and easy management in our LAC region. Nevertheless, the use
of biomarkers from fluids is also scarce, currently assessed only
for research purposes (3). In addition, neuroimaging techniques
are the most expensive and least available, only accessible in
specialized medical centers in large cities in LAC. Furthermore,
the reliability of available biomarkers, not only in LAC, is limited
to centers specialized in dementia, such as memory clinics, where
there is more experience in the accurate diagnosis of dementia.
Another barrier present in LAC countries is that their validity
has not been studied in native populations of each country, given
the existing ancestry and genetic mix that represent each LAC
country (1, 2). For example, genetic studies in Latino, mixed, or
indigenous populations represent only 3% of studies of polygenic
risk (3).

Considering the impact of FTD on LAC and the barriers
to diagnosis of this progressive neurodegenerative disease, the
advent of promising biomarkers (genetic, neuroimaging, and
fluid-based) that can enhance diagnostic accuracy and help
overcome outstanding needs could have a significant impact
on this region. This review aims to update the knowledge
base on biomarker development for FTD, with an emphasis on
published studies from LAC and highlights the need for further
development of FTD biomarkers that can be generalized to
broader settings and diverse populations.

MATERIALS AND METHODS

Database Search
A systematic search of the online literature was carried out
targeting journals indexed by PubMed Central, Redalyc, Scopus,
and SciElo databases. Pub-Med Central corresponds to the digital
archive of the United States National Institutes of Health and it
was selected for its scope and importance in the biomedical and
life sciences; this database allows access to free material but the
use of the material is subject to copyright and/or license terms.
Redalyc is an academic project promoted by the Autonomous

University of Mexico, in collaboration with other institutions,
for the dissemination in Open Access of the scientific publishing
activity that occurs in and on Ibero-America; and it was selected
for its reach in regional populations. Scopus is a bibliographic
database of abstracts and citations of scientific journal articles,
which are peer-reviewed. This database was selected for its
antiquity (1966) and scope since it is sponsored by Elsevier.
SciELO is a Brazilian project that promotes the development
and operation of Latin American collections for all areas of
knowledge, with publications preferably in English, but also in
other languages. It was elected for indexing many national and
Latin American journals.

To identify potentially eligible studies related to FTD
cognitive dysfunction biomarkers, the PRISMA Checklist
and PRISMA Statement for Reporting Systematic Reviews
and Meta-Analyses was followed, to have a validated and
consensual research methodology (33). Two of the authors
(MFA and PO) independently searched for articles associated
with the following keywords in English: [(Biomarkers) AND
(dementia)] OR [(Biomarkers) AND (frontotemporal dementia)]
OR [(Biomarkers) AND (frontotemporal dementia behavioral
variant)], and then, the procedure was reproduced with the
same keywords, translated to Spanish and Portuguese. Those
languages were selected because they correspond to the main
languages used in Latinamerica, therefore ensuring to include
all the Lan American research. Other languages such as french
or german were not included, since those papers, despite having
Latin American authors, were most probably not based on Latin
American population. Initially, the search keys used considered
the other clinical patterns of FTD, however in previously
exploratory search, only the behavioral variant showed results
based on the systematic review formula, for which it was decided
to limit the search to the behavioral variant.

Eligibility Criteria and Study Selection
Studies were considered eligible for data extraction if they
meet the following inclusion criteria: original peer-reviewed
articles (empirical, quantitative, longitudinal studies, follow-up
studies, neuroimaging studies, randomized controlled trials,
quasi-randomized controlled trials, cross-sectional studies,
longitudinal studies) written in Spanish, English or Portuguese;
published between January 2000 until November 2020, based
on human Latin American populations, considering samples
with FTD pathological characteristics, which their contents were
about genetic, neuroimaging and fluid biomarkers. If some of
the results found were still in press and could be checked by
title and abstract, they were included too for the full-text review,
by contacting the authors. No particular diagnostic criteria
were required for the samples to be included because the main
objectives of some potential results might be comparing them.

The exclusion criteria considered were: studies with no LA
population samples, studies conducted with non-human animals,
and studies written in a language other than those previously
referred. We considered excluded from our investigation model:
prospective studies, interview studies, retrospective studies,
clinical and treatment trials, qualitative studies, mathematical
modeling, experimental replications, scientific simulations, field
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studies, focus groups, non-clinical case studies, literature reviews,
systematic reviews, and meta-analyses.

Process of Selection
In the first stage, MFA and PO searched for the selected keywords
using boolean operators. With these first results, in a second
stage, the articles were reviewed and selected according to
their titles; from here, those who met the search words and/or
the eligibility inclusion criteria were considered for the next
stage. In the third stage, the abstracts and the full texts were
read by PO and MFA to ensure papers met the criteria for
sample descriptors, language, type of study, and contents. When
the third stage was completed, the exhaustive review of each
paper for the final selection was made by three authors (MA-
P, PO, and TL). Disagreements were resolved by discussion
between the three authors and, in case of disagreement, a
fourth opinion was sought from the other authors for a final
decision. Finally, the resulting sample of papers was divided
between the other authors for the data analysis and synthesis.
The flowchart in Figure 1 illustrates the sequence of actions
and outcomes.

Data Synthesis
MFA recorded specific data for each study (Table 1) including
first all relevant citation information [author name(s), year
of publication, Digital Object Identifier (DOI), and the data-
based site where the article can be found] to facilitate
the individual search for readers. Secondly, the country
from which the study sample was recruited is reported
with the purpose of highlighting research status in different
localities. Third, each paper was reviewed and classified
by the general biomarker technique used in its methods
(category in the table): biomarkers (fluid-based), neuroimaging,
and genetics. This was done to help readers categorize the
amount of information available for each modality. The
specific technique used in each category was presented in
the specification column, highlighting the methodological
approaches most often used in Latin American and Caribbean
research. Finally, if the selected article provided information
about the connection of said biomarkers to a particular
cognitive domain, this was reported in the cognitive column.
This data summary provides a high-level overview of the
research occurring in LAC and allows reflection on the utility
of biomarker information and translational research to the
biomedical field.

RESULTS

After performing the PRISMA analysis, our search identified 21
studies on FTD and biomarkers in the LAC region. The selection
process is depicted in the flowchart in Figure 1.

Biomarkers
A biomarker is defined as an objectively measurable indicator of
a biological state or pathological condition. A biomarker must
be reproducible, stable, available to a large part of the population
and reflect relevant disease processes (28). Biomarkers have the

FIGURE 1 | The flow of information through the different phases of the

systematic review according to the PRISMA statement. The search of

PubMed, Scopus, Redalyc, and SciElo databases provided a total of 9,131

citations. Of these, 8,374 studies were discarded after reviewing the titles, and

of those, 665 abstracts did not clearly meet the criteria. After adjusting for

duplicates 52 of the 92 articles remained. The full text of the remaining 52

citations was examined in more detail. It appeared that 31 studies did not

meet the inclusion criteria as described. No unpublished relevant studies were

obtained, achieving a selection of a total of 21 articles for the analysis.

potential to be useful in dementia in several ways, including
distinguishing different aspects of underlying pathology,
detection of pre-symptomatic pathological changes, predicting
decline or conversion between clinical disease states, and
monitoring disease progression and response to treatment (32).
As mentioned, the diagnosis of FTD is particularly challenging
because the relationship between clinical symptoms, pathology,
and genetic causes are complex (31, 55, 56). In this scenario,
biomarkers represent a potentially informative diagnostic tool
for this condition. However, almost all biomarker studies in
FTD have been performed in North American and European
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TABLE 1 | Papers resume table.

Authors Year DOI Country Category Specifications Cognitive-domain

associated

Baez et al. (34) 2016 10.1016/j.cortex.2015.11.007 Colombia,

Argentina, Chile

Neuroimaging MRI-VBM Social cognition

Baez et al. (35) 2016 10.1159/000441918 Colombia,

Argentina, Chile

Neuroimaging MRI-VBM Social cognition

Bachli et al. (36) 2020 10.1016/j.neuroimage.2019.116456 Colombia,

Argentina,

Australia

Neuroimaging Machine learning Executive functions

Baldeiras et al. (37) 2015 10.1016/j.jns.2015.09.022 Brazil Fluid Biomarkers Aβ42/Tau ratio Unspecified

Bertoux et al. (38) 2018 10.3233/JAD-170771 Francia, Chile Neuroimaging Visual atrophy

ratings and VBM

Episodic memory

Cintra et al. (39) 2018 10.1016/j.neurobiolaging.2018.01.007 Brazil Genetics C9orf72 Syntomatic ALS, FTD

and MND presentation

de Souza et al.

(40)

2019 10.1590/1980-57642018dn13-030015 Brazil Neuroimaging

Fluid Biomarkers

PET-FDG, Aβ42,

Tau, P-Tau in CSF

Executive functions

Dottori et al. (41) 2017 10.1038/s41598-017-04204-8 Argentina,

Colombia

Neuroimaging Resting-State:

weighted symbolic

dependence

metric

Unspecified

Fernandez Suarez

et al. (42)

2016 10.1080/13554794.2016.1186700 Argentina Genetics C9orf72 Unspecified

Fraga et al. (43) 2019 10.1016/j.neuroscience.2019.09.008 Brazil Fluid biomarkers hsCRP, IL-1β, IL-6,

TNF, TGF-β1,

AnxA1 and LXA4

in blood and CSF

Unspecified

Gatto et al. (44) 2017 10.1016/j.neurobiolaging.2017.02.002 Argentina Genetics MAPT Executive functions

attention

Itzcovich et al. (45) 2016 10.1016/j.neurobiolaging.2016.02.001 Argentina Genetics C9orf72 Unspecified

Miranda et al. (46) 2017 10.4067/s0034-98872017000700896 Chile Genetics C9orf72 Language and motor

Moguilner et al.

(47)

2018 10.1038/s41598-018-29538-9 Argentina,

Colombia

Neuroimaging Resting-State:

weighted symbolic

dependence

metric

Unspecified

Niikado et al. (48) 2019 10.1093/gerona/gly179 Argentina Neuroimaging

Fluid Biomarkers

MRI, cortical

thickness, NfL in

CSF

Unspecified

Riudavets et al.

(49)

2013 10.1111/bpa.12051 Argentina Genetics PS-1 Unspecified

Santamaria-Garcia

et al. (50)

2016 10.3233/JAD-160501 Colombia,

Argentina, Chile

Neuroimaging VBM Neuropsychiatric

symptoms

Santos et al. (51) 2014 10.1016/j.pnpbp.2013.06.019 Brazil Fluid biomarkers PBMC Unspecified

Santos et al. (52) 2020 10.1016/j.jpba.2020.113424 Brazil Fluid biomarkers Plasma metabolite

profile with GC-MS

Unspecified

Sedeño et al. (53) 2017 10.1002/hbm.23627 Colombia,

Argentina,

Australia

Neuroimaging fMRI and

graph-theory

Unspecified

Takada et al. (54) 2016 10.1097/WAD.0000000000000153 Brazil Genetics MAPT and GNR Unspecified

Articles used for the data analysis, showing an organization following an order by authors, year, digital object identifier (DOI), country, category, specification, and cognitive

domain associated.

populations (57), neglecting LAC countries (3). Here, we
provide a brief update and the current state of knowledge on
genetic, neuroimaging, and fluid biomarkers for FTD in the
LAC region.

Genetics Biomarkers for FTD in LAC
A strong genetic component has been observed in FTD, where
20–30% of cases have an autosomal dominant inheritance (26,
27, 58). This inheritance is mainly due to mutations in the genes
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C9orf72, GRN, and MAPT (59). Mutations in MAPT and GRN
each account for 5–11% of total FTD cases (26). In 2011, a novel
pathogenic expansion intronic to the geneC9orf72was identified,
which has subsequently been found to be the most common
genetic cause of FTD in Northern Europe and North America
(60–62). In addition, mutations have been identified in other
genes such as VCP, CHMP2B, TARDBP, FUS, EXT2, SQSTM1,
CHCHD10, TBK1, OPTN, CCNF, TIA1 in rare cases of FTD (63).

C9orf72
A hexanucleotide repeat (GGGGCC, G4C2) expansion in
chromosome 9 open reading frame 72 (C9orf72) [GenBank:
JN681271] was discovered to likely be the most frequent genetic
cause of bvFTD, FTD with motor neuron disease (FTD-MND),
and amyotrophic lateral sclerosis (ALS) in some populations
(60, 62). In Europe and North America, the C9orf72 expansion
accounted for nearly 40% of familial and 8% of sporadic ALS, as
well as 25% of familial and 6% of sporadic FTD cases (64). In
contrast, the frequency was extremely rare in Asian (65, 66) and
Middle Eastern countries (67).

Regarding the genetic situation in the LAC, some studies of
C9orf72 have been described in Chile, Argentina, and Brazil.
In Chile, a case report of a family carrier of C9orf72 mutation
affected by non-fluent aphasia leading to mutism and mild
parkinsonism was described (46). In Argentina, the first case
with FTD and C9orf72 mutation was reported in 2016 (42).
A Brazilian kindred with FTD and FTD-ALS was reported in
2012, in which significant heterogeneity across different family
members was seen and subtle behavioral changes were observed
decades before a diagnosis of bvFTD was made (68). Later, the
first characterization of C9orf72 expansion in a group of patients
was carried out in Latin America (45). Thirty-three patients
with FTD and 50 patients with Amyotrophic Lateral Sclerosis.
Hexanucleotide expansion was identified at a frequency of 18.2%
in the FTD group while expansion explains 37.5% of the familial
cases. In the group with ALS, the expansion was identified in
1 patient with a family history of the 3 cases studied, while in
sporadic ALS the expansion was identified in 2.1% of the patients
(45). In Brazil, a group of 404 patients with ALS and 67 with
FTD were assessed forC9orf72 pathogenic expansion. Pathogenic
repeat expansions were found in 11.8% of familial ALS and 3.6%
of sporadic ALS. In the cases of FTD, the pathogenic expansion
was identified in 7.1% of the familial cases and was not detected
in sporadic cases. Among the 35 cases of ALS with the C9orf72
mutation, 25.7% also presented clinically with FTD; and among
the 15 FTD mutation carriers, 20% also had ALS (39).

MAPT
Microtubule Associated Protein Tau (MAPT) encodes tau
proteins involved in microtubule stabilization and assembly.
Mutations in this gene cause tau splicing alterations, promote
tau cytoplasmic aggregation, or cause tau hyperphosphorylation,
which generates microtubule instability (18, 69). Mutations in
MAPT in FTD have been reported at 17.9% in a British study and
4.7% in a French study (70, 71). Interesting, MAPT mutations
were absent in Korean and Indian cohorts (72, 73). Regarding
LAC status, in Argentina, a missense mutation p.P301L in exon

10 of the MAPT gene has been described in a large family with
a behavioral variant of FTD (44). In Brazil, 55 patients with
behavioral variant FTD, 11 with semantic variant PPA, and 10
with non-fluent variant PPA were studied. In that study, MAPT
mutations were found in 7.1% of the entire cohort and in 10.5%
of the familial cases (54).

GRN
Progranulin protein is encoded by theGRN gene and is expressed
in a wide variety of cell types both in the periphery and in the
central nervous system (74). This protein has several functions
including activation of signaling cascades for neuronal growth,
inflammation, and wound repair (18, 19, 74). The frequency of
GRN mutations in FTD has been reported to be 3–15% in studies
in North America and Europe cohorts (60, 70, 71, 75–78), while
in Asia, the frequency was 0–1.6% (72, 73, 79). Among family
cases, frequencies of 24.8% have been described in northern Italy,
20% in the UK, and 14% in France (70, 71, 75). In Brazil, the
same cohort described above also assessed GRN and identified
mutations in 9.6% of the total cases, including 31.5% of the
familial cases, making GRN mutations the most common form
of monogenic FTD in that sample (54).

TARDBP
Gene codified for a protein called transactive response DNA
binding protein 43 kDA (TDP-43). This protein has functions
such as RNA transcription, splicing, transport, and stability
(80–82). Mutations in TARDBP are not common. Mutations
in TARDBP are identified mostly in familial ALS patients, but
also in sporadic FTD, AD, and PD cases (83–87). In Brazil,
Machado-Costa identified a TARDBP mutation in a 54-year-old
patient diagnosed with semantic dementia. This mutation was
identified in the exon 6 of TARDBP corresponding to a p.I1383V
mutation (88).

Presenilin-1
PSN-1 gene is frequently mutated in familial AD (89, 90),
however, some mutations in this gene can be associated with an
FTD phenotype (91). PSN-1 mutations may be associated with
FTD phenotype in a minority of cases (91, 92). An Argentine
family with FTD history was studied and was identified with the
M146Vmutation in PSN-1. This family showed histopathological
changes of both Pick’s disease and AD (49).

TREM2
Homozygous or compound heterozygous mutations of
TREM2 have been associted to Nasu-Hakola disease which
is characterized by bone involvement with an early-onset
FTD phenotype (93, 94). These mutations of TREM2 have
also been associated with FTD-like presentations without
bone involvement (95, 96). Patients with FTD-like syndromes
have been identified harboring homozygous or compound
heterozygous mutations in TREM2 including p.Q33X, p.Y38C,
p.R47C, p.R62C, p.T66M, p.D86V, p.D87N, p.D134G, among
others (93, 95–100). Also, for heterozygous mutations in
TREM2, association studies have been performed to determine
the conferred risk of each variant. Two meta-analyses of
rare variants in TREM2 found that the p.R47H and p.T96K

Frontiers in Neurology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 663407

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Duran-Aniotz et al. Biomarkers for FTD Across LAC

variants confer a 2- to 3-fold increased risk of FTD in European
populations (101, 102). In a Colombian family that presented
the bvFTD phenotype (and no bone phenotype) was identified
TREM2 p.W198X mutation in homozygosity. The clinical
phenotype identified in the Colombian family with homozygous
TREM2 mutations suggests that the genetic basis of monogenic
bvFTD in LAC may be more heterogeneous than the families
observed in northern European populations (103).

Neuroimaging and Neurocognitive Studies
in FTD
Classically, FTD cases show frontotemporal and insular
atrophy in structural neuroimaging, with Magnetic Resonance
Imaging (MRI) (104). In functional neuroimaging including
positron emission tomography (PET) or single-photon
emission computed tomography (SPECT), hypometabolism
and hypoperfusion have been described (105), suggesting the
involvement of either structural and/or functional impairment of
the frontal lobe in the pathogenesis of FTD (19). Recent advances
in the study of neuroimages have incorporated new modalities
such as diffusion tensor imaging (DTI), resting-state functional
MRI, arterial spin labeling (ASL), and tau PET imaging, allowing
investigation of connectivity and molecular changes in different
clinical populations (105). Aiming to understand the application
of neuroimaging in FTD, several LAC teams have described novel
techniques to further understand the underlying pathology of
FTD and to help in the differential diagnosis. Here, we describe
how neuroimaging has allowed us to study the neural bases of
cognitive deficits in FTD using different techniques.

MRI Studies
Structural
The neuroanatomical correlates of different cognitive tasks
were used to evaluate specific symptoms of FTD, to look
for the pathogenic substrate of that clinical manifestation. A
multinational team of researchers, including participants from
Chile and France, aimed to identify and discriminate the
structural anatomical markers of episodic memory impairment
in bvFTD, comparing those patients with AD patients and
healthy controls, finding that impairment of medial/lateral
temporal atrophy is associated with memory deficits (38).

Social cognition deficits seem to be a critical marker
of the disease. Reports from LAC in this domain have
shown neurocognitive deficits in FTD related tofacial emotion
recognition (106–109), empathy (34, 110–112), theory of mind
(106, 107, 112), moral judgment (35, 113), moral emotions (114),
and interoception (115).

A multinational team of researchers from Argentina, Chile,
and Colombia looked for a structural correlate of the moral
judgment impairment often seen in bvFTD, finding that in
bvFTD patients, judge harm permissible had an inverted
relationship with the gray matter volume in the precuneus,
thus implying that processing intentions and outcomes for
moral judgments rely on regions beyond the Ventromedial Pre-
frontal Cortex (35). The same group also described that in
bvFTD patients, impairment in intentionality comprehension
was associated with atrophy on limbic structures like the

amygdala and anterior paracingulate cortex, while impairment
in empathic concern was associated with atrophy of the
orbitofrontal cortex. This is one of the first LAC studies to
provide a structural base for the core neurocognitive deficit
in FTD (34). The aim of the previous study was mainly to
find a structural correlate of symptoms. No description of the
accuracy of these methods was described, to use it, for example,
as a diagnostic biomarker. However, the authors propose further
research is needed and could eventually have other uses, such as
diagnosis clarification (34).

The contextual fluctuation different social abilities seems to
be a hallmark of FTD (116–120), reported impaired in FTD
populations from LAC (121, 122). Many of these contributions
from LAC have evidenced a multi-feature framework of social
cognition in FTD, connecting behavior, electrophysiology, and
multimodal neuroimaging (50, 53, 115, 123–126).

Research that used machine-learning algorithms
(computational-decision methods) to identify bvFTD and
AD, was carried out by a team from Argentina and Colombia,
in collaboration with one team from Australia (36). This team
was the first one to validate the importance of cognitive-
behavioral assessment and neuroanatomical measures combined
to identify bvFTD and AD from controls (36). In addition,
the combined methods showed high rates of classification
(>91%) and prediction (>91%) of AD and bvFTD in new
cohorts. These results demonstrate the importance of the
application of computer methods combined with cognitive
screening assessment (global cognition and executive function)
and brain atrophy volume (voxel-based morphometry from
fronto-temporo-insular regions in bvFTD) (36).

Functional Connectivity
In the field of neuroimaging, functional connectivity is a very
sensitive tool that is becoming increasingly popular. Functional
connectivity is defined by Friston “as the temporal coincidence
of spatially distant neurophysiological events” (127). In LAC,
this technique had no gold standard reported until a group
from Argentina conducted a multicenter analysis of functional
imaging in bvFTD (53). Their multidimensional approach
involved fMRI and Graph theory to yield a gold-standard
that can aid in the distinction between bvFTD and healthy
controls. To evaluate Functional connectivity several analyses
were performed: seed analysis, inter-regional connectivity,
and graph-theory approaches. They found interesting results
indicating that frontal and temporal areas showed less integrated
and interconnected areas in FTD as described by Freeman
“indicate the number of shortest paths that pass through a
node and link the other node pairs across the network” (128).
In addition, the authors showed in 148 patients that graph-
theory based on weighted matrices could distinguish between
bvFTD and other neurodegenerative diseases across centers,
highlighting this technique as a potential gold standard to analyze
brain networks in bvFTD. Moreover, betweenness centrality
and graph theory are both methods able to detect brain
connectivity abnormalities and discriminate bvFTD from healthy
controls (53).
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Summary of Neuroimaging and
Neurocognitive Studies
The research for new and early biomarkers for neurodegenerative
diseases, such as FTD, is one of the main goals of many research
groups. All the presented research related to neuroimaging has
very high relevance. Search for biomarkers for early diagnosis
of neurodegenerative disease is pivotal and neuroimaging
methods are potential sensitive biomarkers for being used in the
population of the LAC region. The majority of the LAC research
described in our review is based on structural neuroimaging,
and functional imaging. Those biomarkers appear to be more
affordable in the LAC context and further research is needed
to expand these biomarkers across LAC, allowing a better
diagnosis in a limited budget context. Nevertheless, several
other biomarkers are being used around the world, including
functional imaging allowing in vivo imaging of proteins, DTI
allowing to evaluate the connection between lobes, among
others (105). They have provided important insights into FTD
pathology, especially in HIC (104, 129), therefore an effort
should also be done to increase the access to those resources for
special cases.

Electroencephalographic Studies
A multicenter study, conducted by a team from Argentina and
Colombia, developed a novel non-linear association method to
evaluate the ability to identify patients with bvFTD and healthy
controls based on resting-state functional connectivity. This
method called weighted Symbolic Dependence Metric (wSDM)
inspired by EEG studies and based on machine learning, proved
to be superior to linear measurements (R Pearson) widely used
in the identification of functional connectivity in patients with
bvFTD (41, 47). Another similar non-linear connectivity method
has been proven robust to classify FTD patients based on the
dynamical fluctuation assessed with machine learning (130). This
study also provided evidence of generalization of classification to
both LAC and High-Income Countries (HIC) datasets. Although
few studies with EEG were founded, EEG is a cheap and
accessible method of research, especially useful for LMIC like in
Latin America.

FTD-Related Fluid Biomarkers
Cerebrospinal fluid (CSF) and blood are the most frequent
fluids which have been described or studied as a diagnostic
tool in dementias (131). Here, we will provide the most recent
knowledge of the use of fluids biomarkers in LAC cohorts
suffering from FTD.

Neurofilament Light Chain
NfL is a component of the neuronal cytoskeleton, which is
involved in structural support, transport, and neurotransmission
in neurons (132). NfL is released into the CSF and blood when
neurodegeneration occurs (132). Increased levels of NfL have
been reported in the CSF of patients with ALS and FTD (133,
134). NfL has been suggested as a marker of FTD severity, as
high concentrations in CSF are associated with shorter survival
(135). A strong correlation has been observed between plasma
NfL concentrations and CSF (136, 137), and it has been shown

that serum or plasma NfL levels are increased in FTD, reflecting
disease severity and predicting clinical deterioration and brain
volume loss (138–141). NfL concentration only increases during
the symptomatic phase, while pre-symptomatic levels are usually
similar to controls (142). NfL is also a promising blood
biomarker in genetic frontotemporal dementia (GRN, C9orf72,
and MAPT) (143). In a longitudinal study across people from
Canada and Europe with pre-symptomatic and symptomatic
genetic frontotemporal dementia, NfL levels showed changes
over time and correlated them with longitudinal imaging and
clinical parameters. During the study, NfL levels were increased
in persons who converted from pre-symptomatic, highlighting
serum NfL as an easily accessible biomarker in genetic FTD
dementia (143). Another study using a meta-analysis approach
of fluid biomarkers to differentiate DFT from AD described that
NfL were useful in distinguishing both diseases (144–146). The
only report about FTD and NfL in the LAC region was done
in Argentina, where 13 patients with bvFTD, 6 with lvPPA, 2
with svPPA, and 4 subjects with nfvPPA were studied. NfL levels
in CSF in patients with bvFTD are higher than in MCI, AD,
and controls (48), which has been described in other studies
(145, 147, 148).

Progranulin
Progranulin is a pleiotropic growth factor that is expressed
in multiple tissues and cell types throughout the human
body, serving important roles in normal tissue development,
proliferation, regeneration, inflammation, and tumorigenesis
(149, 150). In the brain, progranulin is involved in both neuronal
survival and neurodegenerative disease (74, 151). Mutations
in GRN cause disease through haploinsufficiency and CSF
and plasma progranulin concentrations are reduced in GRN
mutation carriers (152). Central nervous system progranulin
levels are regulated differently from peripheral progranulin
levels in neurodegenerative diseases (134, 153–157). This has
also been observed in healthy elderly subjects (155). Peripheral
levels may not adequately represent progranulin levels in the
central nervous system (155, 156). Very low plasma progranulin
levels have been observed in FTD patients with GRN mutations
compared with sporadic FTD (152, 158, 159), suggesting that this
analysis is useful for detecting carriers of GRN mutations that
cause haploinsufficiency (160). The only study usingGRN in LAC
was done in Brazil (54). Plasma progranulin were evaluated in 7
GRNmutation carriers, 55 non-carriers mutation and 60 healthy
controls. Levels of plasma progranulin were significantly lower
in the FTD group carriers of GRN mutations than in the FTD
group without GRN mutations or in the control group. Plasma
progranulin levels were also lower in the FTD without GRN
mutations group, in comparison to the control group (54).

TDP-43
TDP-43 is a protein involved in alternative splicing and
transcriptional regulation (161). In ALS and FTD, TDP-43
protein suffers ubiquitination, hyperphosphorylation, and also
truncation of C-Terminal, increasing its aggregation profile
leading to neurotoxicity and further cell death (19, 25). Elevated
levels of TDP-43 have been observed in CSF in patients with
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ALS and FTD, with higher concentrations in ALS than in FTD,
suggesting that TDP-43 is a biomarker in this disease (162).
This could be explained by the higher percentage of TDP-43-
related pathology in ALS (∼97%), while in FTD a significant
percentage is due to other (mainly tau deposits) pathologies
(∼45%) (162). Majumder et al. conducted the first meta-analysis
showing that TDP-43 in CSF is significantly increased in patients
with FTD-ALS and ALS (163). However, this difference is not
observed in patients with FTD alone. These data suggest the
use of CSF TDP-43 as a biomarker for ALS (163). Plasma TDP-
43 has been useful in differentiating FTD patients with TDP-
43-based pathology from those with tau-based pathology (164).
However, no differences in TDP-43 concentrations have been
identified between patients with FTD and AD (165). By analyzing
the phosphorylated form of TDP-43 (pTDP-43) which is added
in the brain, they have shown a good correlation between plasma
protein levels and pTDP-43 depositions in the brain (165). High
concentrations of pTDP-43 in plasma were observed in C9orf72
and GRN mutation carriers, while total pTDP-43 levels were
observed to be decreased (166).

All together suggest that TDP-43 may be used as a biomarker
in FTD. However, at present, using our PRISMAmethods we did
not find studies in LAC countries and research of TDP-43 as a
biomarker is still missing.

Aβ-Amyloid, Tau, and P-Tau
In a recent study, CSF amyloid-beta (Aβ)1–42, total tau (T-
Tau), and phosphorylated tau (p-Tau) ratios, showed their clinical
utility for differentiating AD from non-AD neurodegenerative
dementias, distinguishing AD from both bvFTD and semantic
dementia (SD, sensitivities, and specificities of 80–90%) (167). In
a similar study, low levels of the secreted form of Ab precursor
protein (sAPPb) in CSF have been observed in patients with FTD
compared to patients with AD and controls (168). Interestingly,
the Aβ42/pTau181 ratio showed better differentiation between
AD and FTD patients (169). This study was supported by two
other investigations reporting increased sensitivity (80–86%) and
specificity (82%) of the Aβ42/pTau181 ratio, suggesting that those
proteins are the best biomarker subset to differentiate FTLD from
AD (37, 170). The plasma levels of p-Tau181 were significantly
higher in patients on the AD spectrum groups and FTD patients,
with the highest level in the FTD group (171). In a recent study,
plasma p-tau181 distinguished AD of DFT with an AUC of
100% (172). Another phosphorylated form of tau, p-Tau217, has
been studied in AD and other neurodegenerative diseases such
as bvFTD or PPA, finding an AUC of 0.92 with a specificity
of 81% and sensitivity of 93% to differentiate between these
variants of FTD and AD (173). In Brazil, CSF AD biomarkers
were used to distinguish a case of a frontal variant of AD and
behavioral variant frontotemporal dementia (40). Importantly,
the patient fulfilled criteria for probable bvFTD, however, CSF
biomarkers signature showing low Aβ42, high Tau, and high
p-Tau established a diagnosis of the frontal variant of AD (40).

GFAP
Glial fibrillary acidic protein (GFAP) is a protein widely expressed
by numerous cell types of CNS, including astrocytes (174, 175).

GFAP, an establishedmarker of astrogliosis in neurodegeneration
(174, 175), have been recently described as a possible biomarker
for FTD (176–179). Increased levels of GFAP have been reported
in AD and ALS patients in both CSF and serum (57, 177).
Previous studies of GFAP in FTD showed increased CSF levels
in symptomatic patients, however, changes in this protein’s levels
in the blood have not been identified (177–179). In a recent study,
GFAP concentration was analyzed in FTD patients carrying
mutations in C9orf72, GRN and, MAPT in both symptomatic
and pre-symptomatic subjects (176). Increased plasma levels of
GFAP were only observed in GRN mutation carriers. In pre-
symptomatic stages of the disease, elevated GFAP concentrations
were correlated with lower cognitive test scores and lower brain
volumes, suggesting that GFAP increases in late pre-symptomatic
stages. In symptomatic stages, higher GFAP concentrations were
associated with faster rates of atrophy, suggesting that GFAP
could be associated with disease intensity, progression, and
survival (176). In our LAC regions, no studies in GFAP levels
have been performed.

Inflammatory Biomarkers
It has been suggested that immune activation may be an
early cause of neurodegeneration (180) or that the addition
or accumulation of tau or TDP-43 induces an increased
cytotoxic response leading to chronic neuroinflammation
(181–183). In FTD, the immune response is likely to be
triggered by the accumulation of poorly folded tau proteins
or TDP-43, or the deregulation caused by signals released
by damaged neurons or the deregulation of mechanisms to
remove poorly folded or damaged neuronal proteins. These
processes lead to neurodegeneration (180, 184–186). Changes
in inflammatory markers in blood, serum, and CSF have been
reported in different FTD subtypes, suggesting that inflammatory
factors play an important role in the pathogenesis of the
disease (187). Biomarkers include some of the pro- and anti-
inflammatory cytokines, chemokines, and secondary messengers
that coordinate the immune response through regulation of
innate and adaptive responses in the periphery (188, 189).

Patients with genetic and sporadic FTD share similar
patterns of inflammation at CSF (179). Patients with FTD show
overexpression of tumor necrosis factor (TNF) and transforming
growth factor (TGF-b1) in CSF, as well as microglia activation
in atrophic areas of the brain (190, 191). One study of sporadic
DFT reported elevated CSF levels of TNF-α (192), while another
study reported decreased CSF levels of IL-12 (193). Smaller
studies reported elevated CXCL8 and IL-15 levels in the CSF
(194, 195). However, all of these findings were not reproduced
in a subsequent study (196). Reports of elevated CSF levels from
TGF-β and IL-11 (192, 197) have not yet been reproduced or
denied, while two studies have identified elevated CSF levels
from CCL2 in sporadic FTD (194, 196). Progranulin appears
to be involved in neuroinflammation and microglia activation
(198–200). In a small cohort of GRN mutation carriers, an
apparent CSF profile of elevated CXCL10 and decreased levels
of TNF-α, IL-15, and CCL5 have been described (196). Another
recently identified marker of neuroinflammation is soluble
TREM2. TREM2 encodes a receptor expressed on immune cells
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that regulate phagocytosis. In the brain, TREM2 is expressed
exclusively by microglia (201), and it has been suggested that
TREM2 levels are a marker of microglia and neuroinflammation
activity (202). In carriers of TREM2 mutations, sTREM2 CSF
levels are decreased, suggesting a loss of function as a pathological
mechanism (203). One study also found that CSF sTREM2 levels
decreased in a larger cohort of patients with FTD, including
carriers with C9orf72 and GRN mutations (204).

Studies of circulating inflammatory biomarkers in patients
with FTD are scarce even though blood samples are easier to
obtain than CSF and also, the results have been inconsistent.
One study shows that IL-6 levels are increased in FTD patients
carrying GRN mutations when compared to pre-symptomatic
carriers, suggesting an inflammatory response when FTD
symptoms appear (205). In a cross-sectional study of patients
with a mutation in the gene CHMP2B associated frontotemporal
dementia, levels of inflammatory markers such as CCL4 IL-
15, CXCL10, CCL22, and TNF-α were found increased and
significantly associated with cognitive decline, suggesting a
peripheral inflammatory response to neurodegeneration (206).
In Brazil, Fraga et al. for the first time evaluated different
proteins involved in the immune response in patients with FTD
(43). The proteins evaluated in plasma were high sensitivity C
reactive protein (hsCRP), TNF, IL-β1, IL-6, TGF-β1, LXA4, and
AnxA1, and investigated changes in LXA4 e AnxA1 levels in
CSF bvFTD patients. For AnxA1 alone, a reduction in plasma
levels was demonstrated in bvFTD patients compared to AD
and controls. However, no difference was observed between AD
and bvFTD in CSF (43). Another study performed in Brazil
analyzed a B7-CD28/CTLA-4 pathway that is an important
immunological signaling pathway involved in the modulation of
T cell activation. Forty-six patients were included in this study
divided into three groups: 27 AD, 10 FTD, and 9 control patients.
The FTD group was composed of 7 patients with bvFTD, 2
patients with progressive non-fluent aphasia, and 1 patient with
semantic dementia. CTLA-4 expression showed a reduction in
FTD patients compared to AD or control groups (R. R. 205).

Proteomics and Metabolomics
Unbiased mass spectrometry (MS) was performed and identified
20 differentially abundant proteins between symptomatic GRN
mutation carriers and 24 non-carriers and 9 between 19
symptomatic and 9 pre-symptomatic mutation carriers. These
results were validated in subjects symptomatic and pre-
symptomatic mutation carriers of C9orf72 and MAPT, in
addition to GRN carriers (143). A validation study performed by
targeted mass spectrometry showed significantly lower levels of
NPTXR, CHGA, VSTM2B, PTPRN2, and VGF in symptomatic
GRN mutation carriers compared to pre-symptomatic and non-
carriers. Four of the 5 protein decreases (NPTXR, VSTM2B,
CHGA, and PTPRN2) were observed in symptomatic GRN
carriers as well as symptomatic C9orf72 carriers, suggesting
that these changes are not specific for GRN associated FTD.
In MAPT mutation carriers, significant differences in protein
concentrations were only found for NPTXR and CHGA. This
suggests that may there be differences in pathophysiology in
MAPT mutation carriers or it may be due to the smaller sample

size (143). The results show that synaptic, secretory vesicle, and
inflammatory proteins are dysregulated in the symptomatic stage
in mutation carriers and may provide new insights into the
pathophysiology of genetic FTD (143). One study performed in
Brazil using gas chromatography coupled to mass spectrometry
(GC-MS) included nine patients with bvFTD, 17 with AD and 15
cognitively healthy controls in the training set, whose data were
validated on a testing set of 8 bvFTD, 14 AD, and 10 controls
(52). Differences were identified when compared to the bvFTD
and control groups, but not between bvFTD and AD groups. The
bvFTD group showed decreased levels of plasma of metabolites
related to glycine/serine/threonine, alanine/aspartate/glutamate
pathways, and aminoacyl-tRNA biosynthesis when compared to
controls. These results suggest that impairment of amino acid
metabolism and the translation process may be present in bvFTD
patients (52).

CONCLUSIONS AND FUTURE
DIRECTIONS

FTD, like the rest of dementias, is a public health problem,
often underdiagnosed, undertreated, and not fully understood.
This situation is especially relevant in LAC, presenting several
barriers to diagnosis, treatment, and further research on FTD.
In this review, we showed local efforts to make research on
biomarkers in the LAC region. Until todaymost of the knowledge
about FTD comes from North America and Europe cohorts,
providing guidelines and descriptions that do not necessarily
capture the local reality in terms of psychopathology, genetics,
or diagnostic tools. Aligned with that, our current analysis in
this systematic review revealed only 21 articles published between
January 2000 until November 2020 in LAC, considering FTD
participants and genetic, neuroimaging, or fluid biomarkers
studies (Table 1). Interestingly, most of the researchers are
coming from Argentina, and Brazil, representing more than
55% of all of the manuscripts (Table 2). Most of the literature
comes from genetics and neuroimaging studies, representing
∼70% of the articles. As we showed in Figure 2, the C9orf72
gene is widely represented in familial and sporadic cases from
Chile, Brazil and Argentina, followed by MAPT and GRN
genes, as described in HIC. Several neuroimaging techniques
are being used, however, most of the LAC research described
in our review is based on structural neuroimaging, functional
imaging, and EEG. In this context, further research is needed
to expand these biomarkers across LAC, allowing a better and
accurate diagnosis.

Important to emphasize, studies on fluid biomarkers also
proceeded exclusively from Brazil and Argentina (37, 40, 43, 48,
51, 52). Nfl, PGNR, and TDP-43 proteins appear to be the best
molecules for FTD diagnosis in most of the studies. However,
no studies of TDP-43 in the LAC region have been performed
to distinguish controls from dementia patients, making it clear
that it is imperative to develop and study fluid biomarkers in
our regions. Despite the contribution of LAC studies, our review
suggests that biomarkers research is still needed to increase the
comprehension knowledge about FTD pathology in LAC and
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TABLE 2 | Quantity distribution of papers.

Papers Country Category

Argentina Brazil Colombia Chile Australia France Genetics Neuroimaging Fluid biomarkers

Quantity/Percentage (%) 12/35.3 7/20.6 7/20.6 5/14.7 2/5.9 1/2.9 7/30.4 10/43.5 6/26.1

Quantity and percentage of papers by country and category for the data analysis.

FIGURE 2 | Genetics biomarkers of FTD in LAC. The presence and frequency of FTD genetic biomarkers (TREM2, C9orf72, MAPT, GRN, TARDBP, and PSN-1) in

LAC.

their contribution to clinical diagnosis. Biomarkers research is yet
limited in number with a small sample size or simply case reports.
In a recent study, plasma p-tau181 distinguished AD of DFT with
an AUC of 100% (172), suggesting that this protein could be used
as a potential diagnosis tool, however no studies of this protein
has been developed in the LAC region.

Knowledge of the clinical manifestation of FTD has
progressed exponentially over the past 20 years (19). However,
the heterogeneity of the clinical outcome of FTD together
with the potential overlapping with other conditions leads
to considerable misdiagnosis by clinicians (19). In context,
clinicians, biomedical, and basic researchers have increased
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awareness about this disabling neurodegenerative condition,
especially in vulnerable regions such as LAC. Moreover,
considering the mixed genetic heritage of LAC and the high
prevalence of cardiovascular risk (207), among others, we
highlight the need to develop strategies to increase research
in the region to study the contribution of biomarkers, mainly
fluid biomarkers, to understand the pathology of FTD and
improve diagnosis.

Recent years have seen a rapid development of biomarkers for
FTD and other dementias (29–31). LAC region is experiencing
increased demand for harmonized, innovative, and cross-
regional studies on dementias, including FTD. Across the LAC
countries, the case of FTD is even more challenging than AD.
LAC region may be driven by unique genetic factors which
could influence the prevalence and presentation of dementia
(1–3, 208–213). However, region-specific determinants remain
unknown and the region is still underrepresented in international
publications/journals including studies in prevalence, social
determinants, and local research of genetics and biomarkers
(2, 3). Thus, specific knowledge on the regional reality of LAC
is still scarce and limited (2, 3, 214). It is important to mention
that the most frequent limitations raised by researchers are the
lack of infrastructure, technology, availability of samples from
native populations specific to each LAC country, and the high
costs associated with biomarker analysis (3).

Recently, multiple regional research efforts have been
developed in LAC countries focused on the use of machine
learning for the combination of neuroimaging modalities as well
as behavioral/cognitive assessment to a better understanding of
different dementias in our region (36, 130, 215–219). A multi-
feature framework, targeting no one single potential biomarker,
but a multilevel combination of measures, tuned by machine
learning algorithms robust to assess simultaneously multiple
features, supporting redundancy of information, and extracting
themain components via progressive feature elimination process,
would represent a new-generation promissory approach to target
the complex multimodal nature of FTD. Dementia research in
the region is certainly reduced in comparison with HIC in the
LAC, highlighting an urgent need to integrate different areas of

dementia knowledge with a more global perspective (6, 209).
Thus, the development of a more extended regional network
establishing multi-center LAC initiatives is critical for global
discovery and research standardization of dementia in these
underrepresented cohorts.
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172. Karikari TK, Emeršič A, Vrillon A, Lantero-Rodriguez J, Ashton NJ,
Kramberger MG, et al. Head-to-head comparison of clinical performance
of CSF phospho-tau T181 and T217 biomarkers for Alzheimer’s disease
diagnosis. Alzheimers Dement. (2020) 175:755–67. doi: 10.1002/alz.12236

173. Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E,
et al. Discriminative accuracy of plasma phospho-tau217 for alzheimer
disease vs other neurodegenerative disorders. JAMA. (2020) 324:772–
81. doi: 10.1001/jama.2020.12134

174. Colangelo AM, Alberghina L, Papa M. Astrogliosis as a therapeutic
target for neurodegenerative diseases. Neurosci Lett. (2014) 565:59–
64. doi: 10.1016/j.neulet.2014.01.014

175. Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte
intermediate filament system in diseases of the central nervous system. Curr
Opin Cell Biol. (2015) 32:121–30. doi: 10.1016/j.ceb.2015.02.004

176. Heller C, Foiani MS, Moore K, Convery R, Bocchetta M, Neason M, et al.
Plasma glial fibrillary acidic protein is raised in progranulin-associated
frontotemporal dementia. J Neurol Neurosurg Psychiatry. (2020) 91:263–
70. doi: 10.1136/jnnp-2019-321954

177. Ishiki A, Kamada M, Kawamura Y, Terao C, Shimoda F, Tomita N,
et al. Glial fibrillar acidic protein in the cerebrospinal fluid of alzheimer’s
disease, dementia with lewy bodies, and frontotemporal lobar degeneration.
J Neurochem. (2016) 136:258–61. doi: 10.1111/jnc.13399

178. Oeckl P, Halbgebauer S, Anderl-Straub S, Steinacker P, Hussa AM,
Neugebauer H, et al. Glial fibrillary acidic protein in serum is increased in
alzheimer’s disease and correlates with cognitive impairment. J Alzheimers

Dis. (2019) 67:481–8. doi: 10.3233/JAD-180325
179. Oeckl P, Weydt P, Steinacker P, Anderl-Straub S, Nordin F, Volk AE, et al.

Different neuroinflammatory profile in amyotrophic lateral sclerosis and
frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg
Psychiatry. (2019) 90:4–10. doi: 10.1136/jnnp-2018-318868

180. Heneka MT, Kummer MP, Latz E. Innate immune activation
in neurodegenerative disease. Nat Rev Immunol. (2014) 14:463–
77. doi: 10.1038/nri3705

181. Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, et al.
Cytokine production of activated microglia and decrease in neurotrophic
factors of neurons in the hippocampus of lewy body disease brains. Acta
Neuropathol. (2005) 109:141–50. doi: 10.1007/s00401-004-0919-y

182. Mrak RE, Griffin WST. Common inflammatory mechanisms in lewy body
disease and alzheimer disease. J Neuropathol Exp Neurol. (2007) 66:683–
6. doi: 10.1097/nen.0b013e31812503e1

183. Pasqualetti G, Brooks DJ, Edison P. The role of
neuroinflammation in dementias. Curr Neurol Neurosci Rep. (2015)
15:17. doi: 10.1007/s11910-015-0531-7

184. Cerami C, Iaccarino L, Perani D. Molecular imaging of neuroinflammation
in neurodegenerative dementias: the role of in vivo PET imaging. Int J Mol

Sci. (2017) 18:993. doi: 10.3390/ijms18050993
185. Miksztowicz V, Morales C, Zago V, Friedman S, Schreier L, Berg G. Effect

of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9
activity in rats fed a sucrose-rich diet. Nutr Metab Cardiovasc Dis. (2014)
24:294–300. doi: 10.1016/j.numecd.2013.08.007

186. Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: friend
or foe?Mol Neurobiol. (2017) 54:8071–89. doi: 10.1007/s12035-016-0297-1

187. Bright F,Werry EL, Dobson-Stone C, Piguet O, Ittner LM,Halliday GM, et al.
Neuroinflammation in frontotemporal dementia. Nat Rev Neurol. (2019)
15:540–55. doi: 10.1038/s41582-019-0231-z

188. Dembic Z. The cytokines of the immune system. Cytokines Immune Syst.
(2015) 143–239. doi: 10.1016/B978-0-12-419998-9.00006-7

189. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the
details. J Neurochem. (2016) 139:136–53. doi: 10.1111/jnc.13607

190. Cagnin A, Rossor M, Sampson EL, MacKinnon T, Banati RB. In vivo
detection of microglial activation in frontotemporal dementia. Ann Neurol.

(2004) 56:894–7. doi: 10.1002/ana.20332
191. Zhang J. Mapping neuroinflammation in frontotemporal dementia

with molecular PET imaging. J Neuroinflammation. (2015)
12:108. doi: 10.1186/s12974-015-0236-5

192. Sjögren M, Folkesson S, Blennow K, Tarkowski E. Increased
intrathecal inflammatory activity in frontotemporal dementia:
pathophysiological implications. J Neurol Neurosurg Psychiatry. (2004)
75:1107–11. doi: 10.1136/jnnp.2003.019422

193. Rentzos M, Zoga M, Paraskevas GP, Kapaki E, Rombos A, Nikolaou C,
et al. IL-15 is elevated in cerebrospinal fluid of patients with alzheimer’s
disease and frontotemporal dementia. J Geriatr Psychiatry Neurol. (2006)
19:114–7. doi: 10.1177/0891988706286226

194. Galimberti, D.aniela, Schoonenboom N, Scheltens P, Fenoglio C,
Bouwman F, et al. Intrathecal chemokine synthesis in mild cognitive
impairment and alzheimer disease. Archives of Neurology. (2006)
63:538–43. doi: 10.1001/archneur.63.4.538

195. Rentzos M, Paraskevas GP, Kapaki E, Nikolaou C, Zoga M, Rombos A,
et al. Interleukin-12 is reduced in cerebrospinal fluid of patients with
Alzheimer’s disease and frontotemporal dementia. J Neurol Sci. (2006)
249:110–4. doi: 10.1016/j.jns.2006.05.063

196. Galimberti D, Bonsi R, Fenoglio C, Serpente M, Cioffi SMG, Fumagalli G,
et al. Inflammatory molecules in frontotemporal dementia: cerebrospinal
fluid signature of progranulin mutation carriers. Brain Behav Immun. (2015)
49:182–7. doi: 10.1016/j.bbi.2015.05.006

197. Galimberti D, Venturelli E, Fenoglio C, Guidi I, Villa C, Bergamaschini
L, et al. Intrathecal levels of IL-6, IL-11 and LIF in alzheimer’s
disease and frontotemporal lobar degeneration. J Neurol. (2008) 255:539–
44. doi: 10.1007/s00415-008-0737-6

198. Ahmed Z, Mackenzie IRA, Hutton ML, Dickson DW. Progranulin
in frontotemporal lobar degeneration and neuroinflammation. J

Neuroinflammation. (2007) 4:7. doi: 10.1186/1742-2094-4-7
199. Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, et al. Progranulin

deficiency promotes neuroinflammation and neuron loss following toxin-
induced injury. J Clin Invest. (2012) 122:3955–9. doi: 10.1172/JCI63113

200. Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE,
Cleveland CM, et al. TDP-43 frontotemporal lobar degeneration and
autoimmune disease. J Neurol Neurosurg Psychiatry. (2013) 84:956–
62. doi: 10.1136/jnnp-2012-304644

201. Jay TR, Von Saucken VE, Landreth GE. TREM2 in neurodegenerative
diseases.Mol Neurodegenerat. (2017) 12:56. doi: 10.1186/s13024-017-0197-5

Frontiers in Neurology | www.frontiersin.org 17 June 2021 | Volume 12 | Article 663407

https://doi.org/10.1186/s12883-018-1091-7
https://doi.org/10.1007/s00401-008-0389-8
https://doi.org/10.1007/s00401-009-0594-0
https://doi.org/10.1136/jnnp-2013-305972
https://doi.org/10.1186/s13195-018-0361-3
https://doi.org/10.1212/WNL.0000000000004088
https://doi.org/10.1093/brain/awv181
https://doi.org/10.3389/fneur.2015.00138
https://doi.org/10.3390/ijms21186914
https://doi.org/10.1002/alz.12236
https://doi.org/10.1001/jama.2020.12134
https://doi.org/10.1016/j.neulet.2014.01.014
https://doi.org/10.1016/j.ceb.2015.02.004
https://doi.org/10.1136/jnnp-2019-321954
https://doi.org/10.1111/jnc.13399
https://doi.org/10.3233/JAD-180325
https://doi.org/10.1136/jnnp-2018-318868
https://doi.org/10.1038/nri3705
https://doi.org/10.1007/s00401-004-0919-y
https://doi.org/10.1097/nen.0b013e31812503e1
https://doi.org/10.1007/s11910-015-0531-7
https://doi.org/10.3390/ijms18050993
https://doi.org/10.1016/j.numecd.2013.08.007
https://doi.org/10.1007/s12035-016-0297-1
https://doi.org/10.1038/s41582-019-0231-z
https://doi.org/10.1016/B978-0-12-419998-9.00006-7
https://doi.org/10.1111/jnc.13607
https://doi.org/10.1002/ana.20332
https://doi.org/10.1186/s12974-015-0236-5
https://doi.org/10.1136/jnnp.2003.019422
https://doi.org/10.1177/0891988706286226
https://doi.org/10.1001/archneur.63.4.538
https://doi.org/10.1016/j.jns.2006.05.063
https://doi.org/10.1016/j.bbi.2015.05.006
https://doi.org/10.1007/s00415-008-0737-6
https://doi.org/10.1186/1742-2094-4-7
https://doi.org/10.1172/JCI63113
https://doi.org/10.1136/jnnp-2012-304644
https://doi.org/10.1186/s13024-017-0197-5
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Duran-Aniotz et al. Biomarkers for FTD Across LAC

202. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, et al.
Identification of soluble TREM-2 in the cerebrospinal fluid and its
association with multiple sclerosis and CNS inflammation. Brain. (2008)
131:3081–91. doi: 10.1093/brain/awn217

203. Piccio L, Deming Y, Del-Águila JL, Ghezzi L, Holtzman DM, Fagan AM,
et al. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease
and associated with mutation status. Acta Neuropathol. (2016) 131:925–
33. doi: 10.1007/s00401-016-1533-5

204. Kleinberger G, Yamanishi Y, Suárez-Calvet M, Czirr E, Lohmann E,
Cuyvers E, et al. TREM2 mutations implicated in neurodegeneration
impair cell surface transport and phagocytosis. Sci Transl Med. (2014)
6:243ra86. doi: 10.1126/scitranslmed.3009093

205. Bossù P, Salani F, Alberici A, Archetti S, Bellelli G, Galimberti D, et al. Loss of
function mutations in the progranulin gene are related to pro-inflammatory
cytokine dysregulation in frontotemporal lobar degeneration patients. J
Neuroinflammation. (2011) 8:76. doi: 10.1186/1742-2094-8-65

206. Roos P, von Essen MR, Nielsen TT, Johannsen P, Stokholm J, Bie AS, et al.
Inflammatory markers of CHMP2B-mediated frontotemporal dementia.
J Neuroimmunology. (2018) 324:136–42. doi: 10.1016/j.jneuroim.2018.
08.009

207. Miranda JJ, Herrera VM, Chirinos JA, Gómez LF, Perel P, Pichardo R,
et al. Major cardiovascular risk factors in Latin America: a comparison
with the United States. The Latin American Consortium of Studies in
Obesity (LASO). PLoS ONE. (2013) 8:e54056. doi: 10.1371/journal.pone.
0054056

208. Aguirre-Acevedo DC, Lopera F, Henao E, Tirado V, Muñoz C, Giraldo M,
et al. Cognitive decline in a colombian kindred with autosomal dominant
alzheimer disease a retrospective cohort study. JAMANeurol. (2016) 73:431–
8. doi: 10.1001/jamaneurol.2015.4851

209. Alladi S, Hachinski V. World dementia. Neurology. (2018) 91:264–
70. doi: 10.1212/WNL.0000000000005941

210. Ibáñez A, Sedeño L, García AM, Deacon RMJ, Cogram P. Editorial:
human and animal models for translational research on neurodegeneration:
challenges and opportunities from South America. Front Aging Neurosci.

(2018) 10:95. doi: 10.3389/fnagi.2018.00095
211. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K,

et al. Alzheimer’s disease and vascular dementia in developing countries:
prevalence, management, risk factors. Lancet Neurol. (2008) 7:812–
26. doi: 10.1016/S1474-4422(08)70169-8

212. Reitz C, Mayeux R. Genetics of alzheimer’s disease in caribbean hispanic and
African American populations. Biol Psychiatry. (2014) 75:534–41). Elsevier
USA. doi: 10.1016/j.biopsych.2013.06.003

213. Tosto G, Bird TD, Tsuang D, Bennett DA, Boeve BF, Cruchaga C, et al.
Polygenic risk scores in familial alzheimer disease. Neurology. (2017)
88:1180–6. doi: 10.1212/WNL.0000000000003734

214. Parra MA. Overcoming barriers in cognitive assessment
of alzheimer’s disease. Dement Neuropsychol. (2014) 8:95–
8. doi: 10.1590/S1980-57642014DN82000002

215. Abrevaya S, Fittipaldi S, García AM, Dottori M, Santamaria-Garcia H, Birba
A, et al. At the heart of neurological dimensionality: cross-nosological and
multimodal cardiac interoceptive deficits. Psychosom Med. (2020) 82:850–
61. doi: 10.1097/PSY.0000000000000868

216. Eyigoz E, Courson M, Sedeño L, Rogg K, Orozco-Arroyave JR, Nöth E, et al.
From discourse to pathology: automatic identification of parkinson’s disease
patients via morphological measures across three languages. Cortex. (2020)
132:191–205. doi: 10.1016/j.cortex.2020.08.020

217. Gonzalez Campo C, Salamone PC, Rodríguez-Arriagada N, Richter F,
Herrera E, Bruno D, et al. Fatigue in multiple sclerosis is associated with
multimodal interoceptive abnormalities. Mult Sclero J. (2019) 26:1845–
53. doi: 10.1177/1352458519888881

218. Ipiña IP, Kehoe PD, Kringelbach M, Laufs H, Ibañez A,
Deco G, et al. Modeling regional changes in dynamic
stability during sleep and wakefulness. NeuroImage. (2020)
215:116833. doi: 10.1016/j.neuroimage.2020.116833

219. Torres-Prioris MJ, López-Barroso D, Càmara E, Fittipaldi
S, Sedeño L, Ibáñez A, et al. Neurocognitive signatures of
phonemic sequencing in expert backward speakers. Sci Rep. (2020)
10:10621. doi: 10.1038/s41598-020-67551-z

Disclaimer: The contents of this publication are solely the responsibility of the
authors and do not represent the official views of these institutions.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Duran-Aniotz, Orellana, Leon Rodriguez, Henriquez, Cabello,

Aguirre-Pinto, Escobedo, Takada, Pina-Escudero, Lopez, Yokoyama, Ibanez, Parra

and Slachevsky. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 18 June 2021 | Volume 12 | Article 663407

https://doi.org/10.1093/brain/awn217
https://doi.org/10.1007/s00401-016-1533-5
https://doi.org/10.1126/scitranslmed.3009093
https://doi.org/10.1186/1742-2094-8-65
https://doi.org/10.1016/j.jneuroim.2018.08.009
https://doi.org/10.1371/journal.pone.0054056
https://doi.org/10.1001/jamaneurol.2015.4851
https://doi.org/10.1212/WNL.0000000000005941
https://doi.org/10.3389/fnagi.2018.00095
https://doi.org/10.1016/S1474-4422(08)70169-8
https://doi.org/10.1016/j.biopsych.2013.06.003
https://doi.org/10.1212/WNL.0000000000003734
https://doi.org/10.1590/S1980-57642014DN82000002
https://doi.org/10.1097/PSY.0000000000000868
https://doi.org/10.1016/j.cortex.2020.08.020
https://doi.org/10.1177/1352458519888881
https://doi.org/10.1016/j.neuroimage.2020.116833
https://doi.org/10.1038/s41598-020-67551-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries
	Introduction
	Materials and Methods
	Database Search
	Eligibility Criteria and Study Selection
	Process of Selection
	Data Synthesis

	Results
	Biomarkers
	Genetics Biomarkers for FTD in LAC
	C9orf72
	MAPT
	GRN
	TARDBP
	Presenilin-1
	TREM2

	Neuroimaging and Neurocognitive Studies in FTD
	MRI Studies
	Structural
	Functional Connectivity

	Summary of Neuroimaging and Neurocognitive Studies
	Electroencephalographic Studies
	FTD-Related Fluid Biomarkers
	Neurofilament Light Chain
	Progranulin
	TDP-43
	Aβ-Amyloid, Tau, and P-Tau
	GFAP
	Inflammatory Biomarkers
	Proteomics and Metabolomics


	Conclusions and Future Directions
	Data Availability Statement
	Author Contributions
	Funding
	References


