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Background: Reports vary on the incidence of vestibular dysfunction and dizziness in

patients following cochlear implantation (CI). Disequilibrium may be caused by surgery at

the cochlear base, leading to functional disturbances of the vestibular receptors and

endolymphatic duct system (EDS) which are located nearby. Here, we analyzed the

three-dimensional (3D) anatomy of this region, aiming to optimize surgical approaches

to limit damage to the vestibular organ.

Material and Methods: A total of 22 fresh-frozen human temporal bones underwent

synchrotron radiation phase-contrast imaging (SR-PCI). One temporal bone underwent

micro-computed tomography (micro-CT) after fixation and staining with Lugol’s iodine

solution (I2KI) to increase tissue contrast. We used volume-rendering software to

create 3D reconstructions and tissue segmentation that allowed precise assessment

of anatomical relationships and topography. Macerated human ears belonging to the

Uppsala collection were also used. Drilling and insertion of CI electrodes was performed

with metric analyses of different trajectories.

Results and Conclusions: SR-PCI and micro-CT imaging demonstrated the complex

3D anatomy of the basal region of the human cochlea, vestibular apparatus, and

EDS. Drilling of a cochleostomy may disturb vestibular organ function by injuring the

endolymphatic space and disrupting fluid barriers. The saccule is at particular risk due to

its proximity to the surgical area andmay explain immediate and long-term post-operative

vertigo. Round window insertion may be less traumatic to the inner ear, however it may

affect the vestibular receptors.

Keywords: human, synchrotron, micro-CT, vestibular organ, cochlear implant

INTRODUCTION

There are various reports on the incidence of vestibular dysfunction and vertigo following cochlear
implantation (CI) in adults and children. Although CI is considered to be safe, the traumatic action
of electrode insertion into the cochlea risks impairing vestibular function. Seriously incapacitating
vertigo is rare, and there is usually complete resolution (1). Different factors have been ascribed
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as possible causes, such as labyrinthine status before CI surgery
or concurrent inner ear disease. Older patients and patients
with preoperative dizziness may be more prone to vestibular
injury, and this may occasionally be associated with tinnitus
and fluctuating hearing loss (2–5). Dizziness may be experienced
directly after surgery or with delayed onset (6). In some instances,
endolymphatic hydrops (EH) may be suspected (7). Therefore,
vestibular impairment can be influenced by surgical impact,
patient age, and cause of deafness.

The human ear contains five end-organs, each of which can be
affected by surgery at the cochlear base or by electrode insertion
itself. Postmortem histopathological studies of the temporal
bones of CI recipients have reported significant structural
changes in end-organs, including the saccule, the utricle, and
the semicircular canals (8, 9). Injury of cochlear and vestibular
tissue may lead to the mixing of fluids and the alteration of
otolith membranes and receptor cells. CI may damage the lateral
cochlear wall disturbing endolymph homeostasis leading to
cochlear hydrops. CI may also obstruct endolymph flow between
the cochlea and the saccule by blocking the reunion duct (RD)
or cochlear duct causing cochlear hydrops and collapse of the
saccule (9). Long-term changes may occur from inflammation,
fibrosis, and ossification (8). There is a particular risk of damage
to the saccule, which is located in the spherical recess close to the
base of the cochlea and round window (RW).Moreover, the main
cochlear vein is located in the floor of the scala tympani (ST) near
the final position of the CI electrode.

Non-invasive, high-resolution synchrotron radiation and 3D
imaging of temporal bone specimens have earlier been performed
(10). To improve soft tissue contrast, chemical staining was also
introduced to visualize the hearing organ and nerve elements
using absorption based synchrotron imaging (11, 12). This
necessitates opening of the windows of the inner ear with
risk for artifact generation. In lieu of staining, synchrotron
radiation phase-contrast imaging (SR-PCI) can be used to
increase visualization of soft tissues. This technique exploits x-ray
intensity variations to produce edge contrast thereby improving
soft tissue visualization. At the same time, SR-PCI conserves
visualization of bone while avoiding the artifacts introduced with
staining, sectioning, and decalcification used in histopathology
(13–15). Elfarnawany et al. first performed SR-PCI on intact
human cochleae to obtain 3D reconstructions of cochlear soft
tissues (16). The high-resolution scans obtained through this
technique were capable of revealing cytoarchitecture similar to
histology (17, 18). Subsequent groups have applied the SR-PCI
technique to other parts of the temporal bone, including the

Abbreviations: ACO, Anterior cochleostomy; AICO, Anterior-inferior

cochleostomy; BM, Basilar membrane; CA, Cochlear aqueduct; CI, Cochlear

implantation; CO, Cochleostomy; Dice-CT, Diffusible iodine-based contrast-

enhanced computed tomography; EH, Endolymphatic hydrops; IAC, Internal

acoustic canal; ICO, Inferior cochleostomy; ICV, Inferior cochlear vein; I2KI,

Lugol’s iodine solution; LSSC, Lateral semicircular canal; LVAS, Large vestibular

aqueduct syndrome; Micro-CT, Micro-computed tomography; OSL, Osseous

spiral lamina; OW, Oval window; PSSC, Posterior semicircular canal; RD,

Reunion duct; RM, Reissner’s membrane; RW, Round window; SG, Spiral

ganglion; SL, Spiral ligament; SR-PCI, Synchrotron radiation phase-contrast

imaging; ST, Scala tympani; VEMPS, Vestibular-evoked myogenic potentials;

vHIT, Video head impulse test; VOR, Vestibule-ocular reflex.

middle ear and ossicles (19, 20). Recently, Anschuetz et al.
demonstrated synchrotron radiation imaging of the human
auditory ossicles at the sub-micron level (21).

The present study aimed to three-dimensionally analyze
the intricate anatomy of the surgical region to optimize
atraumatic approaches in CI to limit the surgical impact on the
vestibular apparatus and associated neural pathways. A total of
22 fresh human temporal bones underwent SR-PCI and one
fresh bone underwent micro-computed tomography (micro-
CT) after fixation and staining with Lugol’s iodine solution
(I2KI) to increase tissue contrast. In addition, we analyzed the
archival temporal bone collection in Uppsala described in earlier
investigations (22, 23). Different cochleostomies (COs) were
made with metric analyses. Volume-rendering software was then
used to create three dimensional (3D) reconstructions allowing
tissue segmentation and detailed assessment of anatomical
relationships, metric analyses, and topography. It was found that
the RW surgical approach may be preferred to limit the risk for
vestibular dysfunction and vertigo after CI, assuming there are no
anatomical restrictions preventing this approach.

MATERIALS AND METHODS

Ethical Statements
Human Temporal Bones
Twenty-two adult human cadaveric cochleae were used in this
study. Specimens were obtained with permission from the body
bequeathal program at Western University, London, Ontario,
Canada, in accordance with the Anatomy Act of Ontario and
Western’s Committee for Cadaveric Use in Research (approval
no. 06092020). Ethics approval for the micro-CT project was
obtained from the University of Western Australia (UWA,
RA/4/1/5210), and the human temporal bones were provided by
the Department of Anatomy at UWA.

The adult cadaveric temporal bones were fresh-frozen and
then fixed in 3.7% formaldehyde and 1% glutaraldehyde in
phosphate buffer for 5 days. The bones were thawed and cut to
a sample (40mm diameter, 60mm length) from each temporal
bone. All samples were cut from the middle ear toward the inner
ear. The tissue was rinsed and dehydrated in a graded ethanol
series. No staining, sectioning, or decalcification was performed
on the specimens.

SR-PCI and Imaging Technique
The SR-PCI technique used in the present investigation was
recently described by Elfarnawany et al. (16) and Koch et al. (13).
Each sample was scanned using SR-PCI combined with CT at
the Bio-Medical Imaging and Therapy (BMIT) 05ID-2 beamline
at the Canadian Light Source, Inc. (CLSI) in Saskatoon, SK,
Canada. The imaging field of view was set to 4,000 × 950 pixels
corresponding to 36.0 × 8.6mm, and 3,000 projections over a
180◦ rotation were acquired per CT scan. CT reconstruction was
performed, and the 3D image volume had an isotropic voxel
size of 9µm. The acquisition time to capture all projections
per view was ∼30min. For 3D segmentations of the cochlear
anatomy, structures were traced and color-labeled manually on
each SR-PCI CT slice (approximately 1,400 slices per sample).
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The open source medical imaging software, 3D Slicer version
4.10 (24), was used to create detailed 3D representations of the
basilar membrane (BM), spiral ganglion (SG), and connective
dendrites between these structures, which allowed for accurate
delineation when compared with traditional two-dimensional
(2D) slices. Measurements were made in 22 temporal bones by
two independent observers. Distances from the utricle macula,
posterior semicircular canal ampulla, saccule macula, and saccule
membrane to the middle of the RW were assessed.

Micro-CT
Micro-CT was used to analyze the 3D anatomy of the nerves in
the internal acoustic meatus. We used a diffusible iodine-based
technique to enhance contrast of soft tissues for diffusible iodine-
based contrast-enhanced computed tomography (dice-CT) (25).
Increased time penetration of Lugol’s iodine (aqueous I2KI, 1%
I2, 2% KI) offers possibilities to visualize between and within
soft tissue structures (25). The temporal bone was fixed in a
modified Karnovsky’s fixative solution of 2.5% glutaraldehyde,
1% paraformaldehyde, 4% sucrose, and 1% dimethyl sulfoxide
in 0.13M of Sorensen’s phosphate buffer. Soft tissue contrast
was achieved by staining the sample for 14 days, as described
by Culling et al. (26). X-ray micro-CT was conducted using a
Versa 520 XRM (Zeiss, Pleasanton, CA, USA) running Scout
and Scan software (v11.1.5707.17179). Scans were conducted
at a voltage of 80 kV and 87 µA, using the LE4 filter under
0.4× optical magnification and a camera binning of 2. Source
and detector positions were adjusted to deliver an isotropic
voxel size of 23µm. A total of 2,501 projections were collected
over 360◦, each with an exposure time of 1 s. Raw projection

data were reconstructed using XM Reconstructor software
(v10.7.3679.13921; Zeiss) following a standard center shift and
beam hardening (0.1) correction. The standard 0.7 kernel size
recon filter setting was also used.

Uppsala Temporal Bone Collection
We used the archival human temporal bones from autopsies and
324 plastic and silicone molds described in earlier publications
(22, 23). The collection was established during the 1970s
and 1980s at the Department of Diagnostic Radiology and
Otolaryngology at Uppsala University Hospital (27, 28). All
bones and molds underwent micro-CT as described earlier
(23). The topographic anatomy of the “hook” region with
relationships between the oval window (OW), RW, osseous spiral
lamina (OSL), and spiral ligament (SL) were examined and
photographed as described earlier by Atturo et al. (29). Different
sized cochleae were analyzed and conventional anterior (ACOs),
antero-inferior (AICOs), and inferior COs were made, including
the enlarged RW approach (30, 31). The proximity of various
COs to the vestibular organ was studied, both from “inside” and
“outside” the labyrinth.

RESULTS

SR-PCI and micro-CT with contrast enhancement reproduced
both the soft and bony tissue of the human cadaver labyrinth.
A notable 3D reproduction of the membranous labyrinth in a left
human temporal bone is shown in Figure 1. The cochlear and

FIGURE 1 | SR-PCI and 3D reconstruction of a left human inner ear (superior view) using 3D slicer (version 4.10; www.slicer.org). The cochlea, utricle, saccule, and

saccular nerve are seen with cranial nerves in the fundus of the IAC.
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FIGURE 2 | (A) SR-PCI 3D modeling of a left human temporal bone with a surgical view through the facial recess. (B) The relationship between the RW and the

saccule is seen. The cochlear aqueduct (CA) and a second accessory canal are seen. (C,D) show the facial recess anatomy with (C) and without (D) the facial nerve.

FIGURE 3 | A posterior-inferior view of the specimen shown in Figure 2. The relationships between the RW and the posterior ampulla and saccular nerves are

shown. The distance between the middle of the RW and the middle part of the posterior ampulla was 2.6mm.
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vestibular nerves and their branches could be followed from the
internal acoustic canal (IAC) to the peripheral organs.

The 3D modeling shows the surgical anatomy through the
facial recess (Figure 2). The anatomical details of the cochlear
base are visualized together with the saccule and utricle. Removal
of the facial nerve demonstrates the close relationship between
the cochlea and the saccule.

From an inferior angle, the relationship between the RW and
the saccular and posterior ampulla nerves is shown (Figure 3).

Lateral sectioning at the cochlear base of a left ear
demonstrates the relationship between the saccule and utricle
and the ST in more detail (Figure 4). Electrode insertion near the
posterior corner of the RW and at an acute angle may jeopardize
the OSL with consequences of entering the vestibule. The RD lies
on the superior edge of the SL and connects the scala media and
saccule. The RD is challenged if the bony lamina is perforated.
The mean distance between the mid-portion of the RW and the
saccule was 2.66mm (SD = 0.35mm) and between the RW and
the saccule macula was 3.21mm (SD = 0.29mm). The mean
distance between the RW and the utricle macula was 3.79mm
(SD= 0.32mm) (Supplementary Table 1).

The saccular wall consists of both a thick and a thin part. The
two parts are separated by a thickening in the membrane. The
thin part faces the middle ear, while the thick part reinforces the
saccule against the spherical recess. The thin part was difficult

to reproduce three-dimensionally and gave the impression of an
imperfection in the wall.

The macerated human ears revealed extensive anatomic
variations of the basal or “hook” region of the cochlea. Drilling
and insertion of a CI electrode via an anterior or anterior-
inferior CO invariably damaged cochlear structures. Membrane
rupture may lead to a mixture of fluids, and bone dust potentially
contaminates the vestibule with risk for damage to the vestibular
receptors. The soft tissue suspending the BM along the rim of
the RW varied among individuals, and even an inferiorly located
CO occasionally damaged cochlear tissues. A larger distance
between the OW and RW seemed to diminish the risk for
mechanical trauma to the SL at inferior CO drilling. Smaller
cochleae increased the risk of injuring the SL by leading to a direct
trajectory to the saccule. A RW inserted electrode is visualized in
Figure 5, from “inside” the labyrinth. Distances from the utricle
macula, saccule macula, and saccule membrane to the middle
of the RW were measured in all 22 temporal bones and are
shown in a box plot. The distances from different COs to the
utricular and saccular macular nerve foramina were also assessed
(Figures 6, 7).

A virtual CI surgery using the RW approach in a 3D
reconstructed human temporal bone from a micro-CT is
demonstrated in Figures 8, 9. The position of the saccule is seen
after the bony capsule was made transparent (Figures 8A,B). The

FIGURE 4 | SR-PCI section at the level of the RW and vestibule (lateral view). The RW and the position of a virtual electrode (dashed red line) are shown. The saccule

lies in the spherical recess in the medial bony wall of the vestibule. It consists of a thicker and thinner part limited by thicker bands (arrows). The macula is stained

yellow. The position of the RD is shown. Inset shows the modeled 3D anatomy with the saccule, RW (red), and spiral ligament of the cochlear base (blue). The broken

line represents Reissner’s membrane.
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FIGURE 5 | Left human micro-dissected temporal bone (taken from the temporal bone collection of Uppsala Museum) shows the RW and acoustic crest from “inside”

the labyrinth. The OSL was resected, with the secondary lamina partially preserved along the rim of the RW. The broken line shows the attachment of the BM around

the RW. The electrode was inserted via the RW. It rides upon the acoustic crest before reaching the ST. An anterior CO was drilled. The CA and the inferior cochlear

vein (ICV) channels were dissected as well as the RD.

lateral wall of the saccule is visualized through the OW, reaching
cranially to the floor of the utricle. The inferior cochlear and
saccular veins in the floor of the ST were found to be at low risk
for damage.

DISCUSSION

To minimize damage during CI, it is important that the
electrode is retained within the ST and that the integrity of
the endolymph space is maintained. The surgical area at RW
insertion is located ∼2.7mm from the rim of the saccule
membrane. At AICO and ACO, this distance is longer, but the
risk for breaking the endolymph barrier is higher. Synchrotron
imaging shows that the saccule wall consists of a thin and a
thick portion. The thick portion lies near the bony margins
of the spherical recess, and the thin portion faces the middle
ear. The latter shows extreme fragility and may protect saccular
receptors from high-energy stapes vibrations (32). This portion
may be damaged or ruptured even by forceful mechanical
pressure changes such as the “cork effect” at stapes removal.
Entering the vestibular scala during cochleostomy increases the
risk of bone dust entering the vestibule, which may lead to
acute pro-inflammatory reactions and contribute to symptom
manifestations. Moreover, the vibration produced by the milling
process may cause statoconia dislocation and consequent vertigo.
It may even explain benign positional vertigo, transient dizziness
(33), and EH caused by dislocated saccular statoconia in the

RD (34) (Figure 10). Therefore, direct drilling on the cochlear
capsule should probably be kept to a minimum.

There are other explanations for acute or persistent dizziness
following CI surgery, such as fistulae in patients with large
vestibular aqueduct syndrome (LVAS) (35) or EH (7, 36). The
saccular receptors seem particularly vulnerable, reflected by
changes in vestibular-evoked myogenic potentials (VEMPs) (37).
Alterations such as new bone formation, vestibular fibrosis,
saccule membrane distortion, and sub-epithelial thickening
were described in studies where the CO technique was mostly
performed (8). The authors suggested that the saccule is at
greater risk for damage than the utricle or semicircular canals.
According to Todt et al. (38), CO may degrade saccular function
demonstrated by affected VEMP, and this was correlated with
persistent dizziness. Similar results were noted by Jin et al.
(39) studying 12 children undergoing CI and by Meli et al.
in adults showing lack or reduction of VEMP responses (40).
Licamelli et al. (41) found a majority of patients had vestibular
impairment with altered saccular function indicated by VEMP as
well as reduced vestibule-ocular reflex (VOR) gain. Our 3D study
revealed the small distance between the most proximal region
of the RW and the saccule (Figure 11), which may suggest that
this region of the RW should be avoided during surgery. In some
children with inner ear dysplasia, VEMP responses were also
observed at electrical stimulation, suggesting that the vestibular
nerve may be stimulated (39). This may be explained by the
posterior ampulla and nerve positioned near the RW (Figure 11,
Supplementary Tables 1, 2).
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FIGURE 6 | Micro-CT and 3D reconstruction of a macerated human temporal bone (right ear). An anterior CO was made (red arrow), and its relation to the spherical

recess (blue) and saccule was studied. (A) Surgical view shows the CO and the RW. (B) Lateral cropping demonstrates the entrance canal of the CO and its relation

to the spherical recess. The bold arrow shows the tympanic sinus. (C) Medial cropping shows the spherical recess (blue) with bony foramina of the saccular nerve.

The broken arrow shows the direction of the scala tympani. (D) Medial view shows CO and spherical recess (dashed line). OW, oval window; RW, round window;

LSSC, lateral semicircular canal; PSSC, posterior semicircular canal.

Optimal preservation of residual hearing requires a more
atraumatic CI surgery which can be expected to diminish injury
to the vestibular organ as well. However, there are indications
of some damage to the vestibular receptors of the otolith
organs and semicircular canals even when using soft surgery
techniques (42). Insertion speed was found to influence hearing
preservation and vestibular function. A slow electrode insertion
speed seemed to facilitate complete insertion, and improved
preservation of residual hearing and vestibular function after CI
(43). Fortunately, patients with vertigo usually undergo central
vestibular compensation and recover with little or no postural

deficit (40). However, it has not been determined whether
the surgical approach and design of electrodes influence the
prevalence of vestibular problems. Synchrotron 3D analyses show
that the RW approach may be less damaging to the inner ear
compared with CO (15, 23), which is in accordance with the
vestibular results obtained by Todt et al. (38). Batuecas-Caletrio
et al. (44) found the RW approach safer and less traumatic than
CO. However, no correlation between the surgical approach and
occurrence of postoperative vertigo was found by Veroul et al.
(45) or by Nassif et al. (46), who investigated children. Rah et al.
(7) found that the RW approach resulted in less postoperative
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FIGURE 7 | Micro-CT 3D reconstruction of a left human temporal bone (lateral view). An ACO (3) was made, and the distances to the saccular (4) and utricular (5)

nerve foramina can be assessed (inset). Virtual AICO (2) and ICO (1) are shown with fiducials.

FIGURE 8 | 3D model of a right human temporal bone from micro-CT. Increased penetration time of aqueous I2KI improved visualization of soft tissue structures.

The cochlea was virtually implanted with an electrode (El) through the RW. (A) With bone capsule. (B) Bone capsule was made transparent to visualize the inner ear

soft tissues.

dizziness, but this was not statistically significant due to the small
numbers of RW insertions. Hänsel et al. (47) performed a meta-
analysis and showed a low incidence of postoperative vertigo,
but it was slightly higher in the CO group compared with the
RW group. A CO closer to the RW was said to reduce the
BM penetrations (48). In our opinion, it is difficult to foresee
the extent of the damage that may occur from using the CO

technique even if drilling is performed far inferiorly near the
acoustic crest at the RW (22, 49). It may appear possible to
directly enter the ST, however due to the surgical angle and
curved outline of the SL, it may not actually be the case.
Nonetheless, there may be anatomical limitations that necessitate
a CO, such as facial recess exposure, cochlear malformations, and
angles reducing the visibility of the RW.

Frontiers in Neurology | www.frontiersin.org 8 April 2021 | Volume 12 | Article 663722

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Vestibular Organ and Cochlear Implantation

FIGURE 9 | 3D model in Figure 8 is shown at higher magnification. (A) The modeled RD is seen. (B) The posterior ampule and its relation to the RW can be seen. El,

cochlear implant electrode.

FIGURE 10 | Micro-CT cross-section of the cochlear base at the RW. A virtual

CI electrode (el) is placed in the scala tympani. The RD can hardly be seen on

the superior surface of the OSL. RM, Reissner’s membrane; ST, scala tympani;

RW, Round window.

CI can also influence horizontal semicircular canal function,
and the video head impulse test (vHIT) and caloric test have
been recommended for a complete vestibular analysis (50).
RW surgery may change canal and otolith organ function, as
shown by Dagkiran et al. (51). They found that the posterior
and superior semicircular canal functions were more affected

than the lateral canal, recommending the use of a test battery
capable of evaluating all five vestibular end-organs pre- and
postoperatively. In a recent study in patients undergoing
unilateral or bilateral CI, there was no significant impairment
of lateral semicircular canal function as demonstrated by high-
frequency VOR and vHIT compared with normal hearing
individuals in the long term (46, 52). According to Nassif
et al. (46), vHIT results suggest there is little impairment of
LSSC function compared with normal hearing children (52).
From an anatomical standpoint, a functional deterioration of
the lateral and horizontal canals is likely to be caused by an
indirect trauma caused by perilymph drain or contamination
at surgery. Interestingly, SR-PCI revealed that the vestibular
membrane apparatus is anchored by several gracile tissue
pillars reaching the interior surface of the bony labyrinth. A
massive drain of perilymph could rupture this fine network
and lead to organ displacement and vestibular dysfunction.
These findings may further point to the importance of a
slow electrode insertion to minimize perilymph displacement
and allow adaptation inside the scala and vestibule to
reduce trauma.

Today, most congenitally deaf children receive implants
in both ears. Vestibular concerns may arise if the patient
is operated on in both ears simultaneously, or in the only
vestibular functioning ear. Signs of damage to the saccule
with loss of VEMP are common but seemingly with a limited
correlation to vertigo, possibly due to transient disturbances
(53) and central compensation (37, 41, 54). Colin et al.
(4) prospectively tested vestibular function, using pre- and
postoperative neuro-vestibular examination and clinical tests,
and found no correlation between postoperative test results and
postoperative vertigo. Occasionally, there was even improved
balance following electric stimulation (4, 55, 56).
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FIGURE 11 | (A) Distances from the (a) utricle macula, (b) posterior semicircular canal ampulla, (c) saccule macula, and (d) saccule membrane to the middle of the RW

were assessed. (B) Box plot showing measurements in 22 temporal bones.

The present results using SR-PCI and micro-CT imaging
three-dimensionally display the intriguing and difficult anatomy
of the base of the cochlea and vestibular end-organs. This study
may hopefully contribute to a better understanding of the spatial
organization, thereby increasing surgical safety. Enhancement of
surgical techniques, approaches, and design of CI electrodes may
further lessen surgical trauma in the future.
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