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Gait disorders are common in neurodegenerative diseases and distinguishing between

seemingly similar kinematic patterns associated with different pathological entities is a

challenge even for the experienced clinician. Ultimately, muscle activity underlies the

generation of kinematic patterns. Therefore, one possible way to address this problem

may be to differentiate gait disorders by analyzing intrinsic features of muscle activations

patterns. Here, we examined whether it is possible to differentiate electromyography

(EMG) gait patterns of healthy subjects and patients with different gait disorders using

machine learning techniques. Nineteen healthy volunteers (9 male, 10 female, age 28.2

± 6.2 years) and 18 patients with gait disorders (10 male, 8 female, age 66.2 ± 14.7

years) resulting from different neurological diseases walked down a hallway 10 times at

a convenient pace while their muscle activity was recorded via surface EMG electrodes

attached to 5 muscles of each leg (10 channels in total). Gait disorders were classified

as predominantly hypokinetic (n = 12) or ataxic (n = 6) gait by two experienced raters

based on video recordings. Three different classification methods (Convolutional Neural

Network—CNN, Support Vector Machine—SVM, K-Nearest Neighbors—KNN) were

used to automatically classify EMG patterns according to the underlying gait disorder

and differentiate patients and healthy participants. Using a leave-one-out approach for

training and evaluating the classifiers, the automatic classification of normal and abnormal

EMG patterns during gait (2 classes: “healthy” and “patient”) was possible with a high

degree of accuracy using CNN (accuracy 91.9%), but not SVM (accuracy 67.6%) or

KNN (accuracy 48.7%). For classification of hypokinetic vs. ataxic vs. normal gait (3

classes) best results were again obtained for CNN (accuracy 83.8%) while SVM and

KNN performed worse (accuracy SVM 51.4%, KNN 32.4%). These results suggest that

machine learning methods are useful for distinguishing individuals with gait disorders

from healthy controls and may help classification with respect to the underlying disorder

even when classifiers are trained on comparably small cohorts. In our study, CNN

achieved higher accuracy than SVM and KNN and may constitute a promising method

for further investigation.
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INTRODUCTION

Gait disorders are a common accompaniment of many
neurological diseases (1). They represent a major health hazard
as they are a frequent cause of falls, with consecutive morbidity
and mortality, and they reduce the quality of life of affected
patients by impairing their ability to perform activities of daily
living and to participate in normal social life (1, 2). In addition,
they cause considerable economic costs in the healthcare
sector (3–5).

A wide variety of pathological entities affecting different
structures of the central or peripheral nervous system may

underlie gait disorders. Involvement of any part of the

nervous system is initially usually derived from the neurological
examination. However, due to their phenotypical similarity,
classification of diseases with prominent neurological gait

disorders is only moderately accurate even for more experienced
clinicians. Since the accurate identification of the underlying
aetiopathogenesis of a gait disorder is important for planning
its diagnostic workup, treatment, and prognosis, a more precise
classification of gait disorders would probably improve the
quality of medical care and avoid unnecessary and costly
diagnostic or therapeutic procedures. In order to analyze
gait traits, kinematic recordings and surface electromyography
(EMG) signals have been used previously in a number of studies.
Although analysis of kinematic data may be more intuitive, EMG
signals may have the advantage of being nearer to the neuronal
control mechanisms active during normal and pathological
walking (6–8).

In this study, we aimed to investigate the hypothesis that
muscle activation patterns during walking may contain enough
information to allow a classification into classes of gait disorders,
sufficiently accurate to help improve the classification by clinical
assessment, which has been shown to be in the order of 50
to 80% (9–12). Due to the high dimensionality and complexity
of multichannel EMG data and the uncertainty with respect
to the features determining pathological or healthy gait, we
employed data-driven technical approaches which rely on non-
linear classifiers. We specifically asked whether machine learning
techniques applied to EMG signals would be able to (i) accurately
separate patients from healthy controls and (ii) separate two
major classes of gait impairments commonly found in neurology
(hypokinetic and ataxic gait) from each other and from healthy
subjects. In addition, our study served to explore the question of
whether machine learning methods can be meaningfully applied
to small datasets.

For automatic classification multiple approaches are available.
A major advantage of neural networks may be their ability to
differentiate non-linear relationships between data which are
not easily tractable by linear algorithms such as multiple linear
regression (13). Since different classification algorithms perform
differently depending on the properties of the dataset to be
classified, we used three different algorithms that have been
used previously successfully for the classification of kinematic
and/or EMG gait data: Convolutional Neural Network (CNN),
Support Vector Machine (SVM) and K-Nearest Neighbors
(KNN) (14–19).

MATERIALS AND METHODS

The protocol was approved by the local Ethics Committee (no.
271-15-13072015) and all procedures were performed according
to the Declaration of Helsinki. Written informed consent was
obtained from all participants.

Participants
Patients with different neurological diseases were included
(Results section, Table 1). Inclusion criteria for study
participation were age of 18 years or above and presence
of a neurological gait disorder falling into the categories
“hypokinetic gait” and “ataxic gait” for patients and the absence
of any gait disorder for healthy subjects. Exclusion criteria were
inability to walk freely, severe orthopedic, neuropsychiatric or
medical disorders interfering with safe participation as well as
present pregnancy. Healthy controls were recruited using public
displays and from medical staff not involved in conducting
the study.

Experimental Procedures
Prior to the main experiment, all participants performed a
Timed-up-and-go test (20). Afterwards, they were instructed to
walk down a hallway at a self-selected pace, then to turn and
perform a tandem gait. Participants were filmed during the gait
task. These tasks allowed us to visually detect features that are
used to clinically classify patients into the two categories of
gait disorders we wanted to investigate: hypokinetic gait and
ataxic gait. Clinical classification was done offline by inspection
of the videos by two experienced raters (C.F., T.B.W.). Part III
of the Movement Disorder Society Unified Parkinson’s Disease
Rating Scale [MDS-UPDRS-III (21)] is commonly used to assess
symptom severity in Parkinson’s Disease and items 3.10 and 3.11
represent hypokinetic gait impairment. We determined the value
of both items from the videos and summed them to generate a
MDS-UPDRS-III sub-score. The Scale for the Assessment and
Rating of Ataxia [SARA (22)] is a clinical score for ataxia patients.
It also features a gait disorder item for ataxic gait impairment
(item 1) which also was derived from the videos.

For the main experiment 10 bipolar surface EMG electrodes
(Noraxon Dual EMG Electrodes, Noraxon, Scottsdale, USA)
recorded in differential derivation were attached to five muscles
of each leg: rectus femoris, vastus medialis, biceps femoris, tibialis
anterior, gastrocnemius lateralis muscle. Additionally, a tri-axial
accelerometer was attached to each foot whose data was used
to detect the beginning and end of each gait cycle. EMG and
accelerometer data were recorded using a wireless EMG system
(DTS Desk Receiver, Noraxon, Scottsdale, USA) and sampled at
1,500Hz. Subjects were instructed to sit down, stand up, then
walk down a corridor for a distance of 8 meters, turn around a
pole, walk back and sit down again. This procedure was repeated
10 times. They were filmed during the procedure which allowed
selecting EMG data belonging to epochs where subjects were
freely walking. The placement of electrodes was carried out by
the same experimenter (N.Z.) for each participant. Electrode
positions were determined using known anatomical landmarks
for the target muscles.
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TABLE 1 | Patient characteristics.

Age range (years) Gender Disease Timed-up-and-go test (seconds) MDS-UPDRS-III gait sub-score SARA gait sub-score Classified as

70–80 M PD 13.7 3 2 Hypokinetic

50–60 F PD 5.8 1 0 Hypokinetic

60–70 M PD 7.7 6 1 Hypokinetic

50–60 F PD 7.7 1 0 Hypokinetic

70–80 M PD 15.6 3 1 Hypokinetic

70–80 F PD 10.1 5 2 Hypokinetic

50–60 M PD 9.1 2 0 Hypokinetic

70–80 F PD 17.4 3 1 Hypokinetic

70–80 M PD 17.5 4 2 Hypokinetic

70–80 M PD 53.5 7 1 Hypokinetic

60–70 M CA 15.2 3 3 Ataxic

60–70 F CA 16.0 4 4 Ataxic

70–80 M CA 15.2 1 3 Ataxic

70–80 F CA 25.1 2 2 Ataxic

20–30 F MS 11.8 0 1 Ataxic

30–40 F MS 8.5 1 3 Ataxic

70–80 M MSA 14.8 4 1 Hypokinetic

70–80 M NPH 25.2 8 3 Hypokinetic

M, male; F, female; PD, Parkinson’s Disease; CA, cerebellar ataxia; MS, multiple sclerosis; MSA, multiple system atrophy; NPH, normal pressure hydrocephalus.

Data Pre-processing
All EMG and accelerometer datasets were exported to Matlab
(MathWorks, Natick, USA) and analyzed offline using custom
software written in Matlab and Python (Python Software
Foundation, Delaware, USA). Videos of the walking experiment
were epoched to contain only walking, removing epochs where
participants either were sitting, standing or turning.

For data pre-processing, a zero-lag 5th order Butterworth
high-pass digital filter with 20Hz cut-off frequency was applied
to remove DC components and low frequency noise due to
movement and varying electrode-skin contact. Afterwards, we
applied a zero-lag 5th order low-pass Butterworth filter with a
cut-off frequency of 400Hz to the data in order to reduce higher
frequency artifacts and performed full-wave rectification.

Based on the accelerometer data all EMG data was further
epoched such that each epoch represented a single gait cycle
(stance and swing phase for each leg, corresponding to a
consecutive step with each leg). The gait cycle was determined
using the recordings from the accelerometers places on both feet.
Because the accelerometers were mounted on the feet a large
signal was recorded from an accelerometer each time when the
foot onto which it was mounted hits the ground during walking.
In detail, the 3 channels of each tri-axial accelerometer placed on
each foot were merged and the absolute values were calculated
according to:

xm(t) =

√

x1(t)
2
+ x2(t)

2
+ x3(t)2

xm(t). . . merged accelerometer data at time t, x1(t) to x3(t) . . .
individual channel data at time t.

xm was then normalized and a composite single channel was
computed by subtracting xm of the right side from xm of the
left side. Matlab envelope was used to obtain clear smooth peaks,
which were extracted with Matlab findpeaks. A ground impact
with the right foot yielded a strong negative peak immediately
followed by a positive peak when the swing phase of the left leg
happenedwhile the right foot rested on the floor. Using this, a gait
cycle was thus defined based on two consecutive impacts with the
right foot. Examples of EMG signals sampled during a gait cycle
are depicted in Figure 1.

Due to inter- and intra-individual variability each gait
cycle was of different duration and, therefore, dataset epochs
were of different length. To enable comparison within and
across subjects we resampled the data linearly to fix all
datasets to a common length (1,500 datapoints, Matlab resample
using a FIR antialiasing low pass filter) across all muscles
and subjects.

Classification Algorithms
We employed three supervised classification algorithms to
automatically classify gait data according to the algorithm-
based and manually extracted features which are described
in the following subsection: Convolutional Neural Network
(CNN), Support Vector Machine (SVM) and K-Nearest
Neighbors (KNN). The algorithms were supposed to classify
(1) healthy vs. gait disorder and (2) healthy vs. hypokinetic vs.
ataxic gait.

Convolutional Neural Network (CNN) Classifier
A CNN is a type of deep neural network classifier which
historically had applications in image classification and
recognition (23, 24). The main advantage of a CNN classifier lies
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FIGURE 1 | Example raw EMG datasets of a single gait cycle of a healthy participant (A) and a patient with Parkinson’s disease (B). EMG traces recorded from left

and right leg muscles are depicted as pairs above one another. The dotted vertical line in the middle of the panels illustrates the time of ground contact with the left

foot. Ground contact with the right foot happens at 0ms and at the end of the dataset, indicated by a dashed line. Thus, the left leg transitions into swing phase in the

first half of the dataset while the right foot is placed on the ground and vice versa for the second half of the dataset.

in its ability to recognize features more or less directly from the
data instead of manually extracted features.

Within the CNN data is put through a number of layers
with different tasks (Figure 2A). The input is first fed into
the convolution layer where a spatial filter in form of a
window of weights is applied to the inputs. This spatial
filter is moved vertically and horizontally throughout the
input. Afterwards, the output of the convolution layer is
rectified by a Rectified Linear Unit (ReLU) and then fed
into the pooling layer, which reduces the dimensionality of
the previous layer while preserving the spatial invariants.

Depending on the number of convolution and pooling
layers, different feature maps can be obtained that can affect
the classification results (25). The results of the pooling
layer are put through a fully connected layer yielding
the classification.

Prior to training of the CNN, the datasets were converted to
the time-frequency domain using continuous wavelet transform
(26) in order to enhance the classification results, as previous
studies have shown that the representation of time series data in
the time-frequency domain has some advantages resulting in a
more robust classifier (27, 28).
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FIGURE 2 | (A) Schematic overview of the dataflow in a Convolutional Neural Network (CNN). Image data is fed into the network as an input. In order to reduce the

data dimensionality, different convolution and pooling layers are used. Finally, to have the classification, fully connected layer is used to flatten the output of the

previous layer. (B) Schematic overview of how a Support Vector Machine (SVM) selects the best hyperplane for classification. First hyperplanes are calculated which

are able to optimally separate data points. From all possible hyperplanes, the algorithm chooses the optimal one maximizing the distance between the hyperplane and

the points of two classes. Note that in 2D the hyperplane corresponds to a line. Based on the kernel function chosen this can have different shapes. (C) Schematic

overview of decision boundaries in a K-Nearest Neighbors (KNN). Distance between test- and training data points are calculated. Afterwards, based on the value of K,

the algorithm decides which class a given test point belongs to (in the example being a triangle or a square). Depending on the value of K different classification results

are possible: on the left the test point would be classified as a triangle, on the right as a square.
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One of the key issues with implementing the CNN on a
small-size dataset is the choice of filters, weights and number of
layers to achieve a good performance while avoiding overfitting
as these parameters play a major role in the calculation of the
loss function (29). To overcome these problems, transfer learning
can be a promising approach. This is based on the idea that
one needs to select relevant parts of a pre-trained CNN which
then are fine-tuned further for the problem at hand. Work by
Pan and Yung (30) showed that transfer learning techniques can
be employed even if two datasets are from different domains
(30). This approach may be of particular interest in medical
applications where datasets are often of limited size. This has
been successfully demonstrated in recognition tasks in medical
images where pre-trained CNNs generated on larger datasets
provided a solution to dealing with small data samples (31). Since
our sample was small, we applied this transfer learning method
to our problem. In particular, we used the AlexNet model, which
is a CNN pre-trained network on 1.2 million images of 22,000
categories (e.g., cats, dogs etc.) into 1,000 different classes using
25 layers (23, 32). From the pre-trained AlexNet model we used
the first 22 layers (31) and added one fully-connected layer
which was trained with our data. In addition, two Softmax and
the classification output layers were added. During the training
phase, an epoch was defined as a full training cycle using the
whole training set and a mini-batch size was a subset of the
training set used to update the weights and calculate the gradient
descent loss function. The training was completed after 10 epochs
with a mini-batch size of 10 images when the learning rate was set
to 0.0001.

Support Vector Machine (SVM) and K-Nearest

Neighbors (KNN) Classifier
SVM (33) and KNN (34) constitute linear and non-linear
classifiers which use different, and possibly high dimensional,
features of the datasets to assign a label to a data point based on
their location in the data space. SVM as a supervised learning
algorithm has many applications, e.g., in face detection (35) and
bioinformatics (36). It aims to find an optimal hyperplane in
an N-dimensional space. This hyperplane is used as a decision
boundary separating datasets into two or more classes without
computing in the hyperplane due to the kernel trick (37).
Thereby, it aims to maximize the distances of the data points
of all classes to the hyperplane finding the so-called maximum
margin hyperplane (Figure 2B). KNN (K-Nearest Neighbors) is
another example of a supervised classification algorithm which
has no explicit training phase (34). This algorithm is mainly
applicable when there is little or no pre-knowledge about the
relationship of the data points. In general, the KNN algorithm
tries to classify a new instance based on the similar objects from
the training set (38). KNN classification is based on a distance
metric which is calculated between a data point to be classified
and already known data points from a training set. In particular,
the classifier assigns that label to a data point which is shared
by the majority of the K nearest surrounding data points of the
training set (Figure 2C). The classification result, therefore, not
only depends on the distribution of data points in the parameter
space but also on the value of K.

To enable SVM and KNN classification a number of features
have been extracted from the datasets. In our study we extracted
7 features from each EMG channel according to previously
published work (39, 40). Of these, 4 were calculated in the
time-domain and 3 in the frequency-domain after Fast-Fourier-
transformation (time-domain features: integrated EMG (IEMG),
simple square integral (SSI), variance (VAR), root mean square
(RMS), frequency-domain features: area of power, spectral
moment SM1 and peak frequency (PKF). The computation
of each feature is reported in Supplementary Table 2. Each
feature was calculated and normalized per muscle resulting
in a total of 70 features per subject (7 features x 10 muscles).
Subsequently, each feature distribution was standardized to
a mean of 0 and standard deviation of 1 in order to avoid
range effects on the learning algorithm. The full number of
70 features appeared to be too large for training the classifiers
without risking overfitting. Furthermore, multiple features
for different muscles possibly represent similar aspects of
the captured movement thus rendering them redundant.
To account for these considerations we used principal
component analysis (PCA) and selected as many principal
components as to explain 99% of data variance (41) to feed
the classifiers.

We employed a grid search approach to find optimal SVM
and KNN hyperparameters. We tested the following values as
hyperparameters for SVM: C = {0.01,0.03,0.1,0.3,1,3,10,30},
Gamma = {0.01,0.03,0.1,0.3,1,3,10,30} and for KNN:
K= {1,2,3,. . . ,30}.

Training of the Classifiers, Classifier
Performance, and Statistical Procedures
After pre-processing, we randomly divided the datasets into
training and validation sets in which the validation sets consisted
of gait cycle EMG data of 14 out of 37 subjects with all
their trials, while the training set consisted of the data of 22
participants, leaving data from one participant out of both
the training and the validation set. After training (CNN,
SVM) or setting up (KNN) the classifiers the remaining left-
out subject was then used as the test set. Hyperparameters
for KNN and SVM were also optimized using only the
training and validation datasets, leaving out the test data, the
hyperparameters are reported in Supplementary Table 2. For
the CNN, the parameters and setup were kept identical. This
procedure was repeated for all 37 subjects. In one analysis
the left-out subject was classified as belonging to one of 2
classes (“healthy” or “patient”) and in the other analysis the
left-out subject was classified as belonging to one of 3 classes
(“healthy,” “hypokinetic,” or “ataxic”). The classification was
done for each gait cycle trial and the classification result for
the subject was defined as the label which was obtained most
often when all gait cycles were considered. Importantly, due to
the leave-one-out approach, the classifiers were trained without
ever “seeing” any trials of the subject to be classified in the
training phase. The leave-one-out procedure was then repeated
by cycling through each participant as the left-out subject.
Finally, we evaluated the classification result by calculating
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sensitivity, specificity and accuracy, for the 2-class problem
according to:

accuracy =
TP + TN

total number
sensitivity =

TP

TP + FN

specificity =
TN

FP + TN

TP . . . true positives, TN . . . true negatives, FP . . . false
positives, FN . . . false negatives.

For the 3-class problem we used the following formulae:

accuracy =
TP class

total number
sensitivity

(

hypo/atax
)

=
TP

TP + FN

specificity (hypo/atax) =
TN

FP + TN

TP class . . . sum of true positive number of each class, TP . . .
true positives for the class of interest, TN . . . true negatives for the
class of interest, FP . . . false positives for the class of interest, FN . . .
false negatives for the class of interest.

Note, that in the 3-class problem the accuracy is calculated as a
global metric while sensitivity and specificity are calculated for
each of the pathological traits.

We employed chi-squared tests on the contingency tables to
analyse whether classification results demonstrated significant
deviation from a random classifier as well as t-tests (after
confirming normal distribution using the Jarque-Bera test) to
compare patient characteristics.

In order to evaluate whether the trained classifiers performed
significantly better than random classifiers, we computed chance
levels for the 2-class and 3-class problem based on the amount
of trials. For an infinite number of trials the chance levels for
a given classification label are at 50% for a 2-class and 33.33%
for a 3-class classification problem. However, Combrisson and
Jerbi (42) demonstrated that the chance level for a smaller
dataset depends on the number of trials. We therefore applied
a correction when reporting whether classifier accuracies surpass
chance level as described previously (42, 43):

Std (α) = binoinv

(

1− α, n,
1

c

)

×
100

n

α. . . type I error level = 0.05, n . . . number of trials
corresponding to each subject or number of subjects, c . . . number
of classes.

The amount to which chance levels were surpassed were
compared between the 3 classifiers using the Kruskal-Wallis test.
When results were found to be significant we employed Mann-
Whitney-U tests as post-hoc tests with Bonferroni correction
where appropriate. Significance was defined at an alpha threshold
of 0.05.

Chance levels were also calculated based on the number for
individual gait cycles. When a classifier assigns a given label to a
fraction of gait cycles of a participant this can be considered as a
measure of confidence or reliability with which a certain label is
assigned by a classifier.

RESULTS

Patient Characteristics
Nineteen healthy subjects (9 male, 10 female, age 28.2 ± 6.2
years) and 18 patients with gait disorders (10 male, 8 female,
age 66.2 ± 14.7 years) resulting from different neurological
diseases participated in our study (Table 1). Patients suffered
from Parkinson’s Disease (10), cerebellar ataxia (4), multiple
sclerosis (2), multiple system atrophy (1) and normal pressure
hydrocephalus (1). Based on clinical examination, gait was
considered abnormal in all patients, reflecting the inclusion
criterion. Gait disorders were differentiated into hypokinetic
(12) or ataxic (6) gait based on their clinical presentation.
SARA sub-scores for patients were significantly higher for ataxia
patients compared to hypokinetic patients (two-sample t-test, p
= 0.014). MDS-UPDRS-III gait sub-scores on the other hand
were higher for hypokinetic patients (two-sample t-test, p =

0.033). The Timed-up-and-go test was performed significantly
faster by healthy participants compared to patients (healthy: 7.3
± 1.1 s, patients: 16.5± 10.6 s, two-sample t-test, p < 0.001).

Classification Results
We trained CNN, SVM and KNN classifiers on our EMG data
to discriminate between normal and pathological gait patterns.
CNN was able to correctly classify the EMG datasets with
a sensitivity of 94.4% and a specificity of 89.5% yielding an
accuracy of 91.9% (chi-squared test, p < 0.001, Table 2). KNN
classification yielded a sensitivity of 83.3% and a specificity of
15.8% resulting in an accuracy of 48.7% (chi-squared test, p =

0.943). SVM performed in between the other two classifiers with

TABLE 2 | Contingency table for CNN classification in 2 classes.

Classification as

“healthy”

Classification as

“patient”

6

Healthy group 17 2 19

Patient group 1 17 18

6 18 19 37

TABLE 3 | Contingency table for CNN classification in 3 classes.

Classification as

“healthy”

Classification as

“hypokinetic

gait”

Classification as

“ataxic gait”

6

Healthy group 17 1 1 19

Hypokinetic group 0 11 1 12

Ataxic group 0 3 3 6

6 17 15 5 37
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a sensitivity of 83.3%, a specificity of 52.6% and an accuracy of
67.6% (chi-squared test, p= 0.022).

As a measure of classifier reliability, chance levels for
individual subject step classification were calculated and found
to be 54.5± 2.9% for CNN and 64.8± 11.0% for SVM and KNN.
Classification using CNN surpassed these individual chance
levels on average by 20.7 ± 14.5%, KNN by 0.8 ± 17.6%, and
SVM by 9.0 ± 2.1% (Kruskal-Wallis test, p < 0.001). Post-hoc
tests were significant for CNN compared to KNN (p < 0.001)
and SVM (p = 0.005). Using CNN the frequency of an assigned
label to the steps of participants was found to be above chance
level for 86.5%, with KNN for 56.8%, and with SVM for 59.5% of
participants, indicating the best reliability of the CNN.

All three algorithms were trained again to classify EMG
patterns with respect to healthy, hypokinetic and ataxic gait. We
found that CNN reached an accuracy of 83.8% with a sensitivity
of 91.7% and a specificity of 84.0% for hypokinetic gait, and a
sensitivity of 50.0% and a specificity of 93.6% for ataxic gait. The
mean sensitivity was 70.8%, mean specificity 88.8% (contingency
table shown in Table 3, chi-squared test, p < 0.001). The KNN
model achieved a sensitivity of 25.0% with a specificity of 66.7%
for hypokinetic gait and a sensitivity of 64.0% with a specificity
of 77.4% for ataxic gait. The mean sensitivity was 45.8%, mean
specificity 70.7% and accuracy was 32.4% (chi-squared test, p
= 0.061). For SVM we computed a sensitivity of 33.3% and a
specificity of 72.0% for hypokinetic gait as well as a sensitivity
of 16.7% and a specificity of 93.6% for ataxic gait. The accuracy
was 51.4% (chi-squared test, p= 0.086). The mean sensitivity was
25.0%, mean specificity was 82.8 %.

Regarding classifier reliability, chance levels for individual
subject step classification were computed to be 37.7 ± 2.7%
for CNN and 47.5 ± 9.4% for KNN and SVM. Classification
employing CNN surpassed these levels on average by 28.6 ±

15.5%, KNN by 1.7± 11.7%, and SVM by 20.9± 17.4% (Kruskal-
Wallis test, p = 0.001). Post-hoc tests were significant for CNN
compared to KNN (p < 0.001) and SVM compared to KNN (p
< 0.001). The frequency of assigned labels to steps were above
chance level for 97.3% of participants with CNN, 51.4% with
KNN, and 91.9% with SVM, thus reliability was high for CNN
and SVM.

For SVM and KNN hyperparameters (C and gamma for
SVM, K for KNN) which were found to be optimal during grid
search were widely distributed throughout the whole tested range
(Supplementary Table 2).

In summary, in this application scenario CNN performed
best in classifying EMG gait cycle patterns—using different
pre-processing steps and directly recognizing features—in
comparison to the other classifiers yielding best sensitivity,
specificity and accuracy for the 2-class and 3-class problems.
CNN and SVM classified reliably above chance level but CNN
showed a markedly higher accuracy. Also SVM tended to reliably
but erroneously classify a given subject to a label in the 3-class
problem, suggesting that SVM is following a certain intra-
individual but not an interclass pattern. Finally, the strong
variability of optimal hyperparameters for SVM and KNN
suggests a poor generalizability of both models while CNN
architecture was left constant throughout the study.

DISCUSSION

We examined the ability of three different classifiers to
automatically classify EMG data recorded during walking with
respect to whether datasets were recorded from healthy subjects
or patients with gait disorders as well as to classify the type of
gait disorder. We found that classifiers based on a Convolutional
Neural Network (CNN) worked best while Support Vector
Machine (SVM) and K-Nearest Neighbors (KNN) classifiers
performed considerably poorer. Results were consistent and a
classification accuracy for an unknown dataset in the order of
80% or better was achieved while clinical diagnoses of movement
disorders associated with gait disorders reach an accuracy of 50
to 80% (9–12).

There have been a multitude of studies investigating
physiological and pathological aspects of human walking with
a large number of different analytical techniques applied to
either kinematic or EMG data (13, 44). Due to some technical
advantages, the use of kinematic data in gait analysis is often
favored, as EMG data contains a large proportion of inter-
individual variance (45) and is subject to noise and electrical
artifacts. A large number of possible and interdependent
parameters can be extracted from both kinematic and EMG data.
Under certain circumstances a single parameter or a limited
set of parameters may reliably differentiate between different
pathological conditions (46, 47). However, it is likely that
different sets of parameters are important for different disorders.
Therefore, analytical approaches must consider a larger number
of parameters and their non-linear codependences if they are
to differentiate between multiple pathological conditions. A
potential advantage of using EMG data may result from the
technique being more proximal to the actual neural control of
movement than kinematic data and, therefore, it may contain
additional information on the neurobiological underpinnings
resulting in different gait traits and disorders important for
classification. To obtain information on underlying muscular
activity patterns during walking matrix factorization techniques
like PCA, factor analysis and non-negative matrix factorization
have been used to reduce data dimensionality while retaining
data variance. Using this approach, a small number of activation
patterns of synergistically activated muscles have been identified
during walking (7, 8, 45, 48). Evidence revealing the presence

of EMG patterns in walking behavior suggests that EMG
data may contain enough information to drive an automatic
classifier for differentiating healthy and impaired gait, as
neuronal control mechanisms most likely are measurably altered
in gait disorders.

In order to achieve a useful classification we investigated
three machine learning techniques of which CNN proved to be
most feasible to classify EMG signals based on multidimensional
hidden features. In previous studies, similar approaches (SVM,
Random Forest analysis and CNN classifiers) have been used
successfully mostly on kinematic data to identify gait traits (15,
18, 49–51). With respect to the automatic classification of gait
disorders a comparably small number of studies demonstrated
promising results. Of note, Pradhan and colleagues (52) extracted
a number of kinematic parameters associated with walking
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patterns from sensors imbedded in a carpet (GAITRite sensor
carpet) in a larger study with the aim to classify different gait
disorders. The classification was done in 120 patients suffering
from 4 types of diseases (phobic postural vertigo, cerebellar
ataxia, progressive supranuclear palsy, bilateral vestibulopathy)
and 30 controls, the accuracy for the automatic classification
amounted to some 90%, while our present approach yielded an
accuracy of 80 to 90 %.

With respect to automatic gait disorder classification with
EMG signals, only a limited number of observations have
been published which also showed the feasibility of the
approach. In orthopedic gait disorders a recent study successfully
distinguished patients with and without knee injuries based on
EMG data using a SVM approach (19). A similar concept was
employed by Nair and colleagues who also found that automatic
classification was feasible in a comparably small dataset with 18
patients (53). In both studies a similar classification accuracy
was found around 80 to 90%. Although the analytical strategy
was similar to our study, an important difference lies in the
origin of altered motor activity in orthopedic disorders. In these
disorders alterations of motor activity likely reflect adaptive
or alternative movement strategies secondary to peripheral
abnormalities whereas gait abnormalities in the present study,
by design, principally originated in a central nervous system
disorder. This may also be the reason why SVM was suitable in
the studies by Mohr and colleagues (19) and Nair and colleagues
(53), but not in our study. It appears to suggest that classifiers
need to be carefully evaluated in the context in which they are
applied. Nevertheless, although we discussed that EMG might
be superior to kinematic data in classifying gait disorders, this
conjecture must remain speculative, as we are not able to directly
compare classification results based on both approaches given
our current data.

Albeit non-linear classifiers have been shown to be useful
in a variety of classification tasks, the way the trained
classifiers achieve the output results remains hidden, even though
new techniques evolve which may allow identification of the
underlying processes driving the classification (54). The “black
box” of a deep learning artificial neural network is notoriously
difficult to interpret from neurobiologically as non-linearly
weighted combinations of single or multiple parameters in
various combinations drive the classifications. Also there are
a number of pitfalls which need to be taken into account.
Probably the most pertinent problem is overfitting of parameters
which refers to the phenomenon that a classifier learns statistical
features which are specific for the training set but might not
be generally present (e.g., certain noise), but may still result in
excellent classification results (29). This is of particular concern
in studies involving small cohorts such as the present one
and in datasets where the impact of individual samples and
accidental associations is large. Since each individual performs
a number of trials which are taken together and split up
randomly into training, validation and test sets, data from each
participant will basically be present in all sets, resulting in a
good classification result during testing because the classifier
was already trained with data very similar to the test set.
This may occur despite the fact that the classifier has not

learned biologically important discriminant data features. To
guard against this problem we, first, reduced the number of
parameters with PCA (41). Secondly, we employed a leave-
one-out approach by testing the classifier only on data which
was not used to train the classifier. These two measures
were designed to avoid that the classifiers were trained on
the noisy aspects of the dataset instead of the underlying
data structure.

The reason for the different performances of the classifiers
most likely is a result of inherent properties of the non-
linear classifiers in light of limited dataset sizes. Though KNN
and SVM are known to reliably work in smaller datasets, as
has been shown in a number of the studies discussed above
(15, 18, 19, 53), they may not be suitable for classification in
this case because of complex interactions of differences which
cannot be captured by hyperplanes (SVM) and even worse
by spatial proximity (KNN). On the other hand, CNN may
avoid these methodological constraints of the other classifiers,
possibly allowing more accurate classification. Our study further
demonstrates that the implementation of transfer learning is
useful to overcome the issue that large datasets are needed to
successfully train the CNN.

Our healthy subjects were younger than the patients. This
is a possible limitation of our study, as there may be effects of
age on normal walking which might influence classification to
some degree. In a recent study, the lower-limb intersegmental
coordination during walking was assessed kinematically and
weak associations between age and kinematic parameters have
indeed been found in a comparably large dataset of over 80
healthy participants: walking speed and range of motion in
the ankle (55) were different for older and younger subjects.
However, the magnitude of these effects was small and had not
been found in another study, where no systematic kinematic
differences during walking of healthy subjects between 15
and 70 years of age were detected (56). The impact of
these differences on EMG patterns was not reported by these
authors, but muscle activation patterns have been found to
be similar in older and younger healthy subjects in another
study (57), while being different for orthopedic patients and
controls. Therefore, we suspect that the impact of the disorders
(orthopedic or neurological) on gait patterns are comparably
larger than the impact of age. More importantly, the finding
that our classification was able to distinguish between two sets
of gait disorders apart from differentiating between healthy
controls and patients constitutes strong evidence that the signal
patterns driving the classification were mainly not based on
age effects.

In summary, we found that a CNN can be trained for
automatic differentiation of gait disorders and healthy subjects
based on EMG data allowing classification accuracy of 80 to
90% even in small sample sizes when applying transfer learning.
To further improve on the method we will need to build a
larger normative database containing subjects with different
and more specified gait disorders, perhaps at different stages
of their disease and different degrees of symptom load, which
then can be used to train ever more precise artificial neural
networks and classifiers. These are supposed to be able to
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identify disorders on an aetiopathological level instead into the
broader classes of phenotypic gait disorders as demonstrated
here, althoughmixed pathologies may constitute a major obstacle
which may be difficult to assess. If these approaches prove to
be successful objective classifications of walking abnormalities,
the implementation of EMG in a screening assessment may
help improving the diagnostic accuracy and hopefully the
treatment during clinical practice. Although the approach
appears feasible, the magnitude of benefit resulting from adding
our or a similar classifier to the clinical diagnosis remains
speculative. As the accuracy may lie above the general clinical
accuracy some improvement could be inferred although the
magnitude of improvement might well depend on the pretest
probability of wrongly classifying a given patient. In particular,
a gait disorder ambiguous even to the expert may remain
ambiguous if it is classified using a classification system that
is trained on unambiguous pathological features producing
clearly distinguishable signals. This uncertainty within the
gold standard may limit the accuracy and benefit of our
and of similar classifiers substantially. This limitation may
only eventually be overcome if a classifier’s accuracy and its
additional benefits are associated with histopathological (e.g.,
post mortem) markers.
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