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Comprehensive quantification of intracranial artery features may help to assess and

understand regional variations of blood supply during early brain development and

aging. We analyzed vasculature features of 27 healthy infants during natural sleep,

13 infants at 7-months (7.3 ± 1.0 month), and 14 infants at 12-months (11.7 ±

0.4 month), and 13 older healthy, awake adults (62.8 ± 8.7 years) to investigate

age-related vascular differences as a preliminary study of vascular changes associated

with brain development. 3D time-of-flight (TOF) magnetic resonance angiography (MRA)

acquisitions were processed in iCafe, a technique to quantify arterial features (http://icafe.

clatfd.cn), to characterize intracranial vasculature. Overall, adult subjects were found

to have increased ACA length, tortuosity, and vasculature density compared to both

7-month-old and 12-month-old infants, as well as MCA length compared to 7-month-old

infants. No brain laterality differences were observed for any vascular measures in either

infant or adult age groups. Reduced skull and brain sharpness, indicative of increased

head motion and brain/vascular pulsation, respectively, were observed in infants but not

correlated with length, tortuosity, or vasculature density measures. Quantitative analysis

of TOF MRA using iCafe may provide an objective approach for systematic study of

infant brain vascular development and for clinical assessment of adult and pediatric brain

vascular diseases.

Keywords: magnetic resonance angiography, vascular change, feature extraction, brain development, pediatric

vascular disease

INTRODUCTION

Three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) is a reliable
technique for quantitative vascular analysis (1) that also can be obtained without the need
for contrast agents or radiation exposure, which is especially desirable for pediatric studies.
Quantitative intracranial artery analysis has potential to systematically investigate vascular
characteristics and distribution during early infant brain development.

Intracranial artery morphometric analysis has previously primarily focused on healthy adults
with relatively good image quality. Bullitt et al. analyzed the effects of aging on intracranial
vasculature in 100 healthy volunteers aged 18–74 and found a lower number of MRA-discernible
vessels with age, most marked in the posterior circulation (2). In a follow-up study, aerobically
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active healthy elderly adults (68 ± 6 years) were demonstrated
to have decreased vessel tortuosity and increased smaller vessels
compared with less active age-matched subjects (3). Increased
vascular tortuosity and arterial branch reductions in normal
aging were also found in a study that evaluated 163 older adults
(56–85 years), with associated age-related increased tortuosity
mostly observed in middle cerebral artery/distal arteries (4).
PreviousMRA quantification techniques, however, have not been
reported to reliably characterize infant vasculature due to the
greater arterial and brain pulsation, and more diverse imaging
artifacts at this early age (5, 6).

Intracranial artery feature extraction technique (iCafe) (1),
a recently developed technique to quantify intracranial artery
features, including length and tortuosity, has been validated with
good to excellent reproducibly (1). With a recently reported
artery refinement algorithm, iCafe has been shown also to reliably
analyze MRA scans from challenging clinical populations,
including infants (7).

In this paper, we applied the iCafe technique, along with
our artery refinement algorithm (7), to study infants at two
age points (7 months and 12 months) in comparison to a
group of older adults. The goal of this study is to use the
comprehensive and quantitative vascular features to explore
vasculature developmental differences between infants and adults
so that regional variations of blood supply can be assessed during
early brain development and aging.

METHODS

Study Population
No participants were scanned under sedation as all studies were
non-clinical. 3D TOF MRA were acquired from 27 healthy
infants (9.5 ± 2.4 month, eight females), comprised of 13 7-
month-old infants (7.3 ± 1.0 month, four females) and 14 12-
month-old infants (11.7 ± 0.4 month, four females), and 13
older healthy adults (62.8 ± 8.7 years, two females). Four infants
were scanned at both 7-months and 12-months. No health
problems, or medical conditions, were reported for any subjects
at the time of scanning. These data were acquired as part of
several MR imaging projects approved by the UW Institutional
Review Board; written informed consent was obtained from
the parents of all infants and from all adult participants
before enrollment.

MRA Data Acquisition
3D TOF MRA data were acquired on a 3.0 T Philips MR
scanner (Ingenia CX, Best, The Netherlands) located at
the University of Washington Biomolecular Imaging Center.
For infant subjects, the following 3D-TOF MRA sequence
parameters were used: TR 19.6ms, TE 4.1ms, flip-angle
18 degrees, axial plane, slice thickness 1.4mm, interpolated
resolution 0.35 × 0.35 × 0.35mm, field of view (FOV) 150

Abbreviations: iCafe, IntraCranial artery feature extraction; ACA, Anterior

cerebral artery; MCA, Middle cerebral artery; PCA, Posterior cerebral artery; BA,

Basilar artery; VA, Vertebral artery; TCA, Transient Cerebral Arteriopathies; FCA,

Focal cerebral arteriopathy.

× 150mm, matrix size 216 × 214. For adult subjects, a 3D-
TOF MRA sequence with the following parameters was used:
TR 25ms, TE 3.5ms, flip-angle 20 degrees, axial plane slice
thickness 1.4mm, interpolated resolution 0.35 × 0.35mm, FOV
180 × 180mm, matrix size 370 × 278. The scan volume
encompassed the cerebral vascular distribution with centerlines
going through the anterior commissure-posterior commissure
line and interhemispheric fissure on survey images. Infants were
scanned while naturally asleep.

A subset of three adult subjects were rescanned using both
adult and pediatric parameters to assess parameter effects on
measurement quantification (See Supplemental Material).

Feature Extraction
For all subjects, intracranial vasculature throughout the brain
was traced using iCafe, a semi-automated artery tracing tool we
have previously reported (8). iCafe is available for academic uses
through our website (http://icafe.clatfd.cn).

In iCafe, arteries in TOF MRA were traced using an open-
curve active contour model (9) and reconstructed as radius-
varying tubes. To ease the artery tracing problems caused by
artery boundary blurring due to pulsation and global image
quality deterioration due to the motion during MRA scan, an
artery trace refinement algorithm was used to correct centerline
deviations and erroneous radius estimations along the traces.
Then arteries were labeled as one of the 24 anatomical types
(8, 10) so that comprehensive regional-based arterial features
could be extracted, such as distal artery length and tortuosity of
middle cerebral arteries. Three major vascular regions: anterior
cerebral artery (ACA), middle cerebral artery (MCA), and
posterior cerebral artery (PCA) were used for regional vascular
feature analysis by grouping corresponding arteries from 24
anatomical types.

In addition to the features introduced in iCafe (1), several new
features are introduced in this study.

To normalize the various brain sizes between subjects, the
maximum brain area in axial dimensions was manually identified
in each subject, and the brain region was selected using the
“wand tool” with tolerance of 40 intensity difference provided
in ImageJ (11). The number of pixels in the brain region was
then defined as the maximal brain area. To evaluate density of
arteries in specific brain regions (e.g., left or right M2+ segments
for middle cerebral artery region), the minimum rectangular box
that encompassed all arteries in the region was superimposed,
then arterial density was defined as the volume of arteries in the
region divided by the volume of the encompassing box.

In addition to vascular morphometric features, brain and
skull motion were separately quantified in order to evaluate
effects of motion caused by vascular pulsation and gross motion
caused by head movement. Samples of brain and skull edges were
manually drawn in iCafe (Figure 1) so that intensity along the
edges could be extracted. The maximum (within a range of 10
pixels) descending horizontal gradients outward from the brain
center along the points on the edges were then identified. We
defined a “sharpness index” as the mean of gradient divided by
the mean intensity along the edges. Sharper edges have higher
sharpness indexes.
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Statistical Analysis
The comprehensive morphometry and intensity features were
compared between each age group using analysis of variance
(ANOVA), with post-hoc comparisons using Student’s t test.
A two-tailed p-value of 0.05 was considered significant in
consideration of the heuristic nature of this study.

Vascular Measurements
The vascular features analyzed in this study included: total length
and volume of artery branches [except the internal carotid artery
(ICA), basilar artery (BA) and vertebral artery (VA) due to
partial coverage by MRA); normalized (with maximum brain
area) measures of length and volume, tortuosity, and density
of M2+ area are additionally reported. Length measurements
were further separated into ACA, MCA, and PCA regions

FIGURE 1 | Brain (left) and skull (right) edges (white lines) drawn manually on

an infant scan in iCafe for brain and skull sharpness index calculation. Gradient

direction in red arrows (length of 10 pixels).

to assess regional vascular length differences. We additionally
compared left and right arterial features to assess for possible
laterality differences.

Brain and skull sharpness indexes, and adult compared to
pediatric acquisition parameters, were further assessed (included
in Supplementary Material) to account for possible effects on
reported measures.

RESULTS

Infant and Adult Differences
Examples of iCafe processed artery traces for infants and adults
are shown in Figures 2, 3.

The artery feature differences between infants and adults are
shown in Table 1. The infants, compared with adults, show
significantly shorter artery length and smaller tortuosity, but
higher volume and artery density. Skull and brain sharpness are
reduced in infants.

The brain/skull sharpness indexes are 0.15/0.16, 0.15/0.17, and
0.18/0.19 for 7-month infant, 12-month infant, and adult. Infant
groups show significantly smaller sharpness indexes compared
with adults (p-values for t tests are all <0.001).

The vascular differences were not driven by brain or skull
motions indicated by significant differences after controlling for
brain or skull sharpness index in partial Pearson correlation (see
Supplementary Material).

Plots for each infant group and adults on length, normalized
length, tortuosity, density, and sharpness are shown in
Figures 4–7.

Differences Between Vascular Regions
Length difference in MCA/ACA/PCA are shown in Figure 8.
ACA length was found to be significantly longer in the adult

FIGURE 2 | An example of iCafe processed infant in axial, sagittal, and coronal maximum intensity projection (MIP).
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FIGURE 3 | An example of iCafe processed adult in axial, sagittal, and coronal maximum intensity projection (MIP).

TABLE 1 | Infant and adults artery feature differences.

7-month infant

mean

12-month infant

mean

Adult

mean

ANOVA

p-value

T test p-value

7-month vs.

12-month

7-month vs.

adults

12-month vs.

adults

Total length (mm) 2893.1 3180.4 3800.0 0.002 0.210 <0.001 0.015

Norm total length (mm) 3157.7 3193.7 3776.9 0.007 0.862 0.007 0.008

Total volume (mm3 ) 6732.3 8525.2 6714.8 0.060 0.079 0.978 0.050

Norm total volume (mm3 ) 7698.4 8574.9 6689.1 0.094 0.376 0.142 0.036

MCA length (mm) 1625.7 1798.7 2019.5 0.047 0.233 0.017 0.178

ACA length (mm) 746.5 855.3 1254.2 <0.001 0.085 <0.001 <0.001

PCA length (mm) 487.5 488.4 479.8 0.985 0.985 0.896 0.871

M2L+ Density 10e-3 7.47 9.77 5.38 <0.001 0.071 0.018 <0.001

M2R+ Density 10e-3 7.91 9.28 6.10 0.017 0.256 0.014 0.013

Number of branches 115.9 120.3 123.8 0.720 0.627 0.439 0.727

Average tortuosity 1.47 1.53 1.77 <0.001 0.020 <0.001 <0.001

group, with trend enlargement observed when comparing 12-
month to 7-month-old infants. MCA length showed trend overall
age differences, with significantly increased length observed in
adults compared to 7-month-old infants. PCA length did not
demonstrate age relationships.

Laterality Differences
The number of branches, artery length, and volume were
compared for left vs. right differences, shown in Table 2.
No significant laterality differences in either infants or adults
were identified.

DISCUSSION

Comprehensive intracranial artery analysis of MRA acquisitions
was performed on potentially challenging datasets of non-sedated

infants in comparison to older adults using the technique of
iCafe, combined with an artery refinement algorithm developed
for pediatric MRA due to potential limitations of increased
skull movement during natural sleep and greater brain/vascular
pulsation (7). This approach, along with normalization of
assessed brain area, provides systematic and objective assessment
of the arterial features extractable from the TOF MRA used
clinically in non-invasive imaging of human intracranial arteries
across the whole human life spectrum. Using both morphometric
and intensity features extracted from the pediatric MRA, we were
able to quantitatively analyze arterial characteristics of the infant
groups and compare these features with those in older adults.

This study is an important contribution to the existing work
on quantitative intracranial artery feature analysis. Instead of
analyzing only adults (age 18+) (2, 12, 13), we extended the
age range to infants. More importantly, compared with previous
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FIGURE 4 | Plot for length and normalized length in infants (age group in months) and adults.

FIGURE 5 | Plot for tortuosity in infants (age group in months) and adults.

work, which provided only limited measurements such as artery
length and tortuosity (4, 14–16), we developed new metrics
to evaluate artery density and brain/skull sharpness, which
extended our analysis capabilities evaluating intracranial MRA,
particularly in pediatric populations.

Age-related arterial feature differences observed in this study
are explainable and may contribute to a greater understanding of

human cerebral vasculature developmental growth and disease
development. Observations of age-related increases in arterial
length in the older adults would be consistent with continuing
arterial growth beyond early childhood. PET studies demonstrate
dramatic, rapidly increasing brain metabolic activity during early
development (17), then progressive declines with aging that is
postulated to reflect an initial process of overproduction, and
then subsequent elimination of excessive neurons, synapses,
and dendritic spines (18, 19). Those considerations would be
consistent with our observations of a trend increase in vascular
density between 7 and 12 months that then is significantly
decreased bilaterally in older adulthood. In addition, the systemic
analysis of intracranial arteries by iCafe could have utilities in
clinical studies of vascular disease states, such as Moyamoya
(20) or mutations in the skeletal muscle α-actin gene (ACTA2)
in children and cardiovascular disease or strokes in adults (21,
22).

Our vascular quantification approach was able to robustly
detect individual variations, for example, substantial variation
in infant length measurements, that may have research and
clinical utility. Differences in length between MCA, PCA, and
ACA also suggest that regional arterial growth is not uniform
during development. Fewer length changes were observed in
the PCA, which may reflect a differential lobar growth pattern.
The much greater tortuosity measures in adults, consistent with
what is observed clinically, may be related to the occurrence
of age-related brain atrophy, as previously suggested in the
literature (23, 24). Alternatively, increased vessel tortuosity
could reflect endothelial turnover where there is actual vessel
lengthening that occurs with aging, without increase in the
intracranial volume (25). The vascular measurements were
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FIGURE 6 | Plot for density on infant (age group in months) and adults in left and right M2+ segments of MCA.

FIGURE 7 | Plot to illustrate effects of brain sharpness and skull sharpness indexes on infant and adult vascular length measurements. P-values for correlations

between brain/skull sharpness indexes and total length are 0.97/0.84 for infants and 0.31/0.61 for adults.

essentially unchanged, comparing MRA acquired in a subset of
adults using both adult and pediatric acquisition parameters,
which supports that iCafe is measuring actual age-related
differences in vascular features, rather than reflecting different
acquisition parameters.

Skull sharpness index is more related to gross head movement
during scanning, while the brain sharpness index is affected
by both head motion and pulsation related to blood flow. By
quantitatively extracting the sharpness features, we can quantify

and observe the relative impact of head motion in infants. A
lower brain sharpness index in infants is expected because the
infants have much higher pulse rate and hyperdynamic vascular
response. The skull sharpness index is greater than the brain
sharpness index in infants since, in addition to vascular pulsation,
the brain edge is also affected by the same gross motion as skull.

In adults, the value of automated quantitative vascular
imaging measures to investigate central nervous system diseases
has been demonstrated (4, 16). Though less commonly applied in
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FIGURE 8 | Plot for length of ACA (left), MCA (middle), and PCA (right) regions of infants and adults.

TABLE 2 | Left and right sided number of branches, length and volume in infants and adults.

7 Month 12 Month Adults

Branch Length Volume Branch Length Volume Branch Length Volume

Mean left 60.1 1475.3 3325.9 58.0 1530.7 4065.1 64.2 1938.9 5222.8

Mean right 55.2 1415.1 3392.9 61.4 1644.4 4435.6 59.2 1865.6 4725.2

t test p-value 0.122 0.334 0.732 0.349 0.219 0.242 0.162 0.37 0.363

the pediatric clinical setting, the utility of systematic, quantitative
vascular imaging evaluation has been demonstrated in recent
work investigating childhood arteriopathy that found increased
tortuosity measures in transient cerebral arteriopathies (TCA)
and arterial dissection compared to controls, with the authors
speculating that quantified arterial tortuosity could represent
a relevant imaging biomarker (26, 27). In those studies, the
quantitative approach utilized was limited to artery tortuosity
measurements of major arterial branches without reproducibility
assessments. In contrast, the iCafe approach allows investigation
of additional morphologic features, such as artery length and

density (1, 4, 10).
Clinical entities with cerebral vasculature pathology can

first emerge in childhood, such as Moyamoya disease or
genetic defects such as Neurofibromatosis type 1 (NF-1),
where progressive narrowing of central cerebral vasculature
results in progressive ischemic brain injury. This progressive
vasculopathy can overlap in appearance with a non-progressive
form of vasculopathy, categorized as focal cerebral arteriopathy
(FCA). FCA occurs within the larger umbrella of TCA,
which also includes similar appearing arteriopathies with
known viral association, such as post-Varicella infection
(28). Distinguishing the typically self-limiting TCA from the
progressive arteriopathy of Moyamoya or NF-1 genetic defects
can be problematic, acutely at times, with substantial treatment
implications as to which diagnosis is given. Systematic vascular
evaluation, such as with using iCafe, may have value for
further understanding and, ultimately, clinical management

of these pediatric vascular entities. In a different vein,
identification of mutations in α-actin gene [ACTA2], which
results in narrowing of cerebral vasculature with marked
diminishment in length and normal tortuosity, presents another
potential clinical setting for the systematic evaluation of
pediatric cerebral vasculature. The discovery of such genetic
variation in vessel morphology raises the prospect of employing
systematic evaluation of cerebral arteries correlated with
genetic data to further elucidate possible mechanisms in
cerebrovascular disease.

There are several limitations to this study. As a preliminary

study, this is a primarily cross-sectional investigation of a
relatively small number of infants and adults, which aims to apply
artery quantification techniques recently developed for pediatric
subjects and explore potential developmental differences between
infants and adults. Longitudinal assessment of a larger pediatric
cohort will be useful in the future to further validate and
extend our findings in this study. Including older children
will also be of value; however, likely much of the informative
feature changes will occur within the first 2 years of life (17),
when maximal synaptic density and at least 80% of brain
growth occurs.

The impact of inconsistent image quality among infants
was generally addressed by an artery refinement algorithm
specifically developed for this purpose (10), but it cannot be
entirely eliminated, which might cause some bias in quantifying
vascular features. Additionally, the iCafe process is semi-
automated, and there are manual trace editing and manual
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brain area measurement steps for acquiring the features, which
limits the number of cases that can be rapidly analyzed, and
might also introduce operator-generated noise in quantitative
vascular features.

In this study, iCafe was used to quantify morphometry and
intensity features of intracranial arteries in infants and older
adults. Systematic quantification of cerebral vasculature, such as
the features obtained in this study, could help to understand
aspects of brain vascular development and aging. As well, this
type of systematic analysis may have clinical utility for assessing
and managing pediatric and adult vascular diseases.
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