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Background: NANS-CDG is a recently described congenital disorder of glycosylation

caused by biallelic genetic variants in NANS, encoding an essential enzyme in de novo

sialic acid synthesis. Sialic acid at the end of glycoconjugates plays a key role in biological

processes such as brain and skeletal development. Here, we present an observational

cohort study to delineate the genetic, biochemical, and clinical phenotype and assess

possible correlations.

Methods: Medical and laboratory records were reviewed with retrospective extraction

and analysis of genetic, biochemical, and clinical data (2016–2020).

Results: Nine NANS-CDG patients (nine families, six countries) referred to the

Radboudumc CDG Center of Expertise were included. Phenotyping confirmed the

hallmark features including intellectual developmental disorder (IDD) (n = 9/9; 100%),

facial dysmorphisms (n = 9/9; 100%), neurologic impairment (n = 9/9; 100%), short

stature (n = 8/9; 89%), skeletal dysplasia (n = 8/9; 89%), and short limbs (n = 8/9;

89%). Newly identified features include ophthalmological abnormalities (n = 6/9;

67%), an abnormal septum pellucidum (n = 6/9; 67%), (progressive) cerebral atrophy
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and ventricular dilatation (n = 5/9; 56%), gastrointestinal dysfunction (n = 5/9; 56%),

thrombocytopenia (n = 5/9; 56%), and hypo–low-density lipoprotein cholesterol (n =

4/9; 44%). Biochemically, elevated urinary excretion of N-acetylmannosamine (ManNAc)

is pathognomonic, the concentrations of which show a significant correlation with clinical

severity. Genotypically, eight novel NANS variants were identified. Three severely affected

patients harbored identical compound heterozygous pathogenic variants, one of whom

was initiated on experimental prenatal and postnatal treatment with oral sialic acid.

This patient showed markedly better psychomotor development than the other two

genotypically identical males.

Conclusions: ManNAc screening should be considered in all patients with IDD,

short stature with short limbs, facial dysmorphisms, neurologic impairment, and an

abnormal septum pellucidum +/– congenital and neurodegenerative lesions on brain

imaging, to establish a precise diagnosis and contribute to prognostication. Personalized

management includes accurate genetic counseling and access to proper supports

and tailored care for gastrointestinal symptoms, thrombocytopenia, and epilepsy, as

well as rehabilitation services for cognitive and physical impairments. Motivated by the

short-term positive effects of experimental treatment with oral sialic, we have initiated this

intervention with protocolized follow-up of neurologic, systemic, and growth outcomes

in four patients. Research is ongoing to unravel pathophysiology and identify novel

therapeutic targets.

Keywords: congenital disorder of glycosylation, glycosylation, sialic acid biosynthesis, N-acetyl-D-neuraminic

acid, skeletal dysplasia, metabolic disease, intellectual developmental disorder/IDD, thrombocytopenia

INTRODUCTION

Congenital disorders of glycosylation (CDGs) comprise a large
group of genetic defects affecting the glycosylation of proteins
and/or lipids. CDGs are among the most rapidly expanding
group of inborn errors ofmetabolism (1).N-acetyl-D-neuraminic
acid synthase (NANS)–CDG (OMIM#605202) is an autosomal
recessive disorder caused by genetic variants in NANS. N-
acetyl-d-neuraminic acid, more commonly known as sialic
acid, is essentially found at the end of glycan chains on
glycoproteins or glycolipids (2). Sialic acid is abundantly present
in the central nervous system and particularly on gangliosides
and neural cell adhesion molecules, playing key roles in
cell migration, synaptic activity, neural path finding, neurite
outgrowth, and regeneration. In normal neural development,
sialylated structures are highly demanded, implying that sialic
acid belongs to the essential nutrients in early brain development
(3). Furthermore, previous studies have identified that sialic acid
plays a role in inflammatory processes, reactive oxygen species

Abbreviations: BERA, brainstem evoked response audiometry; BSP, bone
sialoprotein; CADD, combined annotation-dependent depletion; CDG, congenital
disorder of glycosylation; IDD, intellectual developmental disorder; LDL,
low-density lipoproteins; ManNAc, N-acetylmannosamine; NANS, N-acetyl-
D-neuraminic acid synthase; NGMS, next-generation metabolomic screening;
1H NMR, quantitative proton nuclear magnetic resonance; NPCRS, Nijmegen
Pediatric CDG Rating Scale; OPG, osteoprotegerin; RCDG, Radboudumc Center
of expertise on Glycosylation Disorders; RUMC, Radboud University Medical
Center; SLO, Smith-Lemli-Opitz syndrome; WES, whole-exome sequencing.

neutralization, psychiatric disorders, and neurodegeneration
(2, 4).

In 2016, NANS-CDG was first described by Van Karnebeek
et al. as a human inherited metabolic disease (5). The
phenotypic spectrum of the reported cases included intellectual
developmental disorder (IDD) (6, 7) with delay in developmental
milestones, short stature with short limbs, and neurologic
impairment. The case series provided the first evidence for
the association between NANS expression and impaired brain
and skeletal development. Furthermore, accumulation of N-
acetylmannosamine (ManNAc), an upstream metabolite of
sialic acid, in urine and plasma was found, providing a
valuable diagnostic biomarker that can be applied for functional
evaluation of pathogenicity of NANS variants.

Benefits of oral supplementation of sugars have been reported
for several CDG subtypes, resulting in, e.g., trials with oral
galactose supplementation in SLC35A2-CDG (OMIM#300896)
(8). The characterization of disease-causing variants in NANS-
CDG led to the identification of sialic acid as a potential
therapeutic option. Research, in particular animal studies,
provided evidence on the bioincorporation of dietary sialic
acid in tissues and particularly into the brain (4). In parallel,
knockout nansa zebrafish embryos were supplemented with
nutrition-derived sialic acid in the early embryonic phase and
showed partial rescue of the brain and skeletal phenotype (5).
Clinical trials on the safety and efficacy of sialic acid reported
an acceptable safety and tolerability profile in patients with GNE
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myopathy (OMIM#605820) (9, 10). Currently, experimental
trials are running to determine whether sialic acid could serve
as a valid therapeutic option in NANS deficiency.

The limited numbers of patients with NANS-CDG have
hindered characterization of the phenotypic spectrum associated
with NANS variants. More importantly, previously reported
NANS-CDG patients involved only one pediatric case (5).
Here, we first aimed to delineate the genetic, biochemical,
and phenotypic spectrum of NANS-CDG by identifying the
disease history of all NANS-CDG patients from different age
groups referred to our expertise center. In order to improve
counseling for this disorder, we investigated possible correlations
between genotypes, phenotypes, and ManNAc excretion levels
of the patients. As short limbs and skeletal anomalies are such
prominent features in the first NANS-CDG report (5), we
provided an overview of all CDG subtypes with any type of bone
abnormality. Finally, we provide the first results of experimental
sialic acid supplementation in a prenatally diagnosed NANS-
CDG patient, as the first exploratory evaluation of the efficacy
and safety of sialic acid in NANS-CDG.

METHODS

Patient Selection
From 2016 onward, medical, genetic, and laboratory records were
retrospectively reviewed to identify newly diagnosed NANS-
CDG patients who had been referred to the Radboudumc
Center of expertise on Glycosylation Disorders (RCDG) for
clinical, genetic, and metabolomic evaluation. All selected
patients had biallelic variants in NANS, which were identified by
genetic testing [whole-exome sequencing (WES), targeted next-
generation sequencing, whole-genome sequence]. To investigate
the impact of the identified genetic variants on NANS enzyme
function, we measured the upstream metabolite ManNAc in
urine and plasma. In addition to the newly identified NANS-
CDG patients, we included the genetic, biochemical, and clinical
follow-up data of one previously reported NANS-deficient case
[patient 1 in this study, patient 9 in the previous publication
(5)], as this patient harbors the same NANS variants as two cases
included in this study (patients 2 and 3). The study was approved
by the Medical Ethics Board of the Radboud University Medical
Center (RUMC) (CMO 2021-7373).

Data Collection
All patients provided written informed consent through their
guardians for publication of their clinical information. Consent
was also obtained to publish the photos shown in Figures 2–
4. Data were collected retrospectively from electronic health
records from medical centers in Europe and Canada (British
Columbia Children’s Hospital, Vancouver, Canada; Copenhagen
University Hospital, Copenhagen, Denmark; Sana Klinikum
Lichtenberg, Berlin, Germany; Semmelweis University Hospital,
Budapest, Hungary; National University Hospital of Iceland,
Reykjavík, Iceland; RUMC, Nijmegen, the Netherlands) via the
referring physicians, including available data until November
2020 or until start of sialic acid treatment. The neuroradiological
and skeletal images were reassessed to ensure uniform analysis

of brain magnetic resonance imaging (MRI) scans and X-
rays of the skeleton. Additional data were obtained via the
Nijmegen Pediatric CDG Rating Scale (NPCRS) questionnaire,
evaluating disease severity and longitudinal natural history of
CDG patients (11).

Severity Score
To evaluate the severity of disease, we used two scoring systems
to determine the overall severity score per case. First, we
calculated an individual severity score based on the NPCRS,
by adding scores together for each patient (11). Zero (lowest
score) indicates a mild phenotype; 110 (highest score) indicates
a severe phenotype. The NPCRS is subdivided into three age
ranges, according to the developmental phases, including infancy
and early childhood (0–24 months), middle childhood (2–11
years), and adolescence (12–18 years). The NPCRS was designed
to follow CDG patients longitudinally and to capture the most
common symptoms (rare symptoms were excluded from the
scale). Congenital brain abnormalities and skeletal dysplasia
appear to be important factors in determining the severity of
clinical symptoms. However, neither is included in the NPCRS,
and consequently, a different approach and scoring system were
needed: the clinical severity classification. We adopted brain
and skeletal abnormalities in the clinical severity classification.
Assessment of the brain MRI scans and X-rays of the bones was
performed by experts in neuroradiology and pediatric radiology,
and the abnormalities were classified into mild, moderate, or
severe. The clinical severity classification was determined per
affected case, rated by two independent specialists, based on the
NPCRS score completed with the presence and severity of the
brain abnormalities and skeletal dysplasia.

Biochemical Analysis
Quantitative proton nuclear magnetic resonance (1H
NMR) spectroscopy was performed to quantify excretion
of ManNAc in patients’ urinary samples. Next-generation
metabolomic screening (NGMS), which encompasses untargeted
metabolomics analysis using quadrupole time-of-flight mass
spectrometry, was performed in patients’ plasma samples to
semiquantify the increase in ManNAc, based on a fold change
in intensity in patients vs. controls. The NGMS method was
introduced and clinically validated at the translational metabolic
laboratory at the RUMC in Nijmegen. For a detailed description,
see the publication of Coene et al. (12).

Statistical Analysis
Correlations between biochemical and clinical phenotype were
assessed using the Pearson linear correlation coefficient r, double-
sided. p < 0.05 was considered statistically significant.

Experimental Treatment With Sialic Acid
The study included a newborn male (patient 2) who had
been prenatally diagnosed with NANS deficiency via WES
using extracted DNA from uncultured amniotic fluid cells
at 31 weeks of gestation. With approval of the Board of
Directors of the Radboudumc and informed consent of both
parents, maternal experimental treatment with oral sialic acid
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(manufactured by Jennewein Biotechnologie GmbH), at a dosage
of 1.500mg four times a day, was started at 34 weeks of
gestation. This dose selection was based on previous clinical
trials with GNE-myopathy (OMIM#605820) patients (9, 10).
The treatment was started and monitored according to the
experimental treatment protocol. During the prenatal treatment
period, advanced ultrasound imaging was performed to monitor
prenatal growth every 2 weeks. Sialic acid passes into breast
milk (2). After birth, the patients’ mother continued with
sialic acid to treat the patient via breastfeeding. At the age
of 12 days, maternal treatment was stopped, and the infant
was given sialic acid in a dose of 4,000 mg/m2 per day
in four doses. First weekly, then monthly, the dosage was
corrected for body surface area. The following outcomes were
evaluated: somatic growth, development, neurologic features and
movement scale, low-density lipoprotein (LDL) cholesterol level,
and thrombocyte count.

RESULTS

Patient Screening and Identification
In total, nine patients were referred to the RCDG with suspicion
of NANS-CDG based on NANS variants identified by genetic
testing. Of these, eight patients were newly referred, and one
patient (patient 1) was previously reported (5). We here report
the follow-up of the nine patients (five male and four female
patients) from nine families and six countries (Canada, Denmark,
Germany, Hungary, Iceland, and the Netherlands). The median
age of the patients was 7 years (range = 3 months to 28
years). All patients were born to non-consanguineous parents.
Family history included oculocutaneous albinism, vanishing twin
and two spontaneous miscarriages, hyperhomocysteinemia and
Noonan syndrome.

Genotypic Spectrum
The biallelic variants in NANS associated with NANS-CDG
are listed in Table 1 and mapped in Figure 1. In nine
patients, we detected eight compound heterozygous variants
and one homozygous variant. From the total of 11 monoallelic
variants, eight variants were novel: c.1A>G p.(Met1?), c.88C>T
p.(Gln30∗), c.92del p.(Gly31Alafs∗5), c.200T>G p.(Leu67Trp),
c.351G>A p.(Met117Ile), c.922_925dup p.(Met309Asnfs∗11),
c.440C>A p.(Ala147Asp), and c.710G>A p.(Arg237His). The
combined annotation-dependent depletion (CADD) score was
>18 for all variants and >24 for all coding variants, which
suggests a pathogenic effect of the variants on protein
function. The genomic position of each variant and the results
from different prediction tools are summarized in Table 1.
The deletion insertion detected in patient 5, c.449–10_449–
5delGATTACinsATGG, was previously reported and shown to
lead to aberrant splicing of exons 3 and 4 (5). Two patients
(patients 2 and 3) harbored the same compound heterozygous
variants as patient 9 from the first case series from 2016 (5):
c.709C>T p.(Arg237Cys); c.562T>C p.(Tyr188His). These three
patients were all of Dutch ancestry suggesting common founders.

Biochemical Spectrum
For all patients in whom ManNAC excretion was measured,
NANS-CDG could be confirmed on a biochemical level
based on elevated ManNAc excretion in urine, as measured
by 1H NMR spectroscopy. Considerable variation in levels
of ManNAc excretion was found, ranging from 10 to 530
µmol/mmol creatinine (detection limit of ManNAc in the
1H NMR assay was 10 µmol/mmol creatinine; in urine
of healthy controls, ManNAc cannot be detected). In all
patients in whom ManNAC in plasma was measured, also
increased ManNAc (vs. controls) was measured by NGMS.
For two patients, ManNAc excretion in urine could not be
determined at time of inclusion because of unavailability of urine
samples. However, NANS-CDG diagnosis was confirmed at the
genetic level.

Phenotypic Spectrum
Detailed clinical reports of the individual cases are presented
in the Supplementary File 1. An overview of the disease
features is recorded in Table 1. The hallmark clinical features
previously reported (5) were confirmed in the current patients:
IDD, neurologic disability, and recognizable facial features
in all patients, short stature, skeletal dysplasia, and short
limbs in eight of nine patients (89%). We now describe the
neonatal presentations of all cases, followed by previously
reported hallmark clinical features and last newly observed
clinical features.

Neonatal Presentation
Patient 2 was diagnosed prenatally; WES was performed because
an ultrasound showed recognizable facial dysmorphisms and
abnormal growth velocity of both brain and skeletal tissue. The
prenatal MRI scan at 34 weeks 2 days of gestation showed a
remarkably similar face to patient 9 of the 2016 report (5) who
harbors the same NANS variants (Figure 2). At birth, skeletal
dysplasia, more specifically a phenotype of short limbs (measured
on clinical examination), was observed in five of nine patients
(56%). Three additional patients were diagnosed with short limbs
(based on clinical evaluation) later in life. Neonatal jaundice was
observed in five of nine patients (56%), for which two patients
needed phototherapy treatment. After birth, tube feeding due
to prematurity and inefficient sucking and drinking skills was
needed in three of nine patients (33%). In one patient (11%), a
G-tube was required after 3 weeks because of failure to thrive.
Three of nine patients (33%) were small for gestational age, and
one patient (11%) was born prematurely. One patient (11%)
experienced recurrent choking incidents since birth, without
the need for tube feeding. Other reported neonatal problems
were hypotonia in three of nine patients (33%), respiratory
distress requiring short-term respiratory support in two of
nine patients (22%), mild metabolic compensated respiratory
acidosis (11%), polycythemia (11%), thrombocytopenia (11%),
petechiae (11%), hyperlaxity (11%), hydrocephalus (11%), and
low blood pressure (requiring intravenous saline) (11%) in
one patient.
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TABLE 1 | Overview of demographic, genomic, biochemical, and clinical data of nine patients with NANS-CDG.

Demographics Patient 1 Patient 2 Patient 3 Patient 4

Ancestry Canadian/European (the

Netherlands)

European (the Netherlands) European (the Netherlands) European (Hungary)

Gender Male Male Male Female

Age at evaluation 8 years 1–3 months 2 years 10 months

Age molecular

diagnosis

3 years Prenatal (31 weeks 0 days) 6 months 10 months

Genotypic spectrum

NANS DNA variants c.709C>T; c.562T>C c.709C>T; c.562T>C c.709C>T; c.562T>C c.709C>T; c.440C>A

Genomic DNA

positiona
g.100843203; g.100840588 g.100843203; g.100840588 g.100843203; g.100840588 g.100843203; g.100839291

Variant type (protein

effect)

Missense; missense Missense; missense Missense; missense Missense; missense

Amino acid change p.(Arg237Cys); p.(Tyr188His) p.(Arg237Cys); p.(Tyr188His) p.(Arg237Cys); p.(Tyr188His) p.(Arg237Cys); p.(Ala147Asp)

gnomAD frequencyb 0.00001314; 0.00003291 0.00001314; 0.00003291 0.00001314; 0.00003291 0.00001314; 0.00001973

PolyPhen scoreb Probably damaging; probably

damaging

Probably damaging; probably

damaging

Probably damaging; probably

damaging

Probably damaging; probably

damaging

SIFT scoreb Deleterious; deleterious Deleterious; deleterious Deleterious; deleterious Deleterious; deleterious

ClinVarb Pathogenic; pathogenic Pathogenic; pathogenic Pathogenic; pathogenic Pathogenic; unknown

CADD scorec 32; 27.2 32; 27.2 32; 27.2 32; 29.9

Biochemical spectrum

ManNAc excretion in

urine (µmol/mmol

creatinine, ref 0

µmol/mmol creatinine)

295e 330; 297f 405; 520g 530h

ManNAc increase in

plasma (fold change in

NGMS vs. controls)

11× 25× 10× Plasma not available

Phenotypic spectrum

Birth parameters

Gestational age (weeks

+ days)

41+3 40+5 39+3 37+0

Birth weight (g) 2,865 (P4) 3,000 (P7) 3,228 (P23) 2,190 (P<2.5)

Birth height (cm) 47 (P5) NR 46 (P2) 40 (<P2)

Head circumference

(cm)

NR 32 (<P2.5) 35 (P82) 29 (<P2.5)

Apgar scores (after 1,

5, 10min)

NR 6, 8, 9 3, 8, 10 9, 10, 10

Neonatal jaundice Y (phototherapy) Y Y (phototherapy) Y

Respiratory distress N N Y N

Complications at birth Skeletal dysplasia Hypotonia; skeletal dysplasia;

petechiae; polycythemia;

metabolic compensated

respiratory acidosis;

thrombocytopenia

Axial hypotonia; skeletal

dysplasia; hyperlaxity;

dysfunctional sucking

Skeletal dysplasia;

hydrocephalus

Interventions at birth N Tube feeding Vit. K supp.; short-term oxygen

support; tube feeding

N

Psychomotor development and cognition

Intellectual disability +++(home schooled, nurse

participates in care)

NA NA NA

IQ range NR NA NA NA

Adaptive functioning Delayed NA Delayed Delayed

Global developmental

delay

++++ + +++ ++

(Continued)
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TABLE 1 | Continued

Demographics Patient 1 Patient 2 Patient 3 Patient 4

Gross motor skills Delayed, no ambulation NA Delayed (according to Bayley

scale), no ambulation

Delayed

Fine motor skills Delayed (unspecified) NA Delayed (according to Bayley

Scale)

NR

Language development No speech NA Delayed NA

Neurologic symptoms

Seizure history Y N N Y

Abnormalities of

muscle tone

Generalized hypotonia Axial hypotonia Axial hypotonia; limb hypertonia Axial, limb hypotonia

Muscle strength Inadequate Normal Inadequate around hips Inadequate

Reflexes NR NR Absence of menace reflex NR

Ataxia NR NR N N

Cranial nerves Intact NR NR NR

Other neurological

abnormalities

Hydrocephalus N Dystonia; spasticity; tremor West syndrome

Neuroimaging (MRI) At age 4 months−3.5 years:

Ventriculomegaly;

Abnormality in periventricular

white matter;

Cerebral atrophy;

Persistent vacuum vergae;

Abnormal basal nuclei;

Hypoplasia of the corpus

callosum and splenium, aplasia

rostrum;

Asymmetry of cerebellum

Prenatal:

Hypoplastic cerebellum;

Periventricular pseudocysts;

Polymicrogyria

Postnatal (2 days):

Ventriculomegly;

Cerebral atrophy;

Widened cisternae and/or sulci;

Hypoplastic brainstem;

Hypoplastic cerebellum;

Periventricular pseudocysts;

Cavum septum pellucidum;

Cerebellar hemorrhage;

Abnormal corpus callosum with

hypoplastic splenium

Prenatal:

Suspected hypoplastic

cerebellum;

Small cavum septum pellucidum;

Mild ventriculomegaly;

Suspected syntelencephaly

Postnatal (4 days):

Small but anatomically normal

cerebellum;

Moderate ventriculomegly;

Limited volume of corpus

callosum and periventricular

white matter;

Small optic chiasm;

Absence of septum pellucidum;

Suggestion of cortical

malformation of the left

temporoparietal region

At 2 years:

Progressive white > gray matter

atrophy;

Severe ventriculomegaly;

Aqueduct stenosis

At 8 months:

Enlarged lateral ventricles and

third ventricle;

Cerebral atrophy;

Absent splenium of the corpus

callosum;

Aqueduct stenosis

Somatic growth

Age 8.5 years 3 months Age 26 months Age 10 months

Length (cm) 91 (<P0.01) 56 (P0.4) 76.2 (P0.01) 57 (<P0.01)

Weight (kg) 19.8 (P0.5) 5.435 (P8) 9.426 (P0.01) 5.3 (<P0.01)

Head circumference

(cm)

NR 41 (P85) 48.3 (P31) 39 (<P0.01)

Short stature Y Y Y Y

Bones

Skulld Frontal bossing NR Frontal bossing NR

Spined Flat vertebra;

Irregular calcification of the

endplates;

Scoliosis and lumbar kyphosis

NR L2 ventroapical deformity,

resulting in kyphosis and

scoliosis;

Abnormal ossification

centers (CT)

NR

Pelvisd Sclerosis iliac crest;

Flat acetabular roofs;

Shallow acetabula;

Short femoral neck

NR Small iliac wings;

Shallow flat acetabula;

Small femoral head epiphysis;

Short femoral neck;

Luxated left hip

NR

(Continued)
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TABLE 1 | Continued

Demographics Patient 1 Patient 2 Patient 3 Patient 4

Limbsd Upper extremities:
Metaphyseal widening distal ulna

and radius

Lower extremities:
NR

Upper extremities:
Metaphyseal widening;

Sclerosis;

Irregularity

Lower extremities:
Metaphyseal widening;

Sclerosis;

Irregularity

Upper extremities:
Metaphyseal widening;

Sclerosis;

Irregularity

Lower extremities:
Metaphyseal widening;

Sclerosis;

Irregularity

Upper extremities:
Metaphyseal widening;

Sclerosis;

Irregularity;

Small flat epiphysis distal radius

Lower extremities:
Metaphyseal widening;

Sclerosis;

Irregularity;

Genu vara

Joint hypermobility NR NR Y N

External features

Facial dysmorphisms Y Y Y Y

Skin anomalies N N N N

Eye

Strabismus; amblyopia; myopia;

cone-red dystrophy; visual

impairment

Strabismus Delayed visual development Strabismus

Heart

Dilated aortic root and abdominal

aorta

Normal Normal Normal

Auditory

Conductive hearing loss Normal Normal Abnormal BERA test 1 side

Gastrointestinal and nutrition

Constipation +++ N +++ Y

Abdominal distention ++ + +++ Y

Other pathology GastroesophageaI reflux; G-J

tube in situ; partial bowel
obstruction

Anus perforatus N N

Urinary tract

Urinary tract Neurogenic bladder NR Normal Urethral stenosis;

hydronephrosis; hydroureter

External genitalia

development

NR Normal Normal Normal

Onset of puberty NA NA NA NA

Immunologic (recurrent

infections)

Y N Y Y

Other striking features

Obstructive sleep apnea Positional preference right;

Flattened aspect hands

Positional preference right;

Excessive mucus production

Excessive mucus production

Clinical severity

Clinical severity

classification

Profound Mild-moderate Profound Profound

NPCRS 48 13 40 38

Laboratory findings

Hematology

Anemia N N N Y

Thrombocytopenia Y Y Y Y

Biochemistry

Lactate NR Normal ↑(Recovered) NR

Electrolytes Normal Normal Normal Normal

Kidney function Normal Normal Normal Normal

Liver/biliary function ↓Alkaline phosphatase ↑Alkaline phosphatase ↑Alkaline phosphatase ↑Alkaline phosphatase

Lipids NR ↓LDL ↓LDL Normal

Endocrine Normal NR Normal Normal

(Continued)
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TABLE 1 | Continued

Demographics Patient 5 Patient 6 Patient 7 Patient 8 Patient 9

Ancestry European

(Germany/Russia)

European (Iceland) European (Dutch) European (Denmark) European (Dutch)

Gender Female Female Male Male Female

Age at evaluation 7 years 13 years 16 years 17 years 28 years

Age molecular diagnosis 6 years 10 years 11 years 15 years 25 years

Genotypic spectrum

NANS DNA variants c.1A>G;

c.449–10_449–5

delGATTACinsATGG

c.351G>A;

c.922_925dup

c.710G>A; c.92del c.88C>T; c.200T>G c.709C>T

homozygous

Genomic DNA positiona g.100819091;

g.100840465

g.100839202;

g.100845179

_100845182dup

g.100843204;

g.100819182

g.100819178;

g.100823131

g.100843203

Variant type (protein effect) Start_lost;

splice-region_variant;

intron_variant

Missense; frameshift Missense; frameshift Stop_gain; missense Missense

Amino acid change p.(Met1?); unknown p.(Met.117IIe);

p.(Met309Asnfs*11)

p.(Arg237His);

p.(Gly31Alafs*5)

p.(Gln30*);

p.(Leu67Trp)

p.(Arg237Cys)

gnomAD frequencyb 0.000006595;

unknown

0.001302;

0.000007954i
0.000006570;

0.00001314

Unknown; 0.00001314 0.00001314

PolyPhen scoreb Benign; unknown Benign; unknown Possibly damaging;

unknown

Unknown; benign Probably damaging

SIFT scoreb Deleterious_low

_confidence; unknown

Tolerated; unknown Deleterious; unknown Unknown; deleterious Deleterious

ClinVarb Unknown; pathogenic Benign; unknown Unknown; unknown Unknown; unknown Pathogenic

CADD score 24; 18.01 24.3; 23.2 29.5; 32 41; 25 32

Biochemical spectrum

ManNAc excretion in urine

(µmol/mmol creatinine, ref 0

µmol/mmol creatinine)

Urine not available 46j 45k 10l Urine not available

ManNAc increase in plasma

(fold change in NGMS vs.

controls)

Plasma not available Plasma not available 2× 3× 6×

Phenotypic spectrum

Birth parameters

Gestational age (weeks +

days)

35+0 Full term 40+5 40+0 41+3

Birth weight (g) 1,550 g (<P2.5) 3,000 (P8) 3,620 (P48) 4,560 (P97) 3,920 (P82)

Birth height (cm) NR 48 (P25) 50 (P50) NR 48 (P25)

Head circumference (cm) NR 36 (P95) NR NR 37 (P98)

Apgar scores (after 1, 5,

10min)

NR NR Unremarkable 4, 5, 6 10, 10, 10

Neonatal jaundice NR N NR N Y

Respiratory distress N N Y N N

Complications at birth N Skeletal dysplasia NR Low blood pressure;

hypotonia

Skeletal dysplasia;

recurrent choking

Interventions at birth Tube feeding; care at

the NICU (prematurity)

N Short-term oxygen

support

Intravenous saline NR

Psychomotor development and cognition

Intellectual disability +++(attending

special school)

+++(attending

special school, autism)

+(attending special

school)

+(attending special

school)

+++(lives in nurse

home)

IQ range NR 20–40 (age and test

unspecified)

60–75 (according to

WISC-III-NL)

56 (age 6, test

unspecified)

NR

Adaptive functioning Delayed Delayed Delayed Delayed Delayed

Global developmental delay +++ +++ + + ++++

Gross motor skills Unaided ambulation Unaided ambulation,

mild mobility problems

Unaided ambulation Unaided ambulation Delayed, no ambulation

(Continued)
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TABLE 1 | Continued

Demographics Patient 5 Patient 6 Patient 7 Patient 8 Patient 9

Fine motor skills NR NR Delayed (unspecified) Delayed (unspecified) Delayed (unspecified)

Language development Delayed No speech Delayed Delayed, dyspraxia No speech

Neurologic

Seizure history N N N N Y

Abnormalities of muscle

tone

Hypotonia Hypotonia Generalized hypotonia Hypotonia Generalized hypertonia

Muscle strength Mild weakness Mild weakness Normal NR Inadequate

Reflexes NR NR Hyperreflexia NR Low-normal

Ataxia Y (mild) Y (mild) N N Y

Cranial nerves NR NR NR NR NR

Other N N NR N N

Neuroimaging (MRI) At 2 years:

Persistent cavum

septum pellucidum

At 11 years:

CT scan: normal

At 12 years:

Cavum septum

pellucidum and vergae

NR At 9 months:

Ventriculomegaly

At 3 years:

Cerebral atrophy;

widened cisternae

and/or sulci; atrophy of

the caudate nucleus;

At 15 years:

Ventriculomegaly;

cavum

septum pellucidum

Somatic growth

Age 7 years Age 8.5 years Age 16 years Age 13.5 years Age 26 years

Length (cm) 105.6 (<P0.01) 115 cm (<P0.01) 151.3 cm (P0.3) 160.6 (P44) 126 (<P0.01)

Weight (kg) 17.2 (P0.5) 20 kg (P0.3) 47.3 kg (P5) 70 (P95) 30 (<P0.01)

Head circumference (cm) 50 (P10) NR 55 cm (P80) NR 58 (>P95)

Short stature Y Y Y N Y

Bones

Skulld NR NR NR NR NR

Spined Vertebral plates

sclerosis from dorsal to

ventral over time;

Increased

lumbar lordosis

Vertebral plates

abnormal sclerosis

from dorsal to ventral

over time, resulting in

wavy double contour

plates

Double contour of the

vertebral plates with

less calcification

anterior

NR Scoliosis

Pelvisd NR Small iliac wings;

Small femoral heads

and neck

Small iliac wings,

dysplastic acetabula;

Small femoral heads

and neck

NR Small femoral head and

neck

Limbsd Upper extremities:
Metaphyseal widening;

Sclerosis;

Irregularity distal ulna

and radius

Lower extremities:
NR

Upper extremities:
Metaphyseal widening;

Sclerosis;

Irregularity distal ulna

and radius

Lower extremities:
Metaphyseal irregular

striated sclerosis;

Dysplastic knee joints;

Fibular overgrowth

cf. tibia

Upper extremities:
Subtle metaphyseal

widening and

sclerosing

Lower extremities:
Subtle metaphyseal

widening and

sclerosing;

Striated sclerosing at

knee metaphysis with

small irregular epiphysis

NR Upper extremities:
Small epiphyses

Lower extremities:
Small epiphyses

Joint hypermobility N N Y NR Y

External features

Facial dysmorphisms Y Y Y Y Y

Skin anomalies NR NR Eczema NR N

Eye

Mild strabismus;

hyperopia

Strabismus; nystagmus Normal Normal Normal

(Continued)
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TABLE 1 | Continued

Demographics Patient 5 Patient 6 Patient 7 Patient 8 Patient 9

Heart

Normal Normal Normal NR Normal

Auditory

Normal Normal Normal Normal Normal

Gastrointestinal and nutrition

Constipation N N N N +++

Abdominal distention N N NR N ++

Other pathology N N Swallowing difficulty

during infancy

N NR

Urinary tract

Urinary tract Normal Normal NR NR Bladder emptying

disorder

External genitalia

development

NR NR NR NR Normal

Onset of puberty NA No Age-adequate Age-adequate NR

Immunologic (recurrent

infections)

N NR Y N Y

Other features

N NR N Overweight Excessive mucus

production

Clinical severity

Clinical severity classification Severe Mild Mild Mild Severe-profound

NPCRS 21 19 13 8 36

Laboratory findings

Hematology

Anemia N N N NR Ym

Thrombocytopenia N N N NR Yn

Biochemistry

Lactate Normal NR Normal NR ↑(Recovered)

Electrolytes Normal Normal Normal NR Normal

Kidney function Normal Normal Normal NR Normal

Liver/biliary function Normal Normal Normal NR Normal

Lipids Normal Normal ↓LDL;

↓Triglycerides

NR ↓LDL

Endocrine Normal Normal Normal NR Normal

+, mild; ++, moderate; +++, severe; ++++, profound; ↑, elevated; ↓, decreased; Y, yes; N, no; NR, not reported; NA, not applicable; NGMS, next-generation metabolic screening;
NPCRS, Nijmegen Pediatric CDG Rating Scale.
aGRCh37.
bGnomAD v3.1, accessed December 2020, scores determined December 2020.
cCADD score calculated with GRCh37.
dReported on X-ray.
eUrine sample at age 3 years.
fUrine samples at age 2 months and 5 months.
gUrine sample at age 6 months and 24 months.
hUrine sample at age 10 months.
iGnomAD v2.1.1.
jUrine sample at age 10 years.
kUrine sample at age 12 years.
lUrine sample at age 17 years.
mDue to special diet.
nMeasured at age of 23 months, normal platelet count at age 26 and 28 years.

Known NANS-CDG Clinical Features

Psychomotor Development and Cognition
Early-onset global developmental delay was present in seven
of nine patients (78%). The delay in reaching developmental
milestones was highly variable; three of seven patients (43%)

≥2 years never achieved unaided ambulation, three of seven
patients (43%) achieved unaided walking before the age of 20
months, and one patient achieved unaided walking at the age
of 30 months. In two of nine patients (22%), gross motor
skills such as sitting (at 8 months) and walking unaided (18–19
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FIGURE 1 | Gene and protein structure of NANS encoding NANS. The nature and position of the variants reported in this study (black) and the previous case study

(gray) are indicated (5). (A) NANS is 1,080 bp in length and consists of six exons. In total, 17 variants associated with NANS-CDG are reported in both studies

combined, of which 10 are newly described in this case study. (B) The NANS protein is 359 amino acids in length and contains two domains: the N-term, the

N-acetylneuraminic acid synthase domain (green) and the C-term antifreeze, type III domain (orange). The majority of variants are located in a domain from which 10

are located in the N-acetylneuraminic acid synthase domain.

months) were not significantly delayed. Speech and language
delay were present in all patients, with none of the patients
acquiring normal speech (varying form a few sound to speech
with verbal apraxia). Similarly, all patients were cognitively
impaired, with all patients 5 years or older suffering from mild
to severe intellectual disability. None of the patients was living
independently or was completely independent for all activities of
daily living.

Neurologic Symptoms
Muscle tone was abnormal in all patients, with hypotonia in
eight of nine patients (89%) and hypertonia in two of nine
patients (22%) (in one patient mixed hypotonia and hypertonia).
Muscle weakness affected six of nine patients (67%). Epilepsy and
ataxia were present in three of nine patients (33%); seizures were
successfully controlled with antiepileptic drugs in one patient,
whereas two patients suffered intractable epilepsy (for which one
patient used cannabis oil).

Neuroimaging
Neuroimaging was available for eight of nine patients (CT
in one patient, MRI in the other patients), 75% of whom

showed abnormalities as illustrated in Figure 3. Striking
features present in six of eight patients (75%) included
an abnormal septum pellucidum, in five of eight patients
(63%) ventriculomegaly, and in five of eight patients (63%)
cerebral atrophy. Further reported findings were hypoplasia
of the corpus callosum and/or splenium (n = 4/8; 50%),
hypoplasia/asymmetry of the cerebellum (n = 2/8; 38%),
abnormal cisternae and/or sulci (n = 2/8; 25%), aqueduct
stenosis (n = 2/8; 38%), abnormal basal ganglia (n =

2/8; 25%), hypoplastic brainstem (n = 1/8; 25%), abnormal
periventricular white matter (n = 1/8; 13%), periventricular
pseudocysts (n = 1/8; 13%), polymicrogyria (n = 1/8; 13%),
cerebellar hemorrhage (n = 1/8; 13%), and a small optic
chiasm (n = 1/8; 13%) (Figure 3). In patient 3, the only
individual in whom sequential imaging was done, progressive
enlargement of ventricles and white matter loss (Figure 3)
were observed.

Somatic Growth
Short stature with short limbs affected all but one individual.
Intrauterine growth restriction of the limbs was observed in two
of nine patients (22%).
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FIGURE 2 | (A) Prenatal 3D ultrasound of patient 2 at 34 weeks 2 days’

gestational age, frontal view showing carpe-shaped mouth with tenting of both

upper and lower lip. (B) Prenatal 3D ultrasound of patient 2 at 34 weeks 2

days’ gestational age, lateral view showing craniofacial features with

depressed nasal bridge, upturned nasal tip and prominent upper lip. (C) Facial

features of patient 4 at age 10 months, frontal view showing depressed

midface with full cheeks and prominent philtral ridges. (D) Facial features of

patient 4 at age 10 months, lateral view showing deep-set eyes and low-set

ears. (E) Facial features of patient 1 at age 3 years, frontal view showing high

forehead, depressed midface, full cheeks, and tented mouth. (F) Facial

(Continued)

FIGURE 2 | features of patient 1 at age 3 years, lateral view showing deep-set

eyes, upturned nasal tip, and low-set and posteriorly rotated ears. (G) Facial

features of patient 5 at age 7 years, frontal view showing minimal dysmorphic

features with tented upper lip and widely spaced teeth. (H) Facial features of

patient 5 at age 7 years, lateral view showing mild posterior rotated and

low-set ear and prominent, short, philtrum.

FIGURE 3 | Brain MRI scans of patients 2, 3, 7, and 9. (A–C) Patient 2 at age

2 days; fetal gyral pattern with simplified sulcation, thin corpus callosum with

hypoplastic splenium, widened ventricles and cisternae, subependymal

pseudocysts, and a cavum septum pellucidum. (D,E) Patient 3 at age 4 days;

moderate ventriculomegaly, absence of septum pellucidum, limited volume of

the corpus callosum and periventricular white matter, suggestion of cortical

malformation of the left temporoparietal region. (F,G) Patient 3 at age 25

months; ventriculomegaly (lateral and third ventricle) and enlarged

subarachnoid space due to progressive loss of supratentorial white and gray

matter volume; absence of septum pellucidum. (H) Patient 3 at age 28

months; severely enlarged lateral and third ventricle, narrow aqueduct and

fourth ventricle, suggesting not only ex vacuo dilatation but dysfunction of

cerebrospinal fluid. (I,J) Patient 7 at age 12 years; normal MRI but with

persistent cavum septum pellucidum and vacuum vergae. (K,L) Patient 9 at

age 15 years; marked ventriculomegaly (especially lateral ventricles).

Bones
Short limbs were found on clinical examination in eight of
nine patients (89%). Skeletal malformations such as trunk–limb
disproportion, coxa vara, and scoliosis had been reported in the
first NANS-CDG case series (5). Indeed, skeletal malformations
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FIGURE 4 | (A) X-rays of the skeleton of patients 3, 4, and 6. (A–D) Patient 3

at age 4 days; born with multiple congenital abnormalities of the bones. (A)

The pelvis shows flat acetabula and short femoral necks. (B) The right arm

demonstrates metaphyseal widening and irregularity. (C) The knee in the

lateral view demonstrates metaphyseal irregularity in detail. (D) The image of

the right leg demonstrates irregularly widened metaphyses at the distal femur

and proximal and distal tibia, with a dysplastic knee joint and varus deformity.

(E) Patient 4 at age 4 months; total legs, demonstrating flat acetubular roofs,

wide femoral head metaphyses with short femoral necks. There is slight

(Continued)

FIGURE 4 | bowing and varus in the knees. The metaphyses around the knee

show widening and irregularity. (F–H) Patient 6 at age 7 years. (F,G) Total legs

and pelvic showing small iliac wings, coxa vara with small femoral heads and

necks. This is shown in detail in image (G). The metaphyses around the knee

demonstrate the typical striated sclerosis. The knee joints are dysplastic, and

there is a varus deformity. (H) Both hands with irregularly widened and

sclerotic metaphyses in the distal radius and ulna. Irregular metaphyses of the

phalanges. (I,J) Patient 6 at age 12 years; total spine with scoliosis. The

vertebral plates seem to have a double layer, with abnormal sclerosis of the

plates. Lateral view shows the sclerosing of the vertebral plates from dorsal to

ventral, resulting in a double contour.

were present in all eight currently reported patients for whom
radiographic imaging was available (Figure 4):

Skull: frontal bossing (n= 2/2; 100%).
Spine: spinal deformities (n = 5/6; 83%), vertebral sclerosis (n
= 2/6; 33%), less/irregular calcification of vertebral plates (n
= 2/6; 33%); abnormal vertebral plates with sclerosis (n= 2/6;
33%) and abnormal ossification centers (n= 1/6; 17%).
Pelvis: short femoral neck (n= 5/5; 100%), small femoral head
(n= 4/5; 80%), small iliac wings (n= 3/5; 60%), flat/dysplastic
acetabula (n= 3/5; 60%), sclerosis of iliac crest (n= 1/5; 25%),
and luxated hip (n= 1/5; 25%).
Upper extremities: metaphyseal widening (n = 7/8; 88%),
metaphyseal sclerosis (n= 6/8; 75%), metaphyseal irregularity
(n= 5/8; 63%), and small epiphyses (n= 2/8; 25%).
Lower extremities: metaphyseal sclerosis (n = 5/6; 83%),
metaphyseal widening (n = 4/6; 67%), metaphyseal
irregularity (n = 3/6; 50%), small epiphysis (n = 2/6;
33%), dysplastic knee joints (n = 1/6; 17%), genu vara (n =

1/6; 17%), fibular overgrowth (n = 1/6; 17%), and sclerosing
knee metaphysis (n= 1/6; 17%).

We scoped OMIM database to compare the NANS-CDG
phenotype with other CDG-types (Table 2); 49 (38% of the total)
CDGs presented with various skeletal anomalies (Table 2), of
which 13 of 49 (27%) involve defects in N-glycosylation, 14 of
49 (29%) defects in O-glycosylation, 3 of 49 (6%) defects in
glycosphingolipid and GPI-anchor glycosylation, and 19 of 49
(39%) defects in multiple glycosylation and other pathways. IDD
was present in 40 (82%) of these conditions.

Facial Dysmorphisms
We confirmed the previously reported typical facial gestalt
(Figure 2), with a sunken/wide nasal bridge (n = 9/9; 100%)
and a prominent forehead with frontal bossing (n = 6/9; 67%),
tent-shaped or prominent mouth (n = 6/9; 67%), a prominent
upturned nasal tip (n = 5/9; 56%), short neck (n = 3/9; 33%),
synophrys (n = 3/9; 33%), teeth abnormalities (n = 3/9; 33%),
and epicanthus (n = 2/9; 22%) (5). Other and new features
reported in more than a single patient included hypertelorism (n
= 5/9; 56%), low-set ears (n = 5/9; 56%), tongue protrusion (n
= 3/9; 33%), large ears (n = 2/9; 22%), long eyelashes (n = 2/9;
22%), lateral slanted eye(lid)s (n = 2/9; 22%), full cheeks (n =

2/9, 22%), prominent philtral ridges (n = 2/9, 22%), and (mild)

Frontiers in Neurology | www.frontiersin.org 13 June 2021 | Volume 12 | Article 668640

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


den Hollander et al. NANS-CDG: Genetic, Biochemical, Clinical Spectrum

TABLE 2 | Overview of skeletal anomalies in CDGs (13, 14)1,2.

CDG subtype with skeletal

anomalies

IDD Protein name Treatable

ALG1 (OMIM#608540) Yes GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase Unknown

ALG3 (OMIM#601110) Yes Dolichyl-P-Man:Man5GlcNAc2-PP-dolichyl mannosyltransferase Unknown

ALG6 (OMIM#603147) Yes Dolichol-P-glucose:Man9GlcNAc2-PP-dolichol glucosyltransferase Unknown

ALG8 (OMIM#608104) Yes Dolichol-P-glucose: Glc1Man9GlcNAc2-PP-dolichol- α1,3-glucosyltransferase Unknown

ALG9 (OMIM#608776) Yes Dolichol-P-mannose:α1,2 mannosyltransferase Unknown

ALG12 (OMIM#607143) Yes Dolichol-P-mannose: Man7GlcNAc2-PP-dolichol mannosyltransferase Unknown

ALG13 (OMIM#300884) Yes UDP-GlcNAc:dolichol pyrophosphate N-acetylglucosamine transferase (cytosolic) Unknown

ATP6V0A2 (OMIM#278250) a Yes The multisubunit vacuolar-type proton pump (H(+)-ATPase or V-ATPase) Unknown

B3GALT6 (OMIM#271640, #615349) No Beta-1,3-galactosyltransferase 6 Unknown

B3GALTL (OMIM#261540) Yes O-fucose-specific beta-1,3-N-glucosyltransferase Unknown

B3GAT3 (OMIM#284139) No Beta-1,3-glucoronyltransferase 3 Unknown

B4GALNT1 (OMIM#609195) Yes Beta-1,4-N-acetylgalactosaminyltransferase 1 Unknown

B4GALT7 (OMIM#130070) Yes Golgi UDP-galactose:N-acetylglucosamine β-1,4-galactosyltransferase Unknown

CHSY1 (OMIM#605282) Yes Chondroitin sulfate synthase 1 Unknown

COG1 (OMIM#611209) Yes Subunit 1 of the COG complex in Golgi trafficking Unknown

COG7 (OMIM#608779) Yes Subunit 7 of the COG complex in Golgi trafficking Unknown

COG8 (OMIM#611182) Yes Subunit 8 of the COG complex in Golgi trafficking Unknown

DDOST (OMIM#614507, #602202) Yes Subunit DDOST of the OST complex Unknown

DPAGT1 (OMIM#608093) Yes UDP-GlcNAc:dolichol-phosphate-N-Acetylglucosamine-1-phosphotransferase Unknown

DPM1 (OMIM#608799) Yes GDP-Man:Dol-P mannosyltransferase subunit 1 Unknown

DPM2 (OMIM#615042) No Dolichol-P-mannose synthase-2 Unknown

EXT1 (OMIM#133700) No Exostosin glycosyltransferase 1 Unknown

EXT2 (OMIM#133701) No Exostosin glycosyltransferase 2 Unknown

FKTN (OMIM#253800) Yes Fukutin Unknown

FKRP (OMIM#613153) Yes Fukutin-related protein Unknown

GMPPB (OMIM#615350, #615351,

#615352)

Yes GDP-mannose pyrophosphorylase subunit B Unknown

LFNG (OMIM#609813) No O-fucose-specific beta-1,3-N-acetylglucosaminyltransferase Unknown

MPDU1 (OMIM#79323) Yes Dol-P-Man utilization 1 Unknown

MGAT2 (OMIM#212066) Yes Golgi N-acetyl-glucosaminyltransferase II Unknown

MOGS (OMIM#606056) Yes Endoplasmic reticulum glucosidase I Unknown

NUS1 (OMIM#617082) Yes Subunit of cis-prenyltransferase (cis-PTase) Unknown

PGM3 (OMIM#615816, #172100) Yes Phosphoglucomutase 3 Unknown

PIGA (OMIM#300868, #300818) No Phosphatidylinositol glycan anchor class A protein Unknown

PIGL (OMIM#280000) Yes Phosphatidylinositol glycan anchor biosynthesis class L protein Unknown

PIGT (OMIM#615398) Yes Phosphatidylinositol glycan anchor biosynthesis class T protein Unknown

PIGY (OMIM#239200)4 Yes Phosphatidylinositol glycan, class V Unknown

PMM2 (OMIM#212065) a Yes Phosphomannomutase 2 Unknown

POMT1 (OMIM#236670, #613555,

#609308)

Yes O-mannosyltransferase 1 Unknown

POMT2 (OMIM#613150, #613156,

#613158)

Yes O-mannosyltransferase 2 Unknown

SLC35A3 (OMIM#615553) Yes Solute carrier family 35 (udp-N-acetylglucosamine transporter), member 3 Unknown

SLC35C1 (OMIM#266265) Yes GDP-fucose transporter Yes (fucose)

SLC39A8 (OMIM#616721) Yes SLC39A8 transporter of divalent cations, including manganese (Mn), zinc (Zn),

cadmium (Cd), and iron (Fe)

Yes (dietary

galactose)

SRD5A3 (OMIM#612379) No Steroid 5 alpha-reductase 3 Unknown

SSR4 (OMIM#300934) Yes Signal sequence receptor 4 protein of the TRAP complex Unknown

TMEM165 (OMIM#614727, #614726) Yes TMEM165 (TPARL) protein Yes (dietary

galactose)

TRAPPC11 (OMIM#615356) Yes Trafficking protein particle complex, subunit 11 Unknown

VPS13B (OMIM#21655) Yes Vacuolar protein sorting 13B, VPS13B Unknown

(Continued)

Frontiers in Neurology | www.frontiersin.org 14 June 2021 | Volume 12 | Article 668640

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


den Hollander et al. NANS-CDG: Genetic, Biochemical, Clinical Spectrum

TABLE 2 | Continued

CDG subtype with skeletal

anomalies

IDD Protein name Treatable

XYLT1 (OMIM#615777) Yes Xylosyltransferase 1 Unknown

XYLT2 (OMIM#605822) No Xylosyltransferase 2 Unknown

aCDGs in which sialic acid plays a role.
1 IEMbase v.2.0.0. Available online at: http://www.iembase.org/index.asp.
2OMIM: Online Mendelian Inheritance in Man. Available online at https://www.omim.org/.

FIGURE 5 | Abdominal X-rays of patients 1 and 3. (A,B) Patient 3 at age 2

years; severe dilatation of the stomach and bowel loops and fecal impaction

especially in the right colon. (C) Patient 1 at age 8 years; a similar stomach

and bowel loop dilatation.

macrocephaly (n= 2/9; 22%) (Figure 2). Over time, the face may
appear coarser.

Eye
Abnormal ophthalmological findings were present in six of
nine patients (67%). Strabismus was most common, but cone-
red dystrophy (retinal disease), amblyopia, myopia, hyperopia,
nystagmus (eye movement disorders), and delayed visual
development were also observed.

Heart
Prompted by the previous reported nansa knockdown zebrafish
phenotype, showing pericardial edema, an echocardiography was
done in patient 1, which revealed a dilated aortic root and
abdominal aorta, hitherto asymptomatic (5). No other cardiac
abnormalities were reported.

Newly Observed Clinical Features

Hearing Problems
Hearing problems were present in two of nine patients (22%):
conductive hearing loss (due to middle ear fluid) and perceptive
hearing loss with an abnormal brainstem evoked response
audiometry (BERA).

Gastrointestinal and Nutrition
Four of nine patients (44%) developed feeding difficulties
and failure to thrive, requiring tube feeding temporarily or
permanently. Severe constipation with abdominal distention
(Figure 5) requiring laxatives or even daily enemas with
negative impact on quality of life were present in five of nine
patients (56%). For two patients, histopathological studies were
performed to rule out Hirschsprung disease.

Urinary Tract
Three of nine patients (33%) suffered urinary tract abnormalities:
neurogenic bladder, urethral stenosis with hydronephrosis, and
bladder-emptying disorder. No congenital malformations of the
kidneys were reported.

Infections
A common feature of NANS-CDG was a predilection toward
recurrent infections, including upper and lower respiratory tract,
ears, and urinary tract. In one patient, two respiratory infections
that did not respond well to treatment resulted in a prolonged
hospital stay. However, progression to severe infections or sepsis
was not reported.

Laboratory Findings
Thrombocytopenia was observed in five of eight patients
(63%), in whom thrombocyte counts were measured, varying
from 29 × 109/L to 192 × 109/L. In one case, platelet
transfusions were needed approximately every 1–2 weeks; the
other four did not suffer increased bleeding tendency. Mild
anemia was detected in two of eight patients (25%), in whom
red blood cell counts were measured, normocytic in one
patient [hemoglobin (Hb) 5.4 mmol/L; reference range = 6.5–
8.7 mmol/L], and microcytic in the other patient (Hb 5.7
mmol/L; reference range = 7.5–9.9 mmol/L), both likely due to
dietary restriction.

Low levels of LDL cholesterol were detected in four of seven
patients (57%) in whom these were measured: in three patients
during childhood (varying from 0.78 to 1.49 mmol/L; reference
range= 1.75–3.25mmol/L for patients 2 and 3; reference range=
1.61–3.37 mmol/L for patient 7) and in one patient in adulthood
(1.52 mmol/L; reference range= 1.76–4.09 mmol/L).

In three of eight patients (38%), in whom liver function
tests were performed, mildly elevated alkaline phosphatase was
reported (varying from 314 to 462 U/L; reference <155 U/L for
patients 2 and 3; reference range= 124–341 U/L for patient 4). In
one patient (13%), a decreased alkaline phosphatase was reported
(82 U/L; reference range = 110–440 U/L), likely due to dietary
restriction. Lactate was elevated in two of five patients (40%), in
whom lactate was measured (varying from 4.2 to 7.0 mmol/L;
reference range = 0.8–2.1 mmol/L) and normalized thereafter
(Table 3).

Analysis of the Genotype–Phenotype
Correlation
Three patients (patients 1, 2, and 3) harboring the same
pathogenic variants, c.709C>T and c.562T>C, were considered
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TABLE 3 | Overview of disease features in 17 reported NANS-CDG cases.

Reported symptoms Frequencya %

IDD 17 100

Abnormal muscle tone 17 100

Short stature 16 94.1

Facial dysmorphisms 15 88.2

Skeletal dysplasiab 14 82.3

Short limbsc 13 76.5

Ocular abnormalities 11 64.7

Brain septum pellucidum

abnormalities

8 47.1

Joint hypermobility 7 41.2

Recurrent infections 6 35.3

Gastrointestinal dysfunction 6 35.3

Thrombocytopenia 5 29.4

Seizure history 5 29.4

Hypo-LDL cholesterolemia 4 23.5

aFrequency of all symptoms based on current reported patients and cases described by
van Karnebeek et al. (5), according to findings documented in the published manuscript
and supplemented clinical patient reports.
bSkeletal X-rays were not available in three patients [patient 8 in current report and patients
6 and 7 in the 2016 report (5)].
cMeasured on clinical examination.

to be at the severe end of the phenotypic spectrum. Their
MRI scans revealed extensive neurological anomalies, and
radiographic imaging showed anomalies in all parts of the
skeletal system. Moreover, ophthalmic involvement, abdominal
distention, and thrombocytopenia were reported in all three
patients. Shared variants were not found in any of the
other patients.

Analysis of the Biochemical–Clinical
Correlation
To assess the disease severity, we tested the use of the NPCRS
model and the clinical severity classification. We calculated
Pearson linear correlation coefficient r between the NPCRS score
[range = 3 (mild) to 48 (profound)], LDL levels, thrombocyte
counts, and ManNAc excretion in urine (reference value not
detected; Figures 6A,C,D). The positive correlation between
ManNAc excretion and NPCRS score (r = 0.706; p = 0.076;
Figure 6A) and between ManNAc excretion and LDL levels
(r = 0.192; p = 0.808; Figure 6D) was not significant. We
found a significant negative correlation between ManNAc and
thrombocyte counts (r = −0.943; p = 0.005; Figure 6C). Upon
visual examination of the data in Figure 6B, a positive correlation
betweenManNAc excretion and the clinical severity classification
was revealed. For two patients, ManNAc excretion could not be
determined because of unavailability of a urine sample. There
was one outlier: in patient 2 (the youngest patient, prenatally
treated with sialic acid), a high ManNAc excretion level (330
µmol/mmol creatinine) was reported, but he had a low NPCRS
score [(15); Figure 6A]. Analyses excluding patient 2 revealed
a positive significant correlation between ManNAc excretion
and NPCRS score (r = 0.844; p = 0.035; Figure 6A) and a

significant negative correlation between ManNAc excretion and
thrombocyte counts (r=−0.947; p= 0.014; Figure 6C). All these
analyses suggest a positive correlation between biochemical and
clinical phenotype: i.e., the higher the ManNAc excretion, the
more severe the phenotype.

Experimental Sialic Acid Supplementation
The neurodegeneration observed in patient 3 prompted us to
pursue the prenatal experimental therapy with sialic acid in
patient 2. The prenatal sialic acid treatment (dose of 4,000mg/m2

per day in four doses) initiated during the third trimester of
pregnancy was well tolerated by mother after initial polyuria,
as well as postnatally by patient 2. A separate publication will
provide details on the experimental sialic acid therapy for this and
three other patients in this report, who started at age 2 (patient 3),
16 (patient 7), and 28 years (patient 9).

DISCUSSION

CDGs belong to an expanding and heterogeneous group
of inherited metabolic disorders, which pose challenges
regarding diagnosis and patient management. A precision
medicine approach with rapid diagnostics and improved
therapeutic interventions is much needed to tackle these
challenges and improve patient outcome. Here we present such
advances for NANS-CDG patients. Our study of nine affected
individuals confirmed the earlier reported clinical hallmarks
of IDD with delayed achievement of early developmental
milestones, neurologic impairment, recognizable facial gestalt
with coarsening over time, and short stature with short limbs.
Prenatal diagnosis of one patient was suspected based on these
clinical features as observed by ultrasound and confirmed by
molecular and biochemical testing. Detailed phenotyping of our
cohort revealed new features for NANS-CDG: brain septum
pellucidum abnormalities with cortical atrophy and ventricular
dilatation, severe abdominal distention, and gastrointestinal
dysfunction (intermittent), thrombocytopenia, and low levels of
LDL cholesterol. Even though the clinical spectrum of NANS-
CDG is wide, this CDG subtype is specifically recognizable
by the combination of short stature and short limbs, facial
dysmorphisms, skeletal dysplasia, IDD, and neuroimaging
findings. However, mild cases may well be missed especially at
a young age. For patient 8, the urinary excretion of ManNAc
equaled the lower detection limit of the assay (10 µmol/mmol
creatinine), but this was still increased compared to controls
in which no ManNAc can be detected. Despite this just
marginally increased ManNAc excretion, the variants in NANS
and his phenotype, albeit mild, were very suggestive of the
diagnosis NANS-CDG.

To aid the diagnostic process, ManNAc may serve as
a specific biomarker for NANS-CDG both in plasma and
urine, and our study showed that ManNAc excretion levels
significantly correlate with disease severity, i.e., NPCRS score
and thrombocyte count. It must be noted that the CDG rating
scale NPCRS does not include congenital brain abnormalities
and skeletal dysplasia, which makes it less applicable for NANS-
CDG. Therefore, we graded the clinical severity classification and
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FIGURE 6 | (A) ManNAc excretion levels in urine (µmol/mmol creatinine, measured by 1H NMR spectroscopy, reference value not detected) vs. the Nijmegen

Pediatric CDG Rating Scale (NPCRS) for currently reported patients in whom a ManNAc excretion level was determined. (B) ManNAc excretion levels in urine

(µmol/mmol creatinine, measured by 1H NMR spectroscopy, reference value not detected) vs. the clinical severity classification for currently reported patients in whom

a ManNAc excretion level was determined. (C) ManNAc excretion levels in urine (µmol/mmol creatinine, measured by 1H NMR spectroscopy, reference value not

detected) vs. thrombocyte count for currently reported patients in whom a ManNAc excretion level and thrombocyte counts were measured. If the thrombocyte

counts were measured several times, we used the lowest value. (D) ManNAc excretion levels in urine (µmol/mmol creatinine, measured by 1H NMR spectroscopy,

reference value not detected) vs. LDL level for currently reported patients in whom a MaNAc excretion level and LDL were measured. If the LDL level was measured

several times, we used the lowest value. (A–D) Label numbers indicate the patients. 2, analyses excluding patient 2; *, significant at the 0.05 level; †, patients harbor

the same mutation [c.709C>T p.(Arg237Cys); c.562T>C p.(Tyr188His)]; ∼, in patient 2 (aged 3 months) the NPCRS score and clinical severity classification were low

compared to his ManNAc excretion level. Important developmental milestones are not relevant at this young age, explaining why the clinical severity classification is

lower than expected on the basis of ManNAc excretion level; ∧, patient is treated with prenatal and postnatal experimental sialic acid; CDG, congenital disorder of

glycosylation; ManNAc, N-acetylmannosamine; 1H NMR, quantitative proton nuclear magnetic resonance; NPCRS, Nijmegen Pediatric CDG Rating Scale; r, Pearson

linear correlation coefficient.

examined specific phenotypic features such as skeletal anomalies.
Nevertheless, use of ManNAc as a solid biomarker must still be
confirmed in larger patient cohorts, also evaluating the influence
of age on ManNAc levels. In addition, the three patients (patients
1, 2, and 3) with the highest ManNAc excretion levels had
an identical genotype and a severe phenotype with additional
clinical features aside from the hallmark features. Speculatively,
specific genotypes may relate to ManNAc concentrations.
The additional features in these patients, including congenital
brain abnormalities, as well as neurodegenerative features both
clinically and on MRI scan, ocular abnormalities, abdominal
distension, and thrombocytopenia, motivated us to intervene
via an experimental treatment with oral sialic acid. We
started prenatal treatment during the third trimester in the
youngest of the three patients (patient 2) and upon good
tolerability and potential beneficial effects, subsequently in

patients 3 at age 2 years, 7 at age 16 years, and 9 at age
28 years.

The therapeutic rationale was based on the nansa knockdown
zebrafish studies, which demonstrated partial rescue (50%) of the
skeletal phenotype with early oral sialic acid supplementation
(5). As expected, our prenatally treated patient was born with
congenital brain abnormalities and skeletal dysplasia, as they
have their origins earlier in pregnancy, prior to treatment.
Interestingly, at age 7 months, this boy’s neurologic features
were milder than the other two genotypically identical patients.
He makes more progress in development; he attained the
ability to roll at 5 months and to sit at 8 months. Longer
follow-up of clinical well-being and disease course, somatic
growth, and neurodevelopment is required. The results of sialic
supplementation in these patients will be published after a
minimum of 12 months’ follow-up.
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To establish genotype–phenotype correlation, the number
of NANS-CDG patients is too limited. The c.709C>T
[p.(Arg237Cys)] variant that was identified heterozygous in four
patients and homozygous in one patient presented biochemically
with high ManNAc excretion levels and clinically with severe
skeletal dysplasia, severe growth restriction, brain abnormalities,
and thrombocytopenia. Information of this variant may guide
genetic counseling in the future. Larger cohort studies with more
patients, diverse genotypes, detailed phenotyping, and longer
follow-up are needed for genotype–phenotype predications.

All patients showed neurologic dysfunction, ranging from
mild to very severe. Psychomotor development is usually delayed
in NANS-CDG patients and already evident in the first months
of life. Sialic acid is present on glycoproteins and glycolipids and
is highly expressed in the human brain (2). Two studies reporting
on patients with psychomotor delay, hypotonia, and dysmorphic
features found variants localized in SLC35A1 (OMIM#603585)
encoding the Golgi CMP–sialic acid transporter (15, 16). Genetic
deficiency of sialyltransferase ST3GAL3 (OMIM#611090) (17–
22) and ST3GAL5 (OMIM#609056) (23, 24), two enzymes
that add sialic acid residues to glycoproteins and glycolipids,
leads to infantile epilepsy and developmental delay. These
observations underline the relationship between sialylation and
brain functions and suggest that sialylation of proteins and lipids
are necessary for brain development.

A remarkable finding on brainMRI is the abnormal formation
of the septum pellucidum, which could be secondary to low levels
of LDL cholesterol, as structural anomalies involving the midline
and paramidline are frequently reported in neurodevelopmental
disorders caused by errors of cholesterol metabolism, such
as Smith–Lemli–Opitz syndrome (OMIM#270400) (25).
Our finding of a 75% rate of persistent cavum septum
vergae/pellucidum is clearly different from the rate of an
enlarged (>6mm) cavum septum pellucidum in healthy children
(4.6%) (26). A persistent cavum septum pellucidum is also
seen in MAGT1-CDG (OMIM#301031) and B3GALTL-CDG
(OMIM#261540) patients (27, 28) and suggests an association
between midline defects of the brain, abnormal glycosylation,
and low levels of (LDL) cholesterol. Nevertheless, the clinical
significance is unclear, as a cavum septum pellucidum is not
generally thought to be symptomatic, and no relationship
between intelligence, emotional, and behavioral functioning
can be found (25, 26). Other neuroimaging findings, such
as congenital structural abnormalities, cortical atrophy, and
ventricular dilation, were found and may be caused by yet
unrecognized functions of ManNAc, sialic acid, and/or other
abnormal metabolites. On the other hand, sialic acid is important
for brain formation, and some features could well-result from
sialylated glycoprotein deficiencies. Further research in cell
and animal models as well as larger cohort studies might
yield further insights in the molecular mechanisms underlying
neurodegeneration in NANS-CDG.

Low LDL levels have not been previously reported in NANS-
CDG patients. This may be due to the lack of a consensus on
how to define decreased LDL cholesterol levels, as focus is usually
on high LDL levels, as these are commonly considered as an
established risk factor for cardiovascular disease. Nevertheless,

too low LDL levels might interfere with normal cellular functions,
especially in organs that have higher lipid demand, such as the
brain. LDL cholesterol is therefore essential for normal (fetal)
growth and development (29). Hypocholesterolemia in CDG is
usually attributed to an increased receptor-mediated cholesterol
uptake through increased LDL receptor expression, leading to
low LDL plasma levels (30). Hypercholesterolemia is also seen in
some CDG type II subtypes, as an exceptional feature (31–33).
These studies may indicate a molecular origin of abnormal LDL
values in NANS-CDG and other CDG subtypes.

We observed thrombocytopenia as a new NANS-CDG
feature. This is a common tissue-specific feature in diseases
associated with reduced sialylation, seen in patients with genetic
variants in the kinase domain of GNE (34), in SLC35A1 (35),
and in septic patients (36). A recent study on the mechanism
of thrombocytopenia in SLC35A1-CDG (OMIM#603585)
proposed that sialylation is the major capping glycan structure
onmegakaryocytes and platelet membrane glycoproteins; inmice
with sialylation defects, impaired megakaryocyte maturation and
excessive platelet clearance in the liver were found (35). These
findings suggest a strong link between sialylation and platelet
homeostasis. However, the degree of thrombocytopenia varied
in recent and previously described cases (15, 37–40), which
is not yet fully understood. Future measurements of serum
thrombopoietin levels in NANS-CDG patients may help to
unravel the complete pathophysiology.

Elevated alkaline phosphatase, as measured in NANS-CDG
patients, is indicative of a high bone turnover, which seems the
likely etiology in NANS-CDG (41). Measurements of alkaline
phosphatase should be considered in patients with NANS-CDG,
as it may serve as a biomarker for diagnosis, prognostication, and
treatment. Further research is needed to gain more insight into
its values and its role in pathophysiology.

Skeletal dysplasia with short stature, metaphyseal widening,
and spine deformations was reported in nearly all cases and in
previously reported NANS-CDG patients (5). The defects are
the same as in this previous report but of varying severity. The
overview of skeletal anomalies in CDGs may help narrow down
the differential diagnoses. Fourteen CDGs in this overview are
N-glycosylation disorders, which can be diagnosed by isoelectric
focusing of serum transferrin. If this test is negative, the
clinician knows which CDGs should be pursued, one of which
is NANS-CDG. Also, this overview increases awareness among
clinicians that CDGs, not only storage disorders, can present with
skeletal abnormalities.

Skeletal defects are broadly observed in other CDG subtypes,
and there appears to be a diverse spectrum, with most
CDG types having multiple skeletal manifestations, such as
rhizomelia, contractures, short stature, small hands and feet,
and camptodactyly (13). van Karnebeek et al. stated that several
key factors in cartilage and bone growth and development,
such as chondroitin sulfate proteoglycans, bone sialoprotein, and
osteopontin, are sialylated (5). In this line, Xu et al. demonstrated
that expressions of bone sialoprotein (BSP), osteoprotegerin
(OPG), and vitamin D receptor were significantly decreased
when sialic acid expression decreased on the cell surface, affecting
bone mineralization (42). Although sialic acid plays a role in
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only two of the CDGs that present with skeletal anomalies, the
hyposialyation state in NANS-CDG may significantly interfere
with normal bone growth. A separate study (i.e., systematic
review) is needed to give a complete overview of the various
skeletal anomalies in CDGs.

We found gastrointestinal dysfunction and abdominal
distention as new characteristic features of NANS-CDG. The
treatment modalities of patients, i.e., tube feeding and iron
and herbal supplements, can cause and exacerbate abdominal
distension. However, the abdominal distention was already
present in the patients before starting these treatments. Also, the
gastrointestinal dysfunction and abdominal distention were so
severe that Hirschsprung disease was suspected in two patients.
Future research is needed to unravel the mechanism underlying
gastrointestinal dysfunction and abdominal distention in
NANS-CDG patients.

Limitations of this study include the retrospective design
with varying availability of clinical data. Data of Dutch patients
were obtained through the patients’ electronic medical records.
However, access to patient records of non-Dutch patients was
limited to their physicians. Additionally, we cannot rule out
any variability in the interpretation of the clinical features per
patient, described by different clinicians from various hospitals.
Second, in two patients, determination of ManNAc excretion
in urine was not yet possible at the time of inclusion because
of unavailability of urine samples, lessening the strength of
biochemical–clinical correlations. Third, reassessment of brain
imaging of the Dutch, Hungarian, and German patients was
performed by a neuroradiologist of the RUMC, whereas only
written neuroimaging reports were available for the other
patients. Therefore, no reassessment could take place. Lastly, we
provided only short-term follow-up of one prenatally treated
individual here. Since then, three other patients have been started
on experimental therapy with oral sialic supplementation. The
results of this experimental treatment will be reported in a
separate study.

In summary, our study confirmed previous data and adds
some new hallmark features to the clinical spectrum of NANS-
CDG. In addition, we found ManNAc to be a reliable biomarker
for biochemical diagnosis and severity scoring. More patients
are needed to further explore genotype–phenotype correlations.
Future research should focus on the natural history of NANS-
CDG and on expanding disease biomarkers to better understand
the progression of the disease. Similarly, more research on
sialic acid metabolism is required to unravel the complete
pathophysiology, including the role of cholesterol in congenital
and progressive brain abnormalities. Computer-aided facial
phenotyping (DeepGestalt), which can be highly informative
to clinicians for syndrome identification, is planned, and these
results will be included in a next manuscript. Early recognition
of symptoms and accurate genetic and metabolic counseling
are fundamental to provide personalized care for NANS-
CDG patients. Therapy should focus on managing cognitive
impairment, gastrointestinal dysfunction, thrombocytopenia,
and seizures. Clinical trials on sialic acid as a potential
therapeutic option for improving neurologic, systemic, and
growth outcomes in NANS-CDG are ongoing. Results of the

experimental trial will be used to improve disease course and
elaborate treatment strategies.
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