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Background: Multivariable analyses (MVA) and machine learning (ML) applied on large

datasets may have a high potential to provide clinical decision support in neuro-otology

and reveal further avenues for vestibular research. To this end, we build base-ml, a

comprehensive MVA/ML software tool, and applied it to three increasingly difficult clinical

objectives in differentiation of common vestibular disorders, using data from a large

prospective clinical patient registry (DizzyReg).

Methods: Base-ml features a full MVA/ML pipeline for classification of multimodal patient

data, comprising tools for data loading and pre-processing; a stringent scheme for

nested and stratified cross-validation including hyper-parameter optimization; a set of 11

classifiers, ranging from commonly used algorithms like logistic regression and random

forests, to artificial neural network models, including a graph-based deep learning model

which we recently proposed; a multi-faceted evaluation of classification metrics; tools

from the domain of “Explainable AI” that illustrate the input distribution and a statistical

analysis of the most important features identified by multiple classifiers.

Results: In the first clinical task, classification of the bilateral vestibular failure (N = 66)

vs. functional dizziness (N = 346) was possible with a classification accuracy ranging up

to 92.5% (Random Forest). In the second task, primary functional dizziness (N= 151) vs.

secondary functional dizziness (following an organic vestibular syndrome) (N= 204), was

classifiable with an accuracy ranging from 56.5 to 64.2% (k-nearest neighbors/logistic

regression). The third task compared four episodic disorders, benign paroxysmal

positional vertigo (N = 134), vestibular paroxysmia (N = 49), Menière disease (N = 142)

and vestibular migraine (N = 215). Classification accuracy ranged between 25.9 and

50.4% (Naïve Bayes/Support Vector Machine). Recent (graph-) deep learning models

classified well in all three tasks, but not significantly better than more traditional ML

methods. Classifiers reliably identified clinically relevant features as most important

toward classification.

Conclusion: The three clinical tasks yielded classification results that correlate with

the clinical intuition regarding the difficulty of diagnosis. It is favorable to apply an
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array of MVA/ML algorithms rather than a single one, to avoid under-estimation of

classification accuracy. Base-ml provides a systematic benchmarking of classifiers,

with a standardized output of MVA/ML performance on clinical tasks. To alleviate

re-implementation efforts, we provide base-ml as an open-source tool for the community.

Keywords: chronic vestibular disorders, classification, machine learning, multivariable statistics, clinical decision

support (cdss), episodic vestibular symptoms

INTRODUCTION

Multivariable statistical analysis (MVA), and modern machine
learning (ML) methods have the potential to serve as clinical
decision support systems (CDSS) (1–3), including the computer-
aided diagnosis (CADx) of vestibular disorders (4–8). In
combination with large datasets andmulti-site cohorts, MVA/ML
classification algorithms allow for investigating interactions
between patient variables, which is why recent works advocate
that these methods should be used more widely in neuro-otology
and vestibular neuroscience (9). However, there is a wide variety
of MVA/ML methods available, and recent advances in deep
learning (DL) with artificial neural networks (ANN) (10) add to
the complexity of the field.

In this work, we followed three clinical three clinical
scenarios in the differential diagnosis of vestibular disorders,
and defined three respective classification problems
with increasing difficulty. We applied a wide variety of
MVA/ML/DL methods to investigate the suitability of
automated classification for these clinical questions, and
to compare the algorithmic outcomes with clinical expert
intuition, both from the perspective of supposed task difficulty,
and from the perspective of how the algorithms weighted
feature importances toward diagnostic classification. For
validation, we took advantage of the DizzyReg dataset, a
large prospective registry of patients with vestibular disorders
(11). The dataset is multimodal and contains three main
categories of variables, namely patient characteristics, symptom
characteristics, and quantitative parameters from vestibular
function tests.

The first classification problem addresses two groups of
patients, suffering either from bilateral damage to peripheral
vestibular afferents (i.e., bilateral vestibular failure), or functional
dizziness without evidence for relevant structural or functional
vestibular deficits. Both syndromes present with the chief
complaint of persistent dizziness. However, additional symptom
features (e.g., triggers, extent of concomitant anxiety and
discomfort) may vary considerably. We expected that machine
learning can reliably differentiate both disorders based on
patient characteristics (e.g., different age spectra), symptom
characteristics, and vestibular function test (e.g., head impulse
test or caloric testing).

The second classification task is, whether patients with
primary functional dizziness (based on psychological triggers
and stressors) can be separated against patients with secondary
functional dizziness following a preceding organic vestibular
disorder (such as acute unilateral vestibulopathy, or benign
paroxysmal positional vertigo) (8). This setting is more complex,

as patient and symptom characteristics may be similar, but the
vestibular function tests may differ.

The third problem is directed to the differentiation of
four episodic vestibular disorders, namely benign paroxysmal
positional vertigo (BPPV), vestibular paroxysmia (VP), Menière
disease (MD) and vestibular migraine (VM). This multi-class
problem is supposed to be the most complex, because the
demographic characteristics of patients and the spectrum of
symptoms can be diverse andmay overlap (e.g., betweenMD and
VM), and vestibular function tests may be normal (e.g., in VP
or VM).

To investigate classification on these three clinical objectives,
we developed base-ml, a comprehensive test-bench for initial
ML experimentation on clinical data. With this tool, we aim to
provide clinical experts with a better intuitive feeling for the range
ofML outcomes that can be expected on the given data. For better
transparency, several methods can and should be investigated
at the same time, subject to a comparable data pre-processing
and cross-validation strategy. To this end, we compare several
linear, non-linear and neural-network based ML algorithms,
along with a novel graph deep learning method that we
recently proposed (6, 12, 13). Following insights from multiple
classification experiments for diagnostic decision support in our
research over the last few years (4, 6, 13, 14), we also provide
a multi-faceted analysis of algorithm outcomes, including an
examination of class imbalance, multiple classification metrics,
patient feature distributions, and feature importances as rated
by the classifiers. To alleviate the implementation burden for
multi-algorithm comparison and multivariate evaluation, we
provide base-ml as an open-source tool1 to the vestibular
research community, as a starting point for further studies
in this direction.

MATERIALS AND METHODS

DizzyReg Registry and Dataset
The objective of the DizzyReg patient registry is to provide a
basis for epidemiological and clinical research on common and
rare vertigo syndromes, to examine determinants of functioning
and quality of life of patients, to identify candidate patients for
future clinical research, to integrate information of the different
apparative measurements into one data source, and to help
understanding the etiology of the vestibular disorders.

The DizzyReg patient registry is an ongoing prospective
clinical patient registry which collects all information currently
stored in electronical health records and medical discharge

1Base-ml source code and documentation: https://github.com/pydsgz/base-ml.
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letters to create a comprehensive clinical database of patient
characteristics, symptoms, diagnostic procedures, diagnosis,
therapy, and outcomes in patients with vertigo or dizziness (11).
Study population includes patients with symptoms of vertigo and
dizziness referred to the specialized out-patient center for vertigo
and balance disorders. Recruitment into the registry commenced
in December 2015 at the German Center for Vertigo and Balance
Disorders (DSGZ), Munich University Hospital of the Ludwig-
Maximilians-Universität. Inclusion criteria into the registry are
symptoms of vertigo and dizziness, age 18 years and above, signed
informed consent and sufficient knowledge of German.

Questionnaires were issued on first day of presentation
to the study center to assess lifestyle and sociodemographic
factors as well as self-reported perception of vertigo symptoms,
attack duration and the time since first occurrence. Lifestyle
and sociodemographic factors assessed using questionnaires
include age, gender, education, physical activity, alcohol,
smoking, sleep quality. The type of symptoms of patients
included: vertigo, dizziness, postural instability, problems while
walking, blurred vision, double vision, impaired vision, nausea,
vomiting. Concomitant ontological or neurological symptom
are documented with a focus on otological symptoms, i.e.,
hearing loss, tinnitus, aural fullness, pressure, hyperakusis, and
neurological symptoms, i.e., headache, type of headache, photo-
/phonophobia, double vision, other symptoms (ataxia, sensory
loss, paresis, aphasia).

The evolution of symptoms was reconstructed by the
frequency and duration of attacks. All aspects of history taking
in the DizzyReg follow established concepts such as “So stoned”
(15), the “Five Keys” (16) and the “Eight questions” (17).
Frequency or time of onset of symptoms was included as a
categorial variable with the following categories: “less than 3
month,” “3 months to 2 years,” “more than 2 years,” “more
than 5 years,” and “more than 10 years.” The duration of
symptoms is registered in the categories “seconds to minutes,”
“minutes to hours,” “hours to days,” “days to weeks,” “weeks to
months,” “continuous.”

The registry further collects information on symptoms,
quality of life (EQ5D) and functioning (DHI and VAP) in a few
standardized questionnaires. Information on triggers is gathered
by the respective categories of the Dizziness Handicap Inventory
and by elements of the Vertigo Activity and Participation
Questionnaire (VAP) (e.g., head movement, position change,
physical activity etc).

DHI
The Dizziness Handicap Inventory (DHI) is a well-known and
widely used measure to assess self-perceived limitations posed
by vertigo and dizziness (18). A total of 25 questions are used to
evaluate functional, physical, and emotional aspects of disability.
Total score ranging from 0 to 100 is derived from the sum of
responses (0= No, 2= sometimes, 4= Yes).

Quality of Life
Health-related quality of life was assessed with the generic
EuroQol five-dimensional questionnaire (EQ-5D-3L). This
is subdivided into five health state dimensions namely

mobility, self-care, usual activities, pain/discomfort, and
anxiety/depression, with each dimension assessed in three levels:
no problem, some problem, extreme problems. These health
states were converted into EQ5D scores using the German time
trade-off scoring algorithm (19). The resulting total EQ5D score
ranges from 0 to 1 with higher scores indicating better quality
of life.

Vertigo Activity and Participation Questionnaire (VAP)
Functioning and participation were assessed based on the Vertigo
Activity and Participation Questionnaire (VAP). The VAP is
specifically designed for persons with Vertigo and Dizziness and
can be used for people of different countries (20–22). The VAP
measures functioning and participation in two scales consisting
of six items each. Using weights derived from Rasch analysis the
first scale has a range of 0–23 points and the second of 0–20
points with higher scores indicating more restrictions.

Data protection clearance and institutional review board
approval has been obtained (Nr. 414-15).

Classification Tasks and Cohorts
As mentioned in the introduction, three classification problems
with increasing complexity were tested: (1) bilateral vestibular
failure vs. functional dizziness; (2) primary vs. secondary
functional dizziness; (3) BPPV vs. VP vs. MD vs. VM. Table 1
provides information about the group cohorts for each task.

Classification Pipeline
A typical machine learning pipeline comprises several steps
that interplay toward a high-accuracy prediction (23). After
data import, a set of pre-processing routines are applied to
patient features, before data is split into several folds for training
and testing, using one or several classification algorithms. The
classifier performance is evaluated using several quantitative
metrics, and finally presented and explained to a clinical expert
on vestibular disorders, for a critical review. Figure 1 presents an
overview of our methodological pipeline in this work.

Pre-processing
Multimodal medical datasets commonly pose several challenges
for CADx algorithms, including noisy or missing patient features
with spurious outliers (24–26), a mixture of categorical and
continuous variables (27), and different statistical distribution of
variables (23). To account for outliers and different data ranges
in DizzyReg variables with continuous distributions, we perform
a 90% winsorization which sets extreme values to the 5th and
95th percentiles, before applying a z-transformation (27) which
normalizes all variables into a comparable zero-mean and unit-
variance data range. Categorical variables are binarized where
possible, or represented in form of a one-hot encoding (a.k.a.
one-of-K encoding), which creates a binary column for each
category and sparsely represents the categories with a value of 1 in
the respective column and 0 in all the other columns. To account
for missing values, we perform a mean-imputation (24) if <50%
of values are missing in the population, otherwise the feature is
omitted from the patient representation.
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TABLE 1 | Clinical tasks with respective classes of chronic/episodic vestibular disorders, and respective cohort details.

Diagnosis

abbreviation

N Age

mean (s.d.)

EQ5D DHI Female/Male

Task 1

Bilateral vestibular failure BVF 66 65.0 (17.0) 0.8 (0.2) 46.2 (22.6) 27/39

Functional dizziness FD 346 47.2 (14.5) 0.8 (0.2) 43.3 (18.4) 178/168

Task 2

Functional dizziness (Secondary) FDS 204 52.1 (14.7) 0.8 (0.2) 48.0 (18.8) 130/74

Functional dizziness (Primary) FDP 151 45.4 (14.6) 0.8 (0.2) 42.6 (17.6) 77/74

Task 3

Benign Parox. Pos. Vertigo BPPV 134 57.0 (12.1) 0.8 (0.2) 45.0 (19.6) 88/46

Menière disease MM 142 53.4 (13.3) 0.9 (0.2) 43.9 (19.8) 78/64

Vestibular migraine VM 215 44.5 (14.0) 0.8 (0.2) 41.8 (18.6) 145/70

Vestibular paroxysmia VP 49 51.6 (14.2) 0.9 (0.2) 38.8 (22.5) 20/29

FIGURE 1 | Components and methods of the classification workflow applied to vestibular data in DizzyReg. Raw tabular data is pre-processed and split into 10-folds

for stratified cross-validation and for estimation of prospective classification performance. Various linear, non-linear and neural classifiers are repeatedly trained on all

folds in the data, the evaluation is performed with various classification metrics. The metrics, along with model explanations, are presented to experts in form of a

report panel, who can review the classification outcome and model performance. All pipeline components are implemented in base-ml, a comprehensive software tool

which we provide open-source to the vestibular community as a starting point for similar studies. Implemented in Python, and centered around scikit-learn, it

comprises various modules for data science, machine learning, descriptive statistics, explainable AI and visualization. Details on base-ml are described in section

Base-ml Framework.

Data Splitting
In predictive statistics, in particular in the machine learning
community, it is common to assess the prediction performance
via hold-out test datasets, which are often randomly sampled
and kept separate from the training dataset until the time
of pseudo-prospective evaluation (27). Sampling a single test
set could result in a biased selection and thus in an overly
optimistic or pessimistic test evaluation. To avoid this, it is

recommendable to evaluate with multiple test sets, which are
sampled either through random shuffling, or through a k-
fold splitting. Following common recommendations, we set k
to 10 in this work (28). This yields exactly one prediction
for each subject in DizzyReg, and exactly ten estimates for
the prospective classification performance of each classifier.
As recommended by Kohavi in (29), we additionally apply
a stratified cross-validation to make sure that each fold has
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approximately the same percentage of subjects from each class,
which is important especially in the case of class imbalance
in the dataset. To ensure that individual classifiers are being
trained in a suitable parametrization, we additionally perform
hyper-parameter optimization using random search, in a nested
cross-validation setup (for details, see section Appendix C).

Classification Algorithms and Metrics
Intuitively, ML classifiers try to assign class labels to samples
(e.g., patients, represented as multivariable numerical vectors),
by fitting separation boundaries between classes in high-
dimensional space. Mathematically, these boundaries are
expressed in form of a classification function = f (x), which
separate the statistical distributions of classes C in the input space
X. The past decades of ML research have yielded a diverse set of
mathematical models for separation boundaries, and algorithms
to fit them to a set of training data X, including linear regression
boundaries, rule-based, instance-based, tree-based, kernel-based
or Bayesian methods (23), as well as the recent renaissance of
artificial neural networks and deep learning (10). Importantly, no
single method is guaranteed to perform best on all datasets (30),
which is why it is recommendable to test multiple algorithms and
let their performances be compared and critically reviewed by a
domain expert, instead of deciding on a single algorithm a priori.
Therefore, as described in the introduction, we compare several
linear, non-linear and neural-network based ML algorithms,
along with a novel graph deep learning method that we recently
proposed (6, 12, 13). Details on all classifier models and their
parametrization are given in section Overview of Selected
Classification Algorithms. We quantitatively evaluate the
classification performance with three metrics: area-under-the-
curve of a receiver-operating-characteristic (ROC-AUC), as well
as accuracy and f1-score, defined as (TP/TN/FP/FN denote true
or false positives or negatives):

Accuracy =
TP + TN

N
; f1− score =

2 Prec Rec

Prec+ Rec
;

Prec =
TP

TP + FP
; Rec =

TP

TP + FN

Model Explanation
A necessary tradeoff in predictive statistics and ML is to
choose between model accuracy and model interpretability
(31). While linear methods like logistic regression are typically
more interpretable, non-linear models, depending on their
complexity, are often compared to black boxes. By now,
however, “Explainable AI” is a dedicated branch in ML research,
and numerous model-specific and model-agnostic methods are
available that can partially explain ML prediction outcomes (32).
Two common ways to explain model performance is to analyze
the distribution of input samples (4, 33), and to analyze feature
importance (34), especially in a clinical setting (35).

First, we perform a non-linear mapping of the d-dimensional
input distribution after pre-processing onto the 2D plane, and we
visualize whether class distributions were already visible in the
input data, or whether the input data distribution has unexpected
or undesired properties, a technique which has been elucidating
in our research before, e.g., in the mapping of posturography data

(4). To this end, we utilize “Uniform Manifold Approximation
and Projection” (UMAP) (33), a topology-preserving manifold
learning technique for visualization and general non-linear
dimensionality reduction.

Second, we analyze which patient features contributed to
classification outcomes the most, which is a clinically interesting
aspect of classifiers.We obtain the “feature importances” for non-
ANN-based models and “feature attributions” for ANN-based
models. For linear classifiers (see section Linear Classifiers), these
can be obtained through the model coefficients (27). For non-
linear classifiers (see section Non-linear Classifiers), such as tree-
based models, we obtain their feature importance using the
Gini-impurity criterion (36). For neural-network based models
such as MLP and MGMC (see section Neural Network and
Deep Learning Classifiers), we use the Integrated Gradients
algorithm (37) and calculate the feature importance by taking
the feature attributions of every sample in the training dataset
toward their respective ground truth class labels. Obviously,
not every classification algorithm yields the same ranking for
feature importances. It is argued that a combination of several
feature importance rankings can provide more reliable and
trustworthy (34). Therefore, for our report to the expert, we
aim at presenting a single table with the top 10 most important
features for the given classification problem. Tomerge the feature
importance rankings of the different classifiers into a single list,
we propose and apply a heuristic for Relative Aggregation of
Feature Importance (RAFI), which comprises the following three
steps. First, we take the absolute values of all feature importances,
to account for algorithms with negative weights (e.g., negative
coefficients in linear regression). Second, we normalize the range
of importance scores across different classifiers, by computing
the percentual importance. Third, we aggregate all normalized
global importances by summation, and report the top 10
most important features across all classifiers to the experts
for review. In detail, for each feature ϕi

(

i ǫ
[

1, . . . , d
])

, and
across F different classifiers, each with feature importances
Ij (ϕi)

(

j ǫ [1, . . . , F]
)

, we calculate the global feature importance
I0 (ϕi) as follows:

I0 (ϕi) =

F
∑

j=1

abs
(

Ij (ϕi)
)

∑d
i=1 abs

(

Ij (ϕi)
)

Overview of Selected Classification
Algorithms
In this work, we apply and compare the outcomes for a total of
11 classification methods, which we chose to represent a wide
range of algorithmic approaches. This collection is larger than
what is typically encountered in CDSS research, as mentioned, to
provide the expert with a better intuitive feeling for the range of
outcomes that can be expected on the given data. The algorithms
are grouped into three general categories: linear, non-linear, and
ANN-based classifiers. Since explaining the inner workings of all
methods in detail is out of scope for this work, each algorithmwill
be outlined only briefly in the following, with its most important
parametrizations (if any), and a reference to explanatory material
for the interested reader.
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Linear Classifiers
As linear classifiers, we apply Linear Discriminant Analysis
(LDA), Logistic Regression (LR) and Support Vector Classifiers
(SVC). All three methods try to fit a set of linear hyperplanes
between the d-dimensional distributions of the classes. LDA
[(19), chapter 4.3] models the distribution for each class with a
Gaussian and calculates the probability of belonging to a class
as the maximum posterior probability in a Bayesian manner.
We apply LDA in a default parametrization, without additional
regularizations such as shrinkage. LR [(19), chapter 4.4] directly
learns the posterior distribution of the target class and models
it using a sigmoid-activated linear function. We apply LR with
simple L2 regularization to avoid overfitting the parameters of
the model on the training set. SVC (38) is a support-vector
machine (SVM) with a linear kernel, which learns a hyperplane
that maximizes the gap between the classes, giving slack to key
samples (“support vectors”) to account for class overlap in the
joint distribution. To avoid overfitting, we apply a standard
squared l2 penalty term using a regularization parameter of 0.25.

Non-linear Classifiers

Gaussian Naïve Bayes (GNB)
GNB [(19), chapter 6.6.3] is a variant of Naïve Bayes (NB)
that allows continuous input features, under the assumption of
Gaussian distribution and mutual independence. Class posterior
probabilities for new samples are calculated using Bayes Rule.
We parametrize GNB to estimate class prior probabilities directly
from training data, rather than imposing them a-priori.

Gaussian Process Classifier (GP)
GP (39) are a Bayesian alternative to kernel methods like non-
linear SVMs. In classification, it models and approximates the
class posterior probability as a Gaussian distribution. We set the
initial kernel used for GP fitting to a zero-mean, unit-variance
radial basis function (RBF), which is then refined during the
fitting to training data.

K-Nearest Neighbors Classifier (KNN)
KNN [(19), chapter 2.3.2] classification is an instance-based
method, where a sample’s class is determined by the majority
class label vote of the sample’s k-nearest neighbors. We compute
similarity as Euclidean distance between two patients’ feature
vectors, and we use 10 nearest neighbors in the training set to
predict the class label of a test input.

Decision Tree Classifier (DT)
DT (36) are a form of rule-based classifiers. A tree represents a
hierarchical set of rules or decisions, each decision splitting the
feature space in a single feature dimension, using an optimal
splitting threshold which is calculated using information-
theoretic criteria. Each new sample is passed down the tree,
following splitting rules, until a leaf is hit in which a class
distribution andmajority class is stored. In this work, we use trees
with Gini impurity as the splitting criterion, and we allow trees to
expand up to a maximum depth of five.

Random Forest Classifier (RF)
RF (40) are an ensemble of multiple decision trees, where each
tree is trained using a random subset of training data and
a random subset of features. Due to the randomization, the
individual trees are highly uncorrelated. Therefore, the ensemble
output, which is calculated as an average vote from all trees,
weighted by their confidences, is highly robust against various
data challenges, such as high dimensional input spaces, noisy
data, or highly different data distributions across variables. In
this work, we use an ensemble of 10 trees, each with a maximum
depth of 5 decision levels.

Adaptive Boosting Classifier (AB)
AB (41), similar to RF, is another ensemblemethod that combines
multiple “weak” classifiers in order to form a much “stronger”
classifier. A key difference is the boosting mechanism, i.e., the
ensemble is allowed to iteratively add new weak classifiers, which
are trained with a higher weight on those input instances that are
still being misclassified. In this work, we use decision stubs (i.e.,
decision trees with a depth of (1) as the weak base classifiers, and
we allow the maximum number of classifiers to reach up to 50.

Neural Network and Deep Learning Classifiers

Multi-Layer Perceptron (MLP)
MLP [(19), chapter 11] consider input features as activated
neurons followed by one or several fully connected layers (so-
called hidden layers) of artificial neurons which weight and sum
incoming neuronal connections, before applying a non-linear
activation function. The network weights are estimated using
the backpropagation algorithm. In this work, we parametrized
an ANN with two hidden layers (64 and 32 neurons), and
protect every layer against overfitting, as is commonly achieved
by applying dropout (p = 0.3) (42), followed by batch
normalization (43).

Multi-Graph Geometric Matrix Completion (MGMC)
MGMC (13) is a graph-based neural network (GNN) model
which we proposed recently, as an extension to our previously
published geometricmatrix completion approach formultimodal
CADx (12). It models the classification problem as a transductive
geometric matrix completion problem. Importantly, MGMC is
designed to deal with the common problem of missing values
in large medical datasets (25), by simultaneously learning an
optimal imputation of missing values, along with the optimal
classification of patients. MGMCmodels the patients as nodes in
a graph, and computes the edges in the graph through a similarity
metric between patients. The similarity is based on a few meta-
features (e.g., sex, age, geneticmarkers etc.), which allowsMGMC
to span a graph between patients akin to a social network. In
previous works, GNNs have shown promising results and a
complementary approach in the field of CADx. In this work,
we compute multiple patient graphs, each based on similarity
measures of a single meta-feature, namely gender (same gender),
age (age difference ± 6 years), EQ5D score (score difference of
± 0.06), and DHI score (score difference of ± 11). As advanced
model parameters, we use five timesteps for the recurrent graph
convolutional network, Chebyshev Polynomials of order five, and
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a single hidden layer before the output (16, 32, or 64 neurons,
depending on the classification task).

Statistical Methods
The most important features detected by RAFI (cf. section
Classification Pipeline) are presented for expert review and
interpretation. Each of these features is compared across patient
classes via hypothesis tests, to provide a first glance whether
there are significant differences across groups. For continuous
variables, and in the case of two classes, we first test each variable
for normal distribution in each of the patient group with a
Shapiro-Wilk test (44). If so, we apply an unpaired two-tailed
t-test (27), if not, we apply a Mann-Whitney U test (45). For
more than two classes, we apply a one-way ANOVA test (27), or a
Kruskal-Wallis (46) as an alternative for non-parametric testing,
and report the group-level p-value. For categorical values, we
apply a Chi-squared independence test (47). We report p-values
for hypothesis tests on all variables, and assume significance at an
alpha-level of p < 0.05.

Base-ml Framework
As described in the previous sections Classification Pipeline-
Statistical Methods numerous methods are necessary to
imple1ment a full data science andmachine learning pipeline, for
a multimodal clinical problem like vestibular classification, and
in a multi-site dataset like DizzyReg. Naturally, re-implementing
this stack of methods is a time-consuming effort, which should
ideally be avoided across research groups. To alleviate future
classification experiments similar to this work, and to provide
the community with a starting point, we developed base-ml, an
open-source Python package1 provided by the German Center
of Vertigo and Balance Disorders. The package can enable a
rapid evaluation of machine learning models for prototyping
or research. As illustrated in Figure 1 (lower panel), it is built
around scikit-learn (48) as a backbone, which is a reference
toolkit for state-of-the-art machine learning and datascience.
We complement scikit-learn with various Python modules:
pandas (49) for data IO and analysis; scipy and numpy (50)
for fast linear algebra on array-shaped data; PyTorch (51) for
implementation of ANNs and more advanced deep learning
models like MGMC; skorch2 for integration of PyTorch models
into the scikit-learn ecosystem; the Captum3 library for model
interpretability and understanding, which we use for calculation
of feature importance in ANNs using Integrated Gradients (37);
UMAP (33) for non-linear 2D mapping and visualization of the
patients’ input distribution; statsmodels (52) and pingouin (53),
two Python libraries for descriptive statistics and hypothesis
testing; and matplotlib for plotting and scientific visualization.
Importantly, using skorch, we enable potential adopters of base-
ml to integrate both inductive and transductive neural training
workflows and even deep learning models into a comparative
benchmark with more traditional MLmethods. Skorch combines
the ease of use of scikit-learn training workflows and PyTorch’s

2Scorch source code and documentation: https://github.com/skorch-dev/skorch
3Captum source code and documentation: https://github.com/pytorch/captum

GPU-enabled neural network models. In addition, with base-ml,
one can easily evaluate graph-based neural network models.

RESULTS

The following sections reproduce the classification reports
produced by base-ml on the three clinical tasks described in
the introduction. It is important to note that base-ml is not
restricted to vestibular classification scenarios. As a sanity check
for base-ml, regarding classification outcomes, and comparability
to baseline results in literature, we perform two additional
experiments. Those two base-ml experiments are performed on
non-vestibular datasets, i.e., one artificially generated dataset,
and one Alzheimer’s disease classification dataset, which has
been widely studied in literature. To keep the main body of
this manuscript dedicated to vestibular analysis, we report on
non-vestibular results in the Appendix.

Results on Task 1 (Bilateral Vestibular
Failure vs. Functional Dizziness)
The results panel for this classification task, as produced by the
base-ml framework, is visible in Figure 2. The boxplots with
metrics illustrate a wide range of classification performances
for all classifiers, with an accuracy over the 10 folds between
78.7% ± 6.4% (AdaBoost) and 93.0% ± 3.5% (RF), an f1-score
between 0.683 ± 0.144 (DecisionTree) and 0.848 ± 0.091
(GaussianProcess), and an average ROC-AUC between 0.727
± 0.145 (DecisionTree) and 0.937 ± 0.050 (GaussianProcess),
followed closely by a ROC-AUC of 0.921 ± 0.056 (RF).
Quantitatively, Gaussian Process classifiers are the top-
performing model on this task, and slightly outperform
the best-performing neural network model MGMC (mean
accuracy/f1-score/ROC-AUC: 90.8%/0.782/0.893). In fact, on
this task, even one of the best linear models, LR, performs better
than MGMC and almost as good as RF (mean accuracy/f1-
score/ROC-AUC: 91.3%/0.831/0.917). The confusion matrices
reveal that the group with functional dizziness was detected with
a very high sensitivity between 95% (LR) and 98% (MGMC/RF),
compared to a much lower sensitivity between 53% (MGMC)
and 71% (LR) for patients with bilateral vestibular failure.
Notably, hyper-parameter optimization had a positive effect on
the outcomes of Task 1, and the average accuracy of all classifiers
increased from 87.0 to 89.6% after parameter tuning.

Regarding class imbalance, which is important to consider
in context with classification performance, the pie chart (cf.
Figure 2, bottom left) shows that BVF is strongly under-
represented in this DizzyReg subset, at 66 vs. 346 patient samples
(16.0% of patients). Finally, the UMAP embedding shows that
the FV subjects (colored in yellow) are already clustered and
topologically separated from the BVF subjects (colored in purple)
at the level of normalized input data. This underlines that the
patients have clearly separate characteristics at a feature level,
and classifiers have a good chance at fitting decision boundaries
between the two groups. The UMAP plot reveals another
interesting point, namely that the input data is clearly separated
into two clusters, the implications of which are discussed below.
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FIGURE 2 | Results panel produced by base-ml for Task 1. It comprises: boxplots for the three classification metrics, accuracy, f1-score and ROC-AUC; a pie chart to

highlight potential class imbalances for this task; the UMAP 2D embedding of all patients’ input feature vectors; and a more detailed overview of classification

outcomes in form of confusion matrices, for three classifiers, LR, MGMC and RF.

The base-ml output also produces Table 2, with feature
importance scores aggregated with the RAFI heuristic (cf. section
Classification Pipeline). Among the top ten features, six features
are related to (Video-) Head Impulse Testing (HIT/vHIT; HIT
left/right abnormal, vHIT normal result, vHIT gain left/right)
or caloric testing, all of which are also statistically significantly
different between the two groups at a level of p < 0.001. The
most important feature is patient age, also with a significantly
different expression between the two groups (63.8 ± 15.6 vs.
47.3 ± 14.1 years, p < 0.0001). The remaining three features
are related to subjective judgement of disability by patients,
namely the depression score in EQ5D (p < 0.001), a perceived
handicap in DHI (p < 0.01), and the actual perceived health
condition (p= 0.133).

Results on Task 2 (Primary vs. Secondary
Functional Dizziness)
Compared to task 1, the performance of the 11 classifiers on
task 2 is more homogeneous (cf. Figure 3), i.e., all classifiers
classify with a within a similar accuracy range between 55.2%
(DecisionTree) and 62.8% (GaussianProcess), a f1-score range
between 0.498 (MLP) and 0.596 (SVC), and ROC-AUC range
between 0.571 (DecisionTree) and 0.689 (SVC). Overall, this
classification task is dominated by the linear classification
algorithm SVC and the non-linear GaussianProcess classifiers,
while the DecisionTree and neural network classifier MLP/ANN
are the worst-performing algorithms in terms of accuracy and f1-
score. The graph neural network method MGMC and RF had an
accuracy of 60.6 and 62.2%, both are close to the average accuracy
of all classifiers (60.4%). The confusion matrices reveal that LR
and RF have an equally high sensitivity for secondary functional
dizziness (77%), compared to MGMC (65%), but a comparably
lower sensitivity for primary function dizziness (LR/RF: 42%,
MGMC: 54%). Notably, hyper-parameter optimization had very
little effect on the outcomes of Task 2, as the average accuracy

of all classifiers stayed at 60.4% both with and without the
parameter tuning.

Again, the lower classification performance could partly be
due to class imbalance, i.e., a slight underrepresentation of
primary functional dizziness in this DizzyReg subset (42.5%
primary vs. 57.5% secondary), however the class imbalance is
not as severe as in task 1. The UMAP feature embedding shows
that after pre-processing, two clearly separated clusters emerge
in the topology of the data. Again, the source for this data
separation is not clear and will be discussed further below.
However, in the smaller cluster, most of patients are from the
group with secondary functional dizziness (purple points), while
in the larger cluster, there is a mix of both groups, and this mix is
not clearly separable by data topology alone. The classification
algorithms still can achieve a certain level of data separability
in high-dimensional space, but it is noteworthy that the UMAP
embedding reflects that task 2 is more challenging compared to
task 1, even before the classifiers are applied.

The top 10 most important features for task 2 (cf. Table 3)
are largely different from task 1. Expectedly, a normal caloric
result (rank 1) and the vHIT gain left/right (ranks 4 and 2)
and abnormal HIT result on the right (rank 9) differ in both
groups. Patients with primary functional dizziness are younger
(rank 3) and tend to drink more alcohol (≥1 drink in the last
week, rank 6). One item from the DHI plays an important role
for separation, related to problems turning over while in bed
(rank 7), and another life quality factor, LIFEQ Q7, i.e., the
actual perceived health condition, is relevant as well (rank 8). The
duration of vertigo is important as well, in particular whether
the duration is between 20 and 60min (rank 6). Finally, the
depression/fear score in the EQ5D questionnaire is relevant (rank
10). All features except EQ5D fear/depression and LIFEQ Q7 are
significantly different between the two groups. It is important
to note though that multivariable classifiers do not need to
depend on univariate feature significance. In high-dimensional
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TABLE 2 | Top 10 most important features in Task 1, aggregated over multiple classifiers.

Rank Feature Feature Type Bilateral vestibular failure Functional dizziness P-Value

1 Age (yrs) Questionnaire 63.83 ± 15.64 47.33 ± 14.12 <0.0001

2 HIT: right, abnormal Neurological investigation P1 77.40% 3.40% <0.0001

3 HIT: left, abnormal Neurological investigation P1 77.40% 2.30% <0.0001

4 vHIT: normal result Apparative tests 14.30% 92.20% <0.0001

5 vHIT: gain left Apparative tests 0.8 ± 0.04 0.97 ± 0.12 <0.0001

6 EQ5D: fear, depression Questionnaire 28.60% 66.40% <0.0001

7 Caloric: normal result Apparative tests 31.90% 91.80% <0.0001

8 vHIT: gain right Apparative tests 0.71 ± 0.09 0.92 ± 0.15 <0.001

9 DHI: Q21, perceived handicap DHI 81.20% 92.60% <0.01

10 LIFEQ: Q7, Actual perceived health condition LIFEQ 62.51 ± 18.48 58.11 ± 18.9 0.133

FIGURE 3 | Results panel produced by base-ml for Task 2.

TABLE 3 | Top 10 most important features in Task 2, aggregated over multiple classifiers.

Rank Feature Feature type Functional dizziness

(secondary)

Functional dizziness

(primary)

P-Value

1 Caloric: normal result Apparative tests 73.10% 96.20% <0.0001

2 vHIT: gain right Apparative tests 0.87 ± 0.18 0.92 ± 0.19 <0.0001

3 Age (yrs) Questionnaire 51.79 ± 13.91 45.61 ± 14.21 <0.0001

4 vHIT: gain left Apparative tests 0.92 ± 0.13 0.97 ± 0.12 <0.0001

5 Vertigo time: 20–60min Questionnaire 13.20% 5.30% <0.05

6 >= 1 alcoholic drink last week Questionnaire 43.60% 58.30% <0.01

7 DHI: Q13, problems turning over in bed DHI 43.80% 25.70% <0.001

8 LIFEQ: Q7, Actual perceived health condition LIFEQ 57.28 ± 19.61 59.34 ± 18.53 0.111

9 HIT: right, abnormal Neurological investigation P1 13.70% 1.40% <0.0005

10 EQ5D: fear, depression Questionnaire 60.0% 70.0% 0.069

space, these two univariately non-significant features may still
contribute to a better separation boundary.

Results on Task 3 (BPPV vs. VP vs. MD vs.
VM)
Already at first glance (cf. Figure 4), and as clinical intuition
suggested, task 3 is the most challenging of the three classification

tasks. Compared to the average classifier accuracy of task 1
(89.6%) and task 2 (60.4%), the accuracy on task 3 is much
lower (48.0%). Individually, the classifiers have an accuracy range
between 40.6% (DecisionTree) and 54.3% (LDA), a f1-score range
between 0.269 (DecisionTree) and 0.461 (LDA), and a ROC-AUC
range between 0.564 (DecisionTree) and 0.764 (LDA). Overall
on task 3, linear classifiers, and LDA in particular, classify with
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FIGURE 4 | Results panel produced by base-ml for Task 3.

the highest accuracy. The RF classifier, on the other hand, only
has an average performance on task 3 (accuracy/f1-score/ROC-
AUC: 48.5%/0.372/0.702), in comparison to tasks 1 and 2. The
confusion matrices reveal that the disorders VM, BPPV, MD
and VP can be classified with a decreasing order of classification
sensitivity (e.g., for LR approximately: 70%, 50%, 40%, 20%). On
task 3, hyper-parameter optimization had amuch higher effect on
the classifierd outcomes than in tasks 1 and 2, i.e., after parameter
tuning, the average classification accuracy of all models increased
from 44.2 to 48.0%.

Class imbalance probably plays a role here as well, as this
ordering almost coincides with the class representation in the
dataset (VM: 39.8%, BPPV: 24.8%, MD: 26.3%, VP: 9.1%).
Looking at the UMAP embedding, the same separation of the
data cloud into two clusters is clearly visible, and the four
episodic vestibular disorders are visually not clearly separable
within the two clusters, which again anticipates the difficulty of
the classification task.

Regarding the 10 most important features (cf. Table 4), mean
patient age ranks on the top (BPPV oldest, VM youngest). Second
most important is vertigo time<2min (which is most frequent in
BPPV and VP). Expectedly, several features are related to body
relocation, e.g., problems getting into, out of, or turning over
inside the bed (DHI Q13, rank 3; VAP Q2, rank 4), bending
over (DHI Q25, rank 7), or vertical climbing (VAP Q7, rank 10).
Accompanying headache is ranked in 6th position and indicative
for VM. There is only one apparative feature relevant for task 3
(normal caloric test, rank 5), with MD being the only group with
relevantly abnormal results.

DISCUSSION

In this paper, we have described several approaches for
multivariable analysis and machine learning classification of
three different patient cohorts from the vestibular registry
dataset DizzyReg, i.e., functional dizziness vs. bilateral vestibular

failure, primary vs. secondary functional dizziness, and BPPV
vs. Meniére’s disease vs. vestibular migraine vs. vestibular
paroxysmia. Clinically, the three tasks were rated with an
increasing difficulty and the machine learning classifier
performances reflected this grading, with an average accuracy
of 87.0, 60.5, and 44.3%, respectively. Using results produced
by base-ml, we put these accuracy scores into context with class
imbalance, input feature embedddings, confusion matrices and
sensitivity scores, as well as tables with the top 10 most important
features, aggregated over several classifiers using the proposed
RAFI heuristic. In the following, we are going to discuss these
results, both from a technical and clinical perspective.

Technical Aspects
The results of the three classification experiments highlight
several important points. We believe it to be apparent from
the results that it is beneficial to run and benchmark several
classification algorithms, ideally from different categories, such
as linear, non-linear and neural models. Even a supposedly easy
task from a medical perspective does not necessarily lead to
a matching classifier performance, depending on which model
is used (e.g., 78% classification accuracy in task 1 with Naïve
Bayes), hence an a-priori selection could result in too pessimistic
an assessment of classification potential using machine learning.
Therefore, a wide range of methods in one comprehensive
framework might benefit research groups that are new to the
field of ML on clinical data. Further, linear models should
always be tested along with non-linear and neural network
models, as the best linear model (e.g., in task 1, SVC with mean
accuracy/f1-score/ROC-AUC: 91.7%/0.819/0.926) may match or
even outperform the performance of more complex models,
especially if the task has a wide, rather than long data matrix, or
if the classes are clearly separable.

Analyzing classifier performance purely using quantitative
metrics provides only a narrow view, however. Our analysis
reports additionally provide plots on class imbalance, input
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TABLE 4 | Top 10 most important features in Task 3, aggregated over multiple classifiers.

Rank Feature Feature type BBPV MD VM VP P-Value

1 Age (yrs) Questionnaire 56.6±11.4 53.3±13.0 44.7±13.3 51.6±13.6 <0.0001

2 Vertigo time: < 2min Questionnaire 44.80% 12.70% 17.20% 71.40% <0.0001

3 DHI: Q13, problems turning over in bed DHI 87.90% 47.50% 44.20% 34.70% <0.0001

4 VAP: Q2, problems to get in/out/turn over in bed. VAP 93.30% 68.60% 58.50% 49.00% <0.0001

5 Caloric: normal result Apparative tests 85.90% 49.50% 84.80% 100.00% <0.0001

6 Accompanying headache Questionnaire 16.80% 19.00% 53.50% 15.00% <0.0001

7 DHI: Q25, bending over increases problems DHI 76.10% 60.30% 61.20% 61.20% <0.05

8 DHI: Q6, restricted participation in social activities DHI 71.40% 82.90% 75.50% 65.30% <0.05

9 DHI: Q22, increased stress on family/friend relationships DHI 23.10% 48.90% 45.60% 38.80% <0.0001

10 VAP: Q7, Vertical climbing (stairs/lift) VAP 60.00% 64.90% 62.00% 45.70% 0.139

data distribution, and confusion matrices, all of which provide
different insights into the experiment. Class representation in
the dataset correlated with the sensitivity for each class in all
three experiments, which the confusion matrices highlighted.
The input data distribution additionally revealed that DizzyReg
data in our study had a fundamental separation into two
clusters (cf. UMAP embeddings in Figures 2–4). At least in
task 1 this did not affect classification outcomes to match the
clinical intuition, however, for future ML-based studies, this
separation would need to be investigated further. Counteracting
such a data separation, e.g., with input data transforms (54),
or more advanced techniques like domain adaptation (55),
could improve classification results further. As such, the results
obtained through the base-ml tool provide not only information
about which machine learning models to pursue further, but they
also indicate starting points regarding the optimization of the
input data with classical data science and statistical methods.
For clinicians, an important part of the results are the most
important features selected by the classifiers, which we present
in an aggregated form using the proposed RAFI heuristic. These
features will be discussed in more detail and put into a clinical
context in section Clinical Implications.

The method presented in this work, and comprised in the
base-ml tool have several noteworthy limitations. In general,
base-ml is intended as a first screening tool for ML experiments,
rather than as a complete ML solution that leads to a trained
model for prospective studies and/or deployment. It has been
shown previously that hyper-parameter optimization using
nested cross-validation can lead to significant improvements of
classification performance (6, 12, 13). In our study, while hyper-
parameter tuning had no noticeable effects on Task 2, there were
noticeable improvements in the average classification outcomes
across all models in Tasks 1 and 3. Further, not only the models
themselves have hyper-parameters, but every part of the ML
pipeline in base-ml could be individually optimized further.
This could include alternative input normalization strategies
[e.g., power transforms (54, 56)] and imputation methods [e.g.,
kNN imputation or multiple imputation by chained equations,
MICE (57, 58)] or the inclusion of feature selection methods
(e.g., based on univariate hypothesis testing), all of which are
important toward optimal classifier performance (9). A default

treatment made in our experiments, for example, is to discard
variables that were recorded for <50% of the population.
In clinical practice, however, some variables may be missing
because the according examinations or apparative tests were
not ordered by the physician, maybe due to time, cost, lack
of indication, or expected inefficacy toward diagnosis. In that
case, individual rules for variable rejection, imputation and/or
normalization may be necessary. For base-ml, we chose to
avoid such in-depth treatment, in favor of an ease-of-use at the
exploratory stage. However, base-ml is built on top of scikit-
learn and already provides an interface to modern deep learning
methods with skorch, and explainable AI solutions through
Captum. This makes it easy to include many further methods
for feature selection, imputation and normalization, as well as
further classification explainable AI algorithms (32). However,
at a certain level of complexity that aims at deployment rather
than exploration, it is recommendable to consider more in-
depth analyses and tool, ideally in close collaboration with
data science and ML experts, and potentially starting off
from insights obtained with base-ml. A particularly interesting
avenue is the current research direction of Automated Machine
Learning (AutoML), which aims at an optimization of the entire
classification pipeline end-to-end (59). Importantly though,
small to medium-size datasets might not provide enough data
samples to train such complex pipelines. Until more cross-
institutional vestibular registry datasets like DizzyReg come to
existence, and with sufficient data to apply AutoML, the methods
which we wrapped in base-ml and presented in this work still
provide a solid starting point for ML-based analysis. As such,
and for the time being, we believe these tools to be a valuable
contribution for the vestibular research community.

Clinical Implications
Clinical reasoning in the diagnostic differentiation of common
vestibular disorders is based on a “mental aggregation” of
information from patient characteristics (such as age and
gender), symptom characteristics (namely quality, duration,
triggers, accompanying symptoms), clinical examination (e.g.,
positioning maneuvers), and quantitative tests of vestibular
function (such as vHIT, calorics) (16). It is an open and relevant
question, whetherML-basedmethods are able to identify features
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from a multimodal vestibular patient registry, which resemble
this clinical thinking and feature weighting. In the current study,
we tested three clinical scenarios of different complexity on the
DizzyReg database to further address this issue.

The first classification task represented two groups of
patients suffering from chronic dizziness of almost diametrical
etiology. In bilateral vestibular failure, imbalance can be directly
assigned to an organic damage of vestibular afferents, which
is accompanied by a low degree of balance-related anxiety
(60, 61), while in functional dizziness the vestibular system is
physiologically intact, but the subjective perception of balance
is severely disturbed due to fearful introspection (62). It can
be expected that ML-based algorithms will predominantly select
features as most important for the segregation of both disorders,
which represent either measurements of vestibular function
or scales for anxiety and perceived disability. Indeed, the
top 10 important features exactly meet this assumption with
six of them reflecting low and high frequency function of
the vestibular-ocular reflex (HIT left/right normal, vHIT gain
left/right, bilateral vHIT normal, caloric response normal), and
further three features healthy-related quality of life, depression
and fear. Furthermore, age was an important differential feature,
which is in good accordance to the fact that bilateral vestibular
failure appears more frequently in older patients and functional
dizziness in younger and mid-aged patients.

In the second classification task, two groups of patients with
functional dizziness were compared, who were presumably very
similar in their symptomatic presentation, but differed in the
evolution of their symptoms: patients with primary functional
dizziness, where chronic psychological stress or anxiety is
the driving force, and patients with secondary functional
dizziness, which develops after a preceding somatic vestibular
disorders (e.g., BPPV) due to altered balance perception
and strategies of postural control (8). Accordingly, top 10
features for classification included vestibular function tests (such
as vHIT gain left/right and caloric response normal). The
subtle differences between groups may speak for a partially
recovered acute unilateral vestibulopathy or MD as some
causes underlying secondary functional dizziness. Furthermore,
symptom provocation by position changes in bed may point
to BPPV as another vestibular disorder triggering secondary
functional dizziness. This findings agree with previous literature
(8). Interestingly, patients with primary functional dizziness
had higher fear and depression scales, which may indicate a
more intense psychological symptom burden. Indeed, previous
studies have shown a psychiatric comorbidity in primary
functional dizziness in 75 vs. 42% in secondary functional
dizziness (63). The more frequent consumption of alcohol in
primary functional dizziness may also show that those patients
subjectively profit from its relaxing effects to a higher extent
than patients with secondary functional dizziness, who have
some degree of vestibular deficits, which may exacerbate on
alcohol (e.g., partially compensated unilateral vestibulopathy or
vestibular migraine).

The third classification task was designed to differentiate
common episodic vestibular disorders like BPPV, MD, vestibular
migraine and vestibular paroxysmia. Expectedly, a set of features

was most indicative for BPPV, namely short attack duration
and provocation by position changes. MD as compared to the
other vestibular disorders was associated with the highest rate of
pathological vestibular function tests (caloric test abnormal). It is
well-known that long-standingMD can cause vestibular function
deficits (64), while this is less frequent in vestibular migraine
(65). The latter was associated with the highest frequency of
headache and the youngest mean patient age, in accordance
to literature (66). Vestibular paroxysmia was mostly defined
by a short-symptom duration. The overall moderate accuracy
for classification of the four episodic vestibular disorders
can be explained by several factors: (i) one methodological
explanation could be that this was a multi-class task, which
is more challenging; (ii) despite the exhaustive history taking
and examination details for patients recorded in DizzyReg, it
is possible that not all relevant information is included. For
example, systematic audiological test results are only available for
patients with Menière’s disease and vestibular migraine, but not
for BPPV or vestibular paroxysmia. Therefore, audiological test
results could not be generally included in the third classification
task as a variable; (iii) there are potential overlaps of symptom
characteristics and features. A prominent example is an overlap
syndrome of MD and vestibular migraine, which could point
toward a common pathophysiology (67); (iv) although the
guidelines “International Classification of Vestibular Disorders
(ICVD)” of the Barany Society give clear criteria for diagnosis
mostly based on history taking, complex clinical constellations
such as overlapping syndromes or atypical presentations appear
regularly in the practice of a tertiary referral center, which
may cause some difficulties in clear-cut classification. Limited
classification accuracy may be partly explained by this selection
bias, and further testing in primary care settings will be needed;
(v) given the difficulty of task 3, the low ML classification
performance is neither surprising nor a sign of a failure of
ML classification approaches. Instead, our results suggest that
ML algorithms, even given considerable data to learn from,
may not automatically be able to solve difficult clinical tasks.
The wide range of tuned ML algorithm performances presented
by base-ml can reveal such difficulty better than a narrow
selection of ML results without tuning; (vi) previous studies
suggest that expert consensus may not always be unanimous,
and may indicate the difficulty of patient diagnosis, despite clear
guidelines and diagnostic criteria. For example, authors in (68)
tried to validate diagnostic classifications through multi-rater
agreement between several experienced otoneurological raters,
and an acceptable consensus was achieved only in 62% of the
patients. This study indicates that some diagnostic inaccuracy
persists in the clinical setting, despite established international
classification criteria. This could be taken as a further
argument to augment clinical decision making by ML-based
support systems.

CONCLUSION

Analysis of large multimodal datasets by novel
ML/MVA-methods may contribute to clinical decision making
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in neuro-otology. Important features for classification can be
identified and aligned with expert experience and diagnostic
guidelines. The optimal ML/MVA-method depends on the
classification task and data structure. Base-ml provides an
innovative open source toolbox to test different methods and
clinical tasks in parallel. The multi-faceted presentation of
results and explainable AI features, including an identification
of clinically relevant features and their statistical analysis,
enables clinicians to better understand ML/MVA outcomes,
and identify avenues for further investigation. Future research
needs to be extended to larger multicenter datasets and new data
sources to improve the performance of automated diagnostic
support tools.
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APPENDIX

Appendix A. Supplementary Experiments
on TADPOLE Dataset
Data Description
TADOLE (69) is an ADNI-based dataset consisting of imaging-
derived features and non-imaging features. The task is to
classify whether observations at a baseline timepoint are
from healthy normal controls (NC), patients with mild
cognitive impairment (MCI), and Alzheimer’s disease (AD). It
consists of 813 instances (229 NC, 396 MCI, and 188 AD).
Imaging features are computed using standard ADNI feature
extraction pipelines.

Results and Discussion
We evaluated all models on this dataset as supplementary
experiment to understand the strengths and limitations
of our proposed model. For our purposes we only look
at the F1-score, as this metric is more robust to class
imbalance, which is present in TADPOLE. We observe
that the best performing models are the hyper-parameter-
optimized tree-based models such as Random Forest and
AdaBoostClassifier. Furthermore, neural network based models
such as MLPClassifier and MGMC yield comparable results
but do not outperform other models. We also observe from
the confusion matrices that the biggest source of error in
most models is to distinguish patients with diagnosed AD
from patients with MCI. Likewise, the confusion matrices
reveal that models almost never mistake healthy controls
with AD patients and vice-versa. Overall almost all models
perform comparably, except notable mis-classification rates
in KNeighborClassifier and GaussianProcessClassifier. Our
obtained classification results of ∼0.6–0.7 F1-score are in line
with recent literature, e.g., our previous comparison of MGMC

FIGURE A1 | Results panel produced by base-ml for TADPOLE.

with regular machine learning classifiers [cf. results in (13), not
yet computed with base-ml], or RF-based AD classification by
Gray et al. (70).

Appendix B. Supplementary Experiments
on Generated Dataset
Data Description
To further illustrate the utility of base-ml, we created a synthetic
dataset for a binary classification task. We generated 5,000
samples with 20 features of which 10 features are informative and
the remaining 10 are uninformative using Scikit-learn (48) (using
the built-in function <make_classification>). It is important to
note that by design, this classification task has a non-linear
separation boundary between the two classes and can therefore
not be solved with high accuracy by linear classifier models.

Results and Discussion
As can be seen in Figure A2, most non-linear models based
on neural networks and properly tuned tree-based models
such as Random Forest could yield comparable performance.
When looking at the classification accuracy of both MGMC and
Random Forest, both perform nearly identically, and with the
highest accuracies among all models. As expected, the linear
models such as Logistic Regression and Linear Discriminant
Analysis obtained the lowest classification accuracy. Overall, we
observe that base-ml properly reflects the statistical properties
and the difficulty of this artificial classification problem. The
source data distributions are not simply separable by topology
mapping (see UMAP embedding), and the separation is only
resolvable by selected and properly tuned non-linear models
– this characteristic would not have been detected by an
analysis that was limited to linear models, or less suited non-
linear models (e.g., for this dataset: Decision Tree Classifier or
AdaBoost Classifier).
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FIGURE A2 | Results panel produced by base-ml for Synthetic data.

Appendix C. Implementation Details:
Hyperparameter Search Ranges
To have a more comparable analysis, we selected the best
hyperparameters using the validation set, before reporting
performance metrics on a with-held test-set (nested
cross-validation). We do this by randomly searching the
hyperparameter space for 100 iterations for every model and
select the best hyperparameters which yields the best validation
set classification performance.

For Logistic Regression we used the
following hyperparameters (C: randint(1, 11);
penalty: {“elasticnet”}, solver: {“saga”}, l1-ratio:
uniform(0, 1));

Random Forest (max_depth: {3, None}; max_features:
randint(1, 11); min_sample_split: randint(2, 11); bootstrap:
{True, False}; criterion: {“gini”, “entropy”}, n_estimators:
randint(5, 50));

K-Neighbors Classifier (n_neighbors: randint(3, 100);
weights: {“uniform”, “distance”});

SVC (C: log_uniform(1e−6, 1e+6); gamma
log_uniform(1e−6, 1e+6); degree: randint(1, 8), kernel:
{“linear”, “poly”, “rbf”});

Decision trees (max_depth: {3, None}; max_features:
randint(1, 11); min_samples_split: randin(2, 11); criterion:
{“gini”, “entropy”};

Gaussian Process Classifier (kernel: {1∗RBF(),
1∗DotProduct(), 1∗Matern(), 1∗RationalQuadratic(),
1∗WhiteKernel()};

AdaBoostClassifier: (n_estimators: {50, 60, 70, 80, 90, 100},
learning-rate: {0.5, 0.8, 1.0, 1.3});

GaussianNB (var_smoothing: logspace(0, 9, num=100));
Linear Discriminant Analysis (solver: {“svd”, “lsqr”, “eigen”};

shrinkage: numpy.arange(0, 1, 0.01));
MLP Classifier (learning-rate: {1e−1, 1e−2, 1e−3, 1e−4};

hidden-units: {32, 64, 128}, dropout probability: {0.0, 0.1, 0.2, 0.3,
0.4, 0.5});

MGMC ([cross-entropy, Frobenius-norm, Dirichlet-norm
weighting]: uniform(0.001, 1000)).
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