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INTRODUCTION

State of the Art in Intraoperative Monitoring for Neurosurgery and
Current Limitations
From the pioneering work of neurosurgeon-neuroscientists such as Otfried Foerster and Wilder
Penfield, mapping of brain function using electrical stimulation has allowed to identify and spare
motor behavior and language during awake surgery, producing the first cartographies of the
brain cortex (1, 2). This has been refined in the early 2000s as neurosurgeons started routine
subcortical awakemapping using white matter tracts as subcortical boundaries (3), with subsequent
improvement in both functional (4) and surgical outcome (5, 6). The advantages of performing
awake surgery when cognitive functions are at risk, should not be questioned, and we remark
this should be performed whenever feasible. However, patients with pre-existing neurological
deficits and/or inadequate neuropsychological profiles are not good candidates for awake surgery,
and therefore must undergo asleep procedures. Notably, pediatric patients cannot undergo awake
surgery, on one hand because of their scarce compliance (7), on the other hand because the
immaturity of their motor system makes the cortex almost inexcitable using the traditional bipolar
Penfield’s 50/60Hz technique (8, 9).

In patients who are poor candidates for awake surgery, developing methods to map
cortico-cortical and cortico-subcortical connectivity under anesthesia is of primary importance
since otherwise surgery will be performed blind to function, with higher risk of incurring into
neurological deficits. Since the adoption of somatosensory evoked potentials (SEPs) in the ‘70s
(10) and particularly with the development of the train-of-five motor evoked potential (MEP)
technique (11), the field of intraoperative neurophysiological monitoring (IONM) has specifically
addressed the issue of mapping and monitoring during asleep anesthesia. Standard protocols
for motor mapping are nowadays available, offering reproducible, and reliable parameters to
qualitatively and quantitatively predict outcome (12). This somehow differed from awake surgery,
where neuropsychological tests and mapping protocols have a greater degree of variability. In
brain tumor surgery IONM is particularly well-established for preservation of the corticospinal
tract (13, 14), but asleep mapping and monitoring outside the corticospinal system is lacking. The
aim of this opinion paper is to discuss two novel potential IONM techniques allowing to map and
monitor functions beyond corticospinal motor function in the anesthetized setting, namely, (A)
conditioning of motor output (15, 16) and (B) cortico-cortical evoked potentials (17, 18). These
have been performed under total intravenous anesthesia using Propofol (100–150 µg/kg/min) and
Fentanyl (1 µg/kg/min) in continuous infusion, and avoiding muscle relaxants after intubation.
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Potential Novel Intraoperative Measures of
Brain Connectivity in the Anesthetized
Patient
Conditioning of Corticospinal Output
The conditioning stimulus (CS)/test stimulus (TS) paradigms
have been used widely in experimental and clinical
neurophysiology to investigate functional connectivity between
two regions of the nervous system. In CS/TS paradigms
(illustrated in panel A of Figure 1), a suprathreshold stimulus
(TS) is delivered to the motor cortex, thus evoking a motor
potential (MEP) of a given amplitude. The CS, of intensity
comparable to that of the TS, is delivered to a region that is
supposedly connected to the motor cortex but is not itself a
source of corticospinal output. Therefore, the CS alone does not
produce aMEP. However, when the CS precedes the TS, theMEP
obtained by the conditioned TS may be different (i.e., increased
or decreased MEP amplitude) from that obtained by TS alone.
Whenever such remote effects of CS on TS occur, they are
taken as evidence of functional connectivity between the site of
application of the CS and that of the TS. The CS-TS interactions
are generally specific for given inter-stimulus intervals (ISI), i.e.,
the time interval between CS and TS. Conditioning effects of the
CS over the TS at short ISIs is generally thought to be informative
of the underlying anatomical connections: interactions at short
ISIs indicate direct cortico-cortical connections.

CS/TS paradigms are commonly explored using non-invasive
brain stimulation, namely transcranial magnetic stimulation
(TMS) applied with two different coils over the scalp, one
delivering the CS and the other delivering the TS over the
motor cortex (20). These paradigms have been extensively
reviewed by Koch (21). The modulatory effect of CS can
be excitatory or inhibitory, therefore increasing or decreasing
MEP amplitude compared to TS alone. However, as MEP
amplitude can physiologically vary between two identical stimuli,
it is important to repeat both TS stimulations and CS+TS
stimulation. Therefore, the comparison between CS+TS MEPs
and MEPs to TS alone cannot be done between single MEPs,
but must be performed between groups of conditioned (CS+TS)
MEPs and of baseline (TS alone) MEPs.

The descending corticospinal volley evoked by stimulation
of the motor cortex has different components, separated in
time. The earliest volley is referred to as direct, or “D” wave
and is due to direct activation of corticospinal axons. The later
components, known as indirect or “I” waves originate from
stimulation of neurons that in turn project onto the corticospinal
neurons, which are therefore activated trans-synaptically (22).

Abbreviations: AF, arcuate fasciculus; CCEPs, Cortico-cortical evoked

potentials; CS, conditioning stimulus; CST, cortico-spinal tract; DES, direct

electrical stimulation; DTI, diffusion tensor imaging; DWI, diffusion weighted

imaging; ECoG, electrocorticography; EEG, electroencephalography; EMG,

electromyography; HARDI, high angular resolution diffusion imaging; ISI,

interstimulus interval; IONM, intraoperative neurophysiological monitoring;

MEPs, motor evoked potentials; MFG, middle frontal gyrus; mFUSA, middle

fusiform gyrus; MTG, middle temporal gyrus; pOP, pars opercularis; pTRI, pars

triangularis; STG, superior temporal gyrus; TOj, temporo-occipital junction; To5,

train-of-five stimulation; TS, test stimulus; vPM, ventral premotor cortex; ITG,

inferior temporal gyrus.

It is important to note that for the TS to be susceptible
to modulation by the CS, it must produce a corticospinal
volley containing I-waves, as the D-wave cannot be modulated
by any afferents to the corticospinal neuron because it is
generated downstream of any point of integration of inputs from
cortico-cortical afferents. Indeed, direct cortical stimulation and
intraoperative transcranial electrical stimulation are known to
produce I-waves (23–25).

We propose that the CS/TS approach can be successfully
performed also by means of direct cortical stimulation in the
intraoperative setting, and therefore potentially be used for
assessing and potentially monitoring the integrity of specific
brain and spine connections, as demonstrated by two recent
works from our group, on parietal-motor connectivity (15) and
on cerebello-motor connectivity (16).

In the first work we described the successful use of a CS/TS
paradigm in the intraoperative setting to explore putative direct
parietal-motor connectivity (15) (Figure 1B). Briefly, two strip
electrodes were deployed, one over the parietal cortex (CS)
and one over the motor cortex (TS). Conditioning stimuli in
the parietal cortex were always delivered in a short train of 2
stimuli at 250Hz and of 0.5ms duration while test stimulus
varied from a single stimulus to a train of 3 stimuli at
250Hz and 0.5ms duration according to the individual patient’s
cortical excitability. Stimulation intensity for conditioning and
test stimulation was always the same (15–35mA). Prior to all
experimental stimulations we acquired blocks of conditioning
stimuli alone, verifying that no MEP could be observed from
test stimulation

Such functional connectivity has been abundantly described
by means of dual coil TMS in healthy participants (20, 26). In
our study we highlighted the presence of conditioning effects
from CS applied directly to the posterior parietal cortex on the
TS applied directly to the ipsilateral upper limb motor cortex,
in 17 anesthetized oncological patients during surgical resection.
The conditioning effects on the TS were specific for both timing
and anatomical localization of the CS. The effects appeared at
short ISIs (4–20ms) with the earliest effective ISI depending on
the anatomical proximity of the parietal stimulation electrode
to the motor cortex: short ISIs were efficient when the CS
was delivered near to the motor cortex. The use of trains of
stimuli to stimulate the motor cortex renders timing of the
CS/TS ISI difficult. In general we considered, for the sake of
timing, the last stimulus of the train as the one that is effective
in triggering the efferent corticofugal volley (27). Anatomical
specificity was clearly evident in the spatial clustering of CS
sites with excitatory effects in the inferior parietal lobule and
of CS sites with inhibitory effects in the superior parietal
lobule. Note that focality of CS stimulation was granted by
the use of bipolar stimulation between adjacent electrodes of a
stimulating strip.

In the second work we tested the effects of CS applied
to the cerebellar cortex onto corticospinal excitability (16),
tested by TS applied transcranially to target the upper limb
motor cortex (Figure 1C) in 10 anesthetized patients undergoing
posterior fossa tumor surgery. Our experimental paradigm is
inspired by a well-established CS+TS technique referred to as
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FIGURE 1 | Schematic CS/TS and ccEP paradigms. (A) Upper panel TS stimulation alone induces an MEP; middle panel CS stimulation alone does not evoke an

MEP; lower panel combined CS + TS stimulation leads to increased MEP amplitude. CS, conditioning stimulus; TS, test stimulus (B) Parieto-motor stimulation

protocol: a CS stimulus is applied over the posterior parietal cortex from 4 to 16ms before a TS on M1. A dorso-ventral posterior parietal distinction between MEP

inhibition (dorsal) and MEP facilitation (ventral) is shown. The picture is modified from (15) with permission CS, conditioning stimulus; TS, test stimulus (C)

Cerebello-motor stimulation protocol: direct cerebellar precedes transcranial electrical stimulation with an inter-stimulus interval (ISI) of 4–20ms, causing MEP

inhibition (blue) or facilitation (red). (D) ccEPs for the arcuate fasciculus: strip electrodes are placed intraoperatively at cortical termination of the arcuate fasciculus after

preoperative testing. ccEPs are recorded from the middle temporal cortical termination of the arcuate fasciculus (shown on the right side). Segments of the arcuate

fasciculus are dissected according to cortical termination (19). MFG, middle frontal gyrus; pTRI, pars triangularis; pOP, pars opercularis; vPM, ventral premotor cortex;

STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; TOj, temporo-occipital junction; mFUSA, middle fusiform gyrus.

“cerebellar inhibition” in which the cerebellum and the motor
cortex are stimulated by TMS (28, 29). Briefly, conditioning
stimuli on the cerebellar cortex were delivered in a short
train of 2–5 stimuli at 250Hz and of 0.5ms duration with
an intensity of 15–25ms. Test stimuli varied from a train of
2–5 stimuli at 250Hz and 0.5ms duration with stimulation
intensity of 15–35mA. Our results showed that CS cerebellar
stimuli conditioned at short ISIs the corticospinal excitability,
with a significant anatomical specificity: cerebellar CS exerted
conditioning effects on the hand corticospinal system when
applied to regions of the cerebellar cortex in the anterior and
posterior lobule that are known to contain hand representations
(30, 31).

Cortico-Cortical Evoked Potentials in the

Anaesthetized Patient
While the rationale for describing brain connectivity by means
of ccEPs was first discussed by Lord Adrian (32), the clinical
use of cortico-cortical evoked potentials was first pioneered by
Matsumoto (33). In ccEPs, one of two cortical terminations of a
white matter tract is stimulated electrically, and cortical evoked
activity is recorded at the other termination in the form of
evoked potentials. Twenty to 120 raw traces are conventionally
averaged, similarly to cortically recorded somatosensory evoked
potentials. ccEPs show two components, an N1 between 20 and
30ms (33, 34) and a second, later component peaking at 100–
150ms (33), though some authors claim this later component
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could represent epileptogenic activity instead (35). CcEPs latency
should reflect fiber myelination and length (33, 36). Moreover,
there is strong evidence for directionality in the evoked potentials
(37, 38). The recording of ccEPs is potentially applicable to the
whole cerebral cortex and transcends language function (39, 40).
However, clinical use of this technique has been historically
mainly related to language function.

The recording of ccEPs is generally limited to awake patients,
because of (a) the suppression of neural activity due to anesthesia
(41), and (b) the chance to identify location for strip electrodes
placement using functional mapping (33, 42). However, their use
is of potential interest inmonitoring whitematter integrity also in
the asleep patient. In a recent work in a cohort of 9 patients with
tumors in the left perisylvian area who could not undergo awake
surgery, we recorded ccEPs of the arcuate fascicle in anesthetized
patients undergoing tumor surgery (18). Results indicated that
(a) reliable potentials of small amplitude can be obtained from
the arcuate fasciculus also under anesthesia and that (b) strip
electrode placement can be made more effective by combining
tractographic MR information and presurgical neuronavigated
TMS (nTMS). Results in the asleep setting resembled those in
the awake setting: an N1 potential with a latency of 21ms was
shown, together with an earlier positive potential peaking at
12ms. In our series, evoked potentials clustered in the middle
temporal gyrus while stimulation mainly covered the ventral
premotor cortex. Although the arcuate fasciculus has cortical
terminations over superior, middle and inferior temporal gyri
(43, 44), such selectivity may be justified by a layered distribution
of its components, particularly in a ventral/dorsal fashion (19,
44). Indeed, ccEP responses for this tract may support this, since
location for optimal recorded responses varies according to the
stimulated gyrus in the frontal lobe (45). Moreover, the inferior
temporal gyrus components of the arcuate fasciculus have not
been extensively investigated in this study, which is another
limitation to be taken into account.

CONCLUSION AND LIMITATIONS

Asleep surgery without mapping is blind to function and
therefore at highest risk of inducing neurological deficits. We

believe it is an ethical responsibility to raise awareness of
this issue. Therefore, the work presented here lies on this
foundation and the attempt to predict, and therefore prevent,
neurological deficits in patients who are not good candidates to
an awake craniotomy.

However, to be useful in clinical practice these techniques
require to (a) be standardized; (b) be deterministic, i.e.,
allow predictions in individual patients; (c) have a strong
predictive value of a given clinical/behavioral aspect. The
phenomena that we have described do not satisfy any of
the above criteria, therefore further research is needed before
a clinical use, if any, can be proposed. Points (a) and (b)
require extensive tests for standardization and reproducibility.
Regarding point (c), we believe that cortico-motor CS/TS
paradigms should be tested also from a constellation of other
areas that project the motor cortex, namely the premotor,

supplementary motor and somatosensory cortices and their
perioperative changes need to be correlated with behavior
such as skilled movement and sensorimotor behavior in
general. The cerebello-motor CS/TS paradigm’s predictive value
should be tested specifically on the pediatric population
undergoing posterior fossa surgery. This is of overriding
importance, as individual age-associated myelination and
axonal length (9) may imply significant changes in the
optimal parameters (ISI, stimulation intensity) for cerebello-
cortical modulation. Similarly, ccEPs for language connectivity
should be tested for their predictive value in perioperative
language disorders.
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