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Objective: Systemic inflammation after subarachnoid hemorrhage (SAH) is implicated

in delayed cerebral ischemia (DCI) and adverse clinical outcomes. We hypothesize that

early changes in peripheral leukocytes will be associated with outcomes after SAH.

Methods: SAH patients admitted between January 2009 and December 2016 were

enrolled into a prospective observational study and were assessed for Hunt Hess

Scale (HHS) at admission, DCI, and modified Ranked Scale (mRS) at discharge. Total

white blood cell (WBC) counts and each component of the differential cell count were

determined on the day of admission (day 0) to 8 days after bleed (day 8). Global

cerebral edema (GCE) was assessed on admission CT, and presence of any infection was

determined. Statistical tests included student’s t-test, Chi-square test, and multivariate

logistic regression (MLR) models.

Results: A total of 451 subjects were analyzed. Total WBCs and neutrophils decreased

initially reaching a minimum at day 4–5 after SAH. Monocyte count increased gradually

after SAH and peaked between day 6–8, while basophils and lymphocytes decreased

initially from day 0 to 1 and steadily increased thereafter. Neutrophil to lymphocyte

ratio (NLR) reached a peak on day 1 and decreased thereafter. WBCs, neutrophils,

monocytes, and NLR were higher in patients with DCI and poor functional outcomes.

WBCs, neutrophils, and NLR were higher in subjects who developed infections. In MLR

models, neutrophils and monocytes were associated with DCI and worse functional

outcomes, while NLR was only associated with worse functional outcomes. Occurrence

of infection was associated with poor outcome. Neutrophils and NLR were associated

with infection, while monocytes were not. Monocytes were higher in males, and ROC

curve analysis revealed improved ability of monocytes to predict DCI and poor functional

outcomes in male subjects.

Conclusions: Monocytosis was associated with DCI and poor functional outcomes

after SAH. The association between neutrophils and NLR and infection may impact

outcomes. Early elevation in monocytes had an improved ability to predict DCI and poor

functional outcomes in males, which was independent of the occurrence of infection.

Keywords: monocytes, neutrophil-to-lymphocyte ratio, subarachnoid hemorrhage, neuroinflammation, delayed

cerebral ischemia
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INTRODUCTION

Aneurysmal subarachnoid hemorrhage (SAH) results in
significant morbidity (1). Delayed cerebral ischemia (DCI) is
a late complication occurring typically 4–14 days after onset
in one-third of SAH caused by a combination of angiographic
vasospasm, arterial constriction and thrombosis, and cortical
spreading ischemia (2, 3) and is a major contributor to clinical
outcomes (4, 5). Early brain injury (EBI) occurring within 72 h
after aneurysmal rupture has been shown to be predictive of
clinical outcomes (6). Global cerebral edema (GCE) quantifies
the effacement of hemispheric sulci, and is a radiographic marker
of early brain injury (7).

Uncontrolled inflammation occurs during EBI due to
the reaction to extravascular blood (8), impaired cerebral
autoregulation (9), release of products from injured brain tissue,
and ischemia-reperfusion injury (7). Pro-inflammatory cytokines
such as interleukin-1β (IL-1β) triggers the release of astrocyte
derived extracellular vesicles that enter the peripheral circulation
and promote the transmigration of leukocytes to the central
nervous system (CNS) (10). The subsequent robust systemic
inflammatory response occurring after SAH peaks at 24–48 h and
contributes to delayed neurological deterioration (11, 12).

Peripheral leukocytes have been shown to migrate to the
cerebrospinal fluid and brain after SAH (13) with activated
neutrophils damaging brain micro-vessels (14). Preclinical
models have shown that neutrophil and monocyte levels peaked
by day 5 post SAH and that the leukocytes found in the
brain originated from systemic blood circulation (5, 15). Early
elevation in total peripheral leukocytes has been linked with
the occurrence of DCI and poor functional outcomes (16, 17).
However, leukocyte subtypes likely play distinct roles. After
intracerebral hemorrhage (ICH), increased peripheral monocyte
counts as well as neutrophil to lymphocyte ratios (NLR) are
associated with worse outcomes (18–21). Similarly, after SAH,
numerous studies have demonstrated that increased NLR is
associated with worse outcomes (22–26). Peripheral monocytosis
has also been linked to development of DCI (27). However,
the biological mechanism underpinning the associations between
leukocytes and outcomes and the link between inflammatory cells
and EBI remain poorly understood.

The objective of this study is to investigate trends in leukocyte
counts after SAH and the associations between leukocytes
and outcomes. Total WBC count, monocytes, leukocytes,
neutrophils, and basophils were collected at admission and
each day for the next 8 days. We hypothesized that increased
peripheral inflammatory cells will be associated with poor clinical
outcomes and DCI.

MATERIALS AND METHODS

Study Population, Inclusion, and Exclusion
Criteria
This is a retrospective, observational, single center study of SAH
patients admitted between January 2009 and December 2016 to
the Neuroscience Intensive Care Unit at Memorial Hermann
Hospital, University of Texas (UT) Health Science center at

Houston. Ethical approval was obtained from the UT Health
Science Center institutional review board (17-0776). Inclusion
criteria for the study were: presence of SAH on initial CT or
presence of xanthochromia in cerebrospinal fluid, age above
18 years, and admission to hospital within 72 h of bleed ictus.
Exclusion criteria for the study included: SAH associated with
trauma, arteriovenous malformation, or mycotic aneurysms;
presence of auto-immune diseases; and conditions that affect
inflammation such as pregnancy or a history of malignancy.
Subjects with perimesencephalic SAH were excluded due to the
low likelihood of aneurysmal etiology and low risk of aneurysmal
etiology and development of DCI (28).

Demographic, Clinical, and Radiographic
Data
Subjects’ demographics and clinical information were abstracted
from the electronic medical record. The Hunt Hess Scale (HHS)
score was used to quantify clinical severity on admission (29).
Patients were dichotomized into good grade group (HH ≤3)
and poor grade groups (HH ≥4). All patients were monitored
for DCI. DCI is a dichotomous score (either 0 or 1) defined as
“the occurrence of focal neurological impairment or a decrease
of at least 2 points on the Glasgow Coma Scale that lasts for at
least 1 h, is not apparent immediately after aneurysm occlusion,
and cannot be attributed to other causes by means of clinical
assessment, CT or MRI scanning of the brain, and appropriate
laboratory studies” (30). The 0–6 modified Rankin score (mRS)
was used to quantify functional outcome of patient at the time
of discharge. Patients were dichotomized into good (mRS ≤3)
and poor (mRS ≥4) clinical outcomes. Infection was defined
as the presence of ventriculitis, urinary tract infection (UTI),
or pneumonia.

Radiographic Markers of Injury
Initial computed tomography (CT) scans at the time of SAH
diagnosis were graded for parameters including global cerebral
edema (GCE), intraventricular hemorrhage (IVH), and modified
Fisher Scale (mFS). GCE is an important radiographic marker
of EBI which is also a risk factor for DCI (7). It is a
qualitative and dichotomous score (either 0 or 1) based on
the radiographic presence of [1] complete or near-complete
effacement of hemispheric sulci and basal cisterns or [2] bilateral
and extensive disruption of the hemispheric gray-white matter
junction at the level of the central semi vale, which is due to
either blurring or diffuse peripheral “fingerlike” extensions of the
normal demarcation between gray and white matter (7). IVH is
a qualitative and dichotomous radiographic score (either 0 or 1)
defined as the presence or bleeding inside or around the ventricles
in the brain that normally contain cerebral spinal fluid. GCE,
IVH, and mRS were determined by at least two independent
physicians, with at least one being an attending neurointensivist.
All scores were adjudicated at a weekly research meeting.

Leukocytes Subtypes and Time Course
Complete blood counts (CBC) with differential were collected
as a part of routine patient care and management. Differentials
included total white blood cells (WBC), neutrophils, monocytes,
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TABLE 1 | Demographics and clinical outcomes.

Total DCI (-) DCI (+) P mRS (0-3) mRS (4-6) P

N 451 363 88 305 146

Demographics

Age 54 (45, 63)* 54 (44, 64) 54 (46, 62) 0.903 51 (42, 59) 61 (51, 71) <0.001

Gender (F ) 295 (65) 235 60 0.436 197 (65) 98 (67) 0.441

Hypertension 304 (67)† 248 (68) 56 (64) 0.461 197 (65) 107 (73) 0.004

HHS (4,5) 95 (21) 71 (20) 24 (27) 0.112 21 (6.9) 74 (51) <0.001

mFS (3,4) 406 (90) 232 (64) 75 (85) <0.001 186 (61) 121 (83) <0.001

IVH 240 (53) 173 (48) 67 (76) <0.001 133 (44) 107 (73) <0.001

Aneurysm treatment: 2.83 × 10−6 8.00 × 10−9

Clipped 139 (31) 101 (28) 38 (43) 0.041 99 (32) 40 (27) 0.999

Coiled 222 (49) 172 (47) 50 (57) 0.898 146 (48) 76 (52) 0.999

No treatment 32 (7) 32 (9) 0 (0) 0.031 8 (3) 24 (16) 1.00 × 10−6

No aneurysm 58 (13) 58 (16) 0 (0) 0.0005 52 (17) 6 (4) 9.81 × 10−4

Outcomes

DCI 88 (20) 39 (13) 49 (34) <0.001

mRS (4-6) 146 (32) 97 (27) 49 (56) <0.001

Hospital LOS 13 (9, 18) 12 (9, 16) 19 (14, 24) <0.001 12 (9,16) 16 (8, 23) 0.001

Data are presented as either *median (interquartile range) or †N (percent). HHS, Hunt Hess Scale; mFS, modified Fisher Scale; IVH, intraventricular hemorrhage; DCI, delayed cerebral

ischemia; mRS, modified Rankin Scale; LOS, length of stay. P-values that are statistically significant are in bold.

lymphocytes, eosinophils, and basophils. Daily values for each
cell type were abstracted from day of admission (day 0) to day
8. The early (within 48 h) period most likely corresponds with
the occurrence of EBI after SAH (15–17). Days 3–5 reflect the
time period immediately preceding the occurrence of DCI. The
6–8-day period represents the peak period of DCI. Given that
leukocyte counts at different time points after injury may play
distinct roles, we created a variety models using a variety of
different time points. Models were created for cells counts on
each individual day. Models were also created using median cell
counts over days 1–5, as this timeframe was thought to precede
development of DCI in most patients.

Statistical Analysis
Student’s t-tests were performed on continuous variables while
χ2 tests were performed on categorical variables. p < 0.05 were
considered to be significant. Univariate models were created
to assess the association between each cell type over days 0–8.
Given that 54 comparisons were made, a Bonferroni correction
was used to set significance at a P-value of < 9.3 × 10−4

for univariate models. Multivariable logistic regression (MLR)
models were used to determine independent associations after
controlling for variables found to be significant in univariate
models. Models presented herein reflect median cell counts
over days 1–5, unless otherwise specified. Receiver operating
characteristic (ROC) curves were calculated with an area under
the curve (AUC) calculated for each. RStudio (v1.2.5033) was
used for all statistical analysis.

RESULTS

Demographics and Outcomes
A total of 451 patients met the inclusion criteria and were
included in this study. Demographic characteristics and clinical

outcomes of subjects are shown in Table 1. The average age
was 54 (IQR 45, 63), 295 (65%) were female, 304 (67%) had
hypertension, 240 (53%) presented with IVH, and 95 (21%)
had HH ≥4 at admission. Aneurysms were treated by surgical
clipping in 139 (31%) and by coiling in 222 (49%). No surgical
treatment for aneurysm was undertaken in 32 (7%), and no
aneurysm was found in 58 (13%). Subjects who developed DCI
had higher mFS scores [mFS ≥3: 232 (64%) vs. 75 (85%), P
< 0.001], higher proportion of IVH [173 (48%) vs. 67 (76%),
P < 0.001], higher frequency of aneurysm clipping [101 (28%)
vs. 38 (43%), P = 0.041], worse outcomes [mRS ≥4: 97 (27%)
vs. 49 (56%), P < 0.001], and longer hospital length of stay [12
days (IQR 9, 16) vs. 19 days (14, 24), P < 0.001]. Subjects with
poor outcomes (mRS ≥4) were older [age 51 (IQR 42, 59) vs.
61 (31, 32), P < 0.001], had a higher proportion of hypertension
[197 (65%) vs. 107 (73%), P = 0.004], had higher HH grade [HH
4,5: 21 (6.9%) vs. 74 (51%), P < 0.001], had higher mFS scores
[mFS ≥3: 186 (61%) vs. 121 (83%), P < 0.001], had a higher
proportion of IVH [133 (44%) vs. 107 (73%), P < 0.001], had a
higher incidence of DCI [39 (13%) vs. 49 (34%), P < 0.001], and
had a higher hospital length of stay [12 days (IQR 9, 16) vs. 16
days (IQR 8, 23), P < 0.001].

Leukocyte Trends
Overall trends in leukocytes are shown in
Supplementary Figure 1. WBC count was highest on day 0
after SAH, decreased until day 5, and then increased again.
This same trend occurred for neutrophils. Monocytes increased
gradually after SAH, peaking at day 8. After an initial decrease
from day 0 to day 1, basophil count increased gradually until
peaking at day 7. Lymphocytes also decreased from day 0
to day 1, followed by an increase reaching a peak at day 7.
NLR was highest at day 1 after SAH, and then decreased to
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FIGURE 1 | Leukocyte counts stratified by occurrence of delayed cerebral ischemia (DCI). Leukocytes counts (mean and standard deviation) are shown from day of

SAH (day 0) through day 8. Cells are in units of 1,000 per mm3. *P < 0.05, **P < 0.01, †P < 0.001. Abbreviations: delayed cerebral ischemia (DCI), subarachnoid

hemorrhage (SAH), white blood cells (WBC), neutrophil-to-lymphocyte ratio (NLR).

reach a minimum at day 6 after SAH, subsequently increasing
again thereafter.

Associations With Disease Severity and
Outcomes
Leukocytes stratified by HHS are shown in
Supplementary Figure 2. In subjects with higher HHS (4, 5)
on admission, WBC count was significantly higher on all days
except day 5. Neutrophils were significantly higher in subjects
with higher HHS across all days. Monocytes were higher in
subjects with higher HHS on days 0, 1, and 2. There were no
significant differences in basophils. Lymphocytes higher in
subjects with higher HHS on day 0 and were lower on days 3, 4,
5, and 6. NLR was higher in subjects with higher HHS on all days
except for day 0.

Leukocytes stratified by occurrence of DCI are shown in
Figure 1. WBC and neutrophil counts were higher in subjects
with DCI across all days with the exception of day 0. Monocytes
were higher in subjects with DCI across all days. There were no
differences in basophils and lymphocytes among subjects with
and without DCI. NLR was higher in subjects with DCI on days
2, 3, 4, and 7.

Leukocytes stratified by outcomes (mRS 0-3 vs. 4-6) are shown
in Figure 2. WBCs, neutrophils, and monocytes were higher in
subjects with poor mRS outcomes across all days. Basophils were
higher on day 0 in patients with poor mRS outcomes, while on
days 4, 5, 6, and 7 basophils were higher in subjects with good
mRS outcomes. Lymphocytes were higher on day 0 in patients
with poor mRS outcomes. NLR was higher in subjects with poor
mRS outcomes on all days except days 0 and 1.

Association With Infection
Leukocytes were stratified by the presence of any infection
(Figure 3). WBCs and neutrophils were higher in subjects with
any infection on day 2 through day 8. There were no significant
differences in monocytes. Basophils were higher in subjects
without infection on day 4. Lymphocytes were higher in subjects
without infection on days 2, 3, 4, 5, 6, and 7. NLR was higher in
subjects with infection on days 2 through day 8.

Sex Differences
Leukocytes were stratified according to sex (Figure 4). There
were no significant differences in WBCs and neutrophils
comparing males and females. Monocytes were higher in males
on days 2 through day 8. There were no significant differences
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FIGURE 2 | Leukocyte counts stratified by outcomes. Leukocyte counts (mean and standard deviation) are shown from day of SAH (day 0) through day 8. Outcome

is dichotomized according to mRS good (≤3) or poor (≥4). *P < 0.05, **P < 0.01, †P < 0.001. Cells are in units of 1,000 per mm3. mRS, modified Rankin Scale;

SAH, subarachnoid hemorrhage; WBC, white blood cells; NLR, neutrophil-to-lymphocyte ratio.

in basophils. Lymphocytes were higher in females on day 1. NLR
was higher in females on day 8.

Outcome Models
Univariate models were created for each cell count on each day
to assess associations with DCI (Supplementary Table 1) and
mRS (Supplementary Table 2). IncreasedWBCs were associated
with DCI on days 3 and 4 and neutrophils were associated with
DCI on days 2, 3, 4, and 5. Increased monocytes were associated
with DCI on all days except day 1. No associations were found
for DCI among basophils, lymphocytes, or NLR on any day.
Increased WBCs, neutrophils, and monocytes were associated
with poor outcomes (mRS 4-6) on all days, while increased NLR
was associated with poor outcomes on all days except days 0, 1,
and 8. No associations with outcomes were found for basophils
and lymphocytes.

MLR models were constructed to assess the associations
between cell counts and outcomes. Models were created taking
the median cell counts across days 1–5. After correction for
covariates, neutrophils and monocytes were associated with DCI,
while NLR was not (Table 2). IVH was associated with DCI
in the model including monocytes and NLR. Occurrence of
infection was associated with DCI only the NLRmodel. GCE was

associated with DCI only in the model containing monocytes.
Aneurysm treatment by surgical clipping was associated with
DCI in the monocyte and NLR models. Neutrophils, monocytes,
and NLR were associated with poor outcomes (mRS 4-6)
(Table 3). Increased age, HHS, and presence of any infection
were also associated with worse outcomes in each model. IVH
was associated with poor outcomes in each model. GCE was
associated with poor outcomes in themonocyte andNLRmodels.
Aneurysmal clipping was not associated with function outcome
in any model. No significant effect of sex was seen in models for
DCI or functional outcomes (Tables 2, 3).

MLR models were also created account for monocytes at day
0 (Supplementary Table 3). Increased day 0 monocyte count was
strongly associated with DCI and poor functional outcomes in
unadjusted models and after correction for covariates. IVH and
infection were associated with DCI. Age, HHS, and infection
were associated with worse functional outcomes.

MLR models were created to assess the association between
cell count and infection (Table 4). Neutrophil count and NLR
were associated with occurrence of infection after correction for
covariates. In models adjusted for covariates, monocyte count
was not associated with infection. Increased age and higher HHS
were associated with infection across all models. Male sex was
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FIGURE 3 | Leukocyte counts stratified by infection. Leukocyte counts (mean and standard deviation) are shown from the day of SAH (day 0) through day 8. Counts

are stratified by the occurrence of any infection within days 0–8. *P < 0.05, **P < 0.01, †P < 0.001. Cells are in units of 1,000 per mm3. SAH, subarachnoid

hemorrhage; WBC, white blood cells; NLR, neutrophil-to-lymphocyte ratio.

negatively associated with occurrence of infection in models
containing monocytes. When only considering female subjects,
monocytes were associated with infection (β = 1.47, 95%CI 0.99,
1.94) with correction for HHS, age, mFS, and IVH. When only
considering male subjects, monocyte count was not associated
with infection (β =0.19, 95%CI −1.76, 2.12) with correction for
HHS, age, mFS, and IVH.

Receiver Operating Characteristics (ROC)
Curves
ROC curves were created considering monocyte count at day
0. For prediction of DCI, monocyte count had an area under
the curve (AUC) of 0.640 (Figure 5A). For prediction of poor
functional outcomes, monocyte count had an AUC of 0.719
(Figure 5B). Youden index for DCI yielded an optimal cutoff of
0.683 K/mm3 (sensitivity 0.625, specificity 0.648). Youden index
for mRS yield an optimal cutoff of 0.810 K/mm3 (sensitivity
0.568, specificity 0.792). Baseline models were created including
HHS, Age, mFS, infection, IVH, gender, and GCE. ROC curves
were created for baseline models and baseline models plus day
0 monocyte count. AUC for the baseline model was 0.712 for
DCI, which improved to 0.754 when including monocyte count
(Supplementary Figure 3A). AUC for the baseline model was

0.858 for outcomes, which improved to 0.877 when including
monocyte count (Supplementary Figure 3B).

In females, AUC of the ROC curve for DCI for day
0 monocytes was 0.611 (Supplementary Figure 4A).
In males, AUC of the ROC curve for DCI was 0.703
(Supplementary Figure 4B). For females the optimal cutoff
for DCI for day 0 monocytes was 0.683 K/mm3 (sensitivity 0.571,
specificity 0.667). For males, the optimal cutoff for DCI for day
0 monocytes was 0.760 K/mm3 (sensitivity 0.760, specificity
0.739). In females, AUC of the ROC curve for mRS was 0.655
(Supplementary Figure 5A). In males, AUC of the ROC curve
for mRS was 0.751 (Supplementary Figure 5B). For females,
the optimal cutoff for mRS was 0.453 K/mm3 (sensitivity 0.891,
specificity 0.369). For males, the optimal cutoff for mRS was
0.796 K/mm3 (sensitivity 0.595, specificity 0.837). These results
are summarized in Supplementary Table 4.

DISCUSSION

This study demonstrates that peripheral leukocytes robustly
distinguish outcomes after SAH, with persistently elevated
WBCs, neutrophils, and NLR in those with DCI and poor
outcomes. Although leukocytes were affected by clinical severity,
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FIGURE 4 | Leukocyte counts stratified by sex. Leukocyte counts (mean and standard deviation) are shown from the day of SAH (day 0) through day 8. Subjects are

divided into males and females. *P < 0.05, **P < 0.01, †P < 0.001. Cells are in units of 1,000 per mm3. SAH, subarachnoid hemorrhage; WBC, white blood cells;

NLR, neutrophil-to-lymphocyte ratio.

TABLE 2 | Associations between leukocytes and DCI.

Neutrophils* Monocytes NLR

Unadjusted 0.19 [0.15, 0.24 (6.05 × 10−6)]# 2.00 [1.52, 2.48 (2.71 × 10−5)] 0.05 [0.03, 0.07 (0.027)]

Adjusted 0.18 [0.13, 0.23 (3.45 × 10−4)] 1.50 [1.03, 1.97 (0.0144)] 0.03 [−0.003, 0.07 (0.358)]

Covariates

Age 0.004 [−0.008, 0.01 (0.692)] 0.009 [−0.003, 0.02 (0.444)] 0.007 [−0.004, 0.02 (0.553)]

HHS 0.41 [0.05, 0.76 (0.553)] −0.06 [−0.45, 0.32 (0.867)] 0.23 [−0.13, 0.50 (0.517)]

mFS −0.44 [−0.92, 0.05 (0.303)] 0.26 [−0.24, 0.74 (0.406)] 0.36 [−0.03, 0.75 (0.274)]

IVH 0.95 [0.60, 1.30 (0.008)] 1.05 [0.66, 1.35 (0.009)] 1.04 [0.68, 1.35 (0.002)]

GCE 0.68 [0.29, 1.10 (0.094)] 0.88 [0.42, 1.23 (0.047)] 0.71 [0.32, 1.10 (0.061)]

Sex (Male) 0.05 [−0.29, 0.35 (0.866] −0.04 [−0.36, 0.23 (0.913)] 0.008 [−0.30, 0.31 (0.979)]

Any infection 0.52 [0.21, 0.82 (0.092)] 0.31 [−0.10, 1.12 (0.088)] 0.61 [0.32, 0.91 (0.036)]

Aneurysm clipping 0.24 [−0.03, 0.51 (0.106)] 0.74 [0.47, 1.01 (0.007)] 0.64 [0.37, 0.90 (0.061)]

*Models based on median cell count for days 1–5.
#Data are presented as β coefficient [95% confidence interval (P value)].

HHS, Hunt Hess Scale; mFS, modified Fisher Scale; IVH, intraventricular hemorrhage; GCE, global cerebral edema. P-values that are statistically significant are in bold.

there was an independent effect of cell counts on outcomes.
Monocyte count (both on admission and medians from day 1–
5) robustly predicted DCI and outcomes, in a sex dependent
fashion.We found an association between infection and outcome

and importantly demonstrated a link between neutrophils and
NLR with the occurrence of infection after SAH.

Monocytes remained significantly elevated across all study
days in subjects with DCI and poor functional outcomes.
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TABLE 3 | Associations between leukocytes and outcomes (mRS 4-6).

Neutrophil Count* Monocyte Count NLR

Unadjusted 0.23 [0.18, 0.27 (4.31 × 10−7)]# 1.88 [1.42, 2.34 (3.87 × 10−5)] 0.10 [0.07, 012 (1.56 × 10−5)]

Adjusted 0.23 [0.17, 0.28 (4.98 × 10−5)] 1.36 [0.83, 1.91 (0.009)] 0.07 [0.04, 0.08 (0.033)]

Covariates

Age 0.06 [0.05, 0.08 (2.35 × 10−6)] 0.06 [0.05, 0.07 (1.76 × 10−6)] 0.05 [0.04, 0.07 (1.01 × 10−5)]

HHS 1.62 [1.24, 2.00 (2.09 × 10−5)] 1.47 [1.10, 1.84 (8.31 × 10−5)] 1.52 [1.15, 1.88 (3.58 × 10−5)]

mFS −0.03 [−0.59, 0.53 (0.949)] 0.80 [0.13, 1.13 (0.112)] 0.09 [−0.31, 0.49 (0.883)]

IVH 0.86 [0.51, 1.22 (0.014)] 0.80 [0.45, 1.16 (0.023)] 0.99 [0.66, 1.33 (0.003)]

GCE 0.82 [0.35, 1.28 (0.081)] 0.90 [0.50, 1.39 (0.043)] 0.88 [0.44, 1.33 (0.041)]

Sex (Male) −0.24 [−0.58, 0.07 (0.475)] −0.37 [−0.71, 0.02 (0.282)] −0.08 [−0.40, 0.24 (0.811)]

Any infection 0.75 [0.42, 1.08 (0.021)] 0.85 [0.47, 1.21 (0.022)] 0.80 [0.49, 1.11 (0.011)]

Aneurysm clipping 0.15 [−0.11, 0.41 (0.567)] 0.25 [−0.004, 0.52 (0.173)] 0.27 [−0.01, 0.55 (0.292)

*Models based on median cell count for days 1–5.
#Data are presented as β coefficient [confidence interval (P-value)].

HHS, Hunt Hess Scale; mFS, modified Fisher Scale; IVH, intraventricular hemorrhage; GCE, global cerebral edema. P-values that are statistically significant are in bold.

TABLE 4 | Associations between leukocytes and presence of infection.

Neutrophil count* Monocyte count NLR

Unadjusted 0.16 [0.12, 0.20 (4.14 × 10−5)]# 0.44 [0.22, 0.66 (0.043)] 0.24 [0.16, 0.32 (0.002)]

Adjusted 0.10 [0.06, 0.15 (0.02)] 0.05 [−0.21, 0.30 (0.850)] 0.26 [0.17, 034 (0.005)]

Covariates

Age 0.03 [0.02, 0.04 (0.007)] 0.03 [0.03, 0.04 (0.0002)] 0.03 [0.02, 0.04 (0.0005)]

HHS 0.92 [0.59, 12.6 (0.006)] 0.95 [0.63, 1.26 (0.003)] 0.87 [0.57, 1.18 (0.004)]

mFS 0.10 [−0.38, 0,58 (0.831)] 0.42 [−0.03, 0.88 (0.354)] 0.39 [−0.06, 0.84 (0.381)]

IVH 0.09 [−0.20, 0.39 (0.752)] 0.28 [-0.009, 1.27 (0.302)] 0.24 [−0.03, 0.51 (0.370)]

GCE −0.57 [−1.42, −0.22 (0.170)] −0.74 [−1.55, 0.02 (0.065)] −0.49 [−1.15, 0.35 (0.204)]

Sex (Male) −0.55 [−0.84, 0.25 (0.066)] −0.75 [−1.04, −0.47 (8.63 × 10−3)] −0.50 [−1.04, 0.02 (0.064)]

*Models based on median cell count for days 1–5.
#Data are presented as β coefficient [95% confidence interval (P-value)].

HHS, Hunt Hess Scale; mFS, modified Fisher Scale; IVH, intraventricular hemorrhage; GCE, global cerebral edema. P-values that are statistically significant are in bold.

Peripheral monocyte count has been shown to increase early after
brain injury (33). Monocytes play a beneficial role by removing
debris in the subarachnoid space (34), however increased
monocyte counts have also been associated with worse outcome
after ICH (18). The pathophysiology underlying this association
is unclear. However, monocytes have been linked to hematoma
expansion in patients with ICH (35). Monocytes are coated with
physiological anticoagulants such as thrombomodulin and tissue
factor pathway inhibitor 2 (36, 37). A mouse model also found
decreased extent of bleeding in an ICH model with impaired
CCL2-CCR2 chemoattractant system (38). Peripheral monocytes
play an important role in cerebral inflammation after injury
in stroke, ICH, Alzheimer’s and status epilepticus (34, 35, 39–
42). Mice deficient in Toll-like receptor 4 (TLR4) demonstrated
decreased recruitment of monocytes after ICH associated with
decreased perihematomal edema (39). Therefore, monocytesmay
play a role both in hemorrhage expansion and inflammation
after SAH. Indeed, the innate immune system has been shown
to be activated early after SAH, with cells trafficking to the
brain from the periphery (43). CD14+CD16− monocytes (22)

as well as monocytes expressing programmed death-1 (PD-1)
are thought to play a role in the development of vasospasm,
as blocking their ingress to the CNS after SAH attenuated
vasospasm (44).

The early (day 0 and 1) increase among subjects with DCI
and poor functional outcomes distinguished monocytes and
NLR. Indeed, increased monocytes were robustly associated
with DCI and poor functional outcome both considering
median cell counts over days 1–5 (Tables 2, 3) and day 0
(Supplementary Table 3). The ability of monocytes to predict
delayed cerebral infraction and poor outcomes after SAH has
recently been demonstrated in a cohort of 204 patients (27).
These authors found an optimal cutoff of 0.60 to discriminate
development of cerebral infarction and poor outcomes after
SAH, with AUC of 0.622. We found an improved AUCs for
discrimination of DCI (0.640) and poor functional outcome
(0.719). Our results also suggest a higher monocyte count may
improve discrimination of DCI (0.683) and functional outcomes
(0.810). When adding day 0 monocyte count to a baseline model
including HHS, age, mFS, infection, IVH, and GCE, the AUCs
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FIGURE 5 | ROC curves for DCI and mRS. ROC curves were generated for the discrimination of DCI or poor discharge mRS, with mRS dichotomized into good (0-3)

and poor (4–6) outcomes, using day 0 monocytes. AUC and 95%CI interval were calculated for each ROC curve. DCI, delayed cerebral ischemia; mRS, modified

Rankin Scale; AUC, area under the curve.

further improved to 0.754 to DCI and 0.877 for functional
outcome (Supplementary Figure 3).

Monocyte counts were significantly higher in males
(Figure 4). Of note, monocytes had a better ability to
discriminate DCI (AUC 0.703 vs. 0.611) and outcomes (AUC
751 vs. 655) in males compared with females. Monocyte function
is sex specific and absolute numbers of monocytes have been
shown to be higher in males than females (45). Several studies
have also reported more robust cytokine production in male
compared with female monocytes (46–48). Sex hormones impact
immune cell function. Estrogen has been found to promote M2
polarization, which was dependent on the function of estrogen
receptor α (49). We theorize that male monocytes are more likely
to undergo M1 polarization with increased pro-inflammatory
cytokine production after SAH. Furthermore, unlike neutrophils
and NLR, monocyte count was not significantly associated with
occurrence of infection (Table 4). Interestingly, an association
between infection and monocyte count was only found in
women and not seen in males. To summarize, monocytes
increased steadily in both sexes. Monocyte counts were
predictive of the occurrence of DCI in men. Monocyte counts
were predictive of the occurrence of infections in women. This
suggests that there are sex-specific effects of monocytes after
SAH. Further examination of the underlying pathophysiology of
these differences should be pursued.

An elevated NLR likely represents dysregulation of the
immune system reflecting an increased innate and attenuated
adaptive immune response (8, 50). In addition to playing a role
in ICH and stroke (26, 51) an elevated NLR has been linked
to outcomes in patients with cancer, myocardial infarction, and
sepsis (31, 52–56). Neutrophils infiltrate the cerebral vasculature
within 10min after SAH, and reduction of neutrophil levels

or activity improves vascular integrity and outcomes in animal
models (14, 57). In addition to producing pro-inflammatory
cytokines, neutrophils generate substantial oxidative stress by
releasing factors such as myeloperoxidase, which can generate
hypochlorous acid and consume nitric oxide resulting in
impaired vasodilation (58). Isoprostanes generated by neutrophil
mediated oxidative stress can also result in vasoconstriction
(59, 60). Indeed, neutrophils may also contribute to early cerebral
hypoperfusion after SAH (61).

This study builds upon results from prior studies, which
have demonstrated the role of peripheral leukocytes after SAH.
While several important studies have shown that WBC count
has an association with DCI (62, 63), herein we have provided a
comprehensive assessment of the role of differential cell counts
on DCI and functional outcomes. Our assessments of the role
of sex differences and associations with infection have also not
been addressed in prior studies. We also support findings from
previous studies indicating an association between elevated NLR
and DCI (23, 25) and outcomes (24, 26). Our study has key
differences with these reports, with a main difference being
that most studies have exclusively assessed the role of early
leukocyte counts. The largest study to date, which evaluated
1067 SAH patients, found an admission NLR cutoff of 5.9
to be highly predictive of the development of DCI with no
association between NLR and functional outcomes (25). Our
results demonstrate that WBCs, neutrophils, and NLR remain
elevated in patients with DCI and poor functional outcome for
a week after the initial bleed and these differences increase after
the first two post-bleed days (Figure 1). This is in line with
granulocytes being persistently elevated in the brain for at least a
week after SAH in a rat model (64). We did not find associations
with outcomes using early (day 0) WBCs, neutrophils, and
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NLR but found robust associations using median values over
5 days (Tables 2, 3). We suggest that the earliest time point
for WBCs and NLR may not be as tightly linked to ultimate
clinical outcome.

There was an association between neutrophils and NLR and
the occurrence of infection after SAH, while lymphocytes were
associated with fewer infections (Table 4). Elevated NLR plays
a role in post SAH immunosuppression (26) and contributes
to the risk of pneumonia (65). Neutrophils may play a role
in the suppression of the adaptive immune system (50). The
immunosuppressive capacity of some neutrophils is due to the
ability to inhibit T-cell activation, proliferation, and effector
functions (66). However, it is unclear from our results whether
neutrophilia precedes infection, or whether early infections
drive persistently elevated neutrophils and NLR. The role of
lymphocytes in the injured brain is complex and incompletely
understood. T cells infiltrate 48–96 h after injury and peak
around 5 days (67, 68) in mice but have been found in the
CSF after ICH in humans after 6 h (69). T cells comprise a
heterogenous population and have been shown to have both
protective and deleterious roles (70). Both pro-inflammatory
(γδT cells) and immunosuppressive regular T cells (Tregs) traffic
to the area of hemorrhage (32). γδT cells have been shown to
contribute to injury after ischemic stroke mainly due to the
production of IL-17 (71). Tregs may provide benefits against
the late tissue damage (72), while in the earlier time frame
they have been shown to modulate the activity of invading
pro-inflammatory cells (73). The role of γδT cells may be
primarily in the periphery rather than brain parenchyma as they
accumulate in the leptomeninges and control trafficking of other
inflammatory cells (74).While our study is not able to distinguish
between lymphocyte subtypes, it is possible that the serum
lymphocytes and decreased NLR associated with good outcomes
and decreased risk of infection outcomes are primarily Tregs. We
suspect that increased neutrophils and decreased lymphocytes
are key factor leading to risk of infection after SAH, with this
serving as a major determinant of clinical outcomes.

A major caveat to the interpretation of the results presented
herein is the prevalent use of corticosteroids. At our institution,
patients with aneurysmal SAH are typically treated with a
standard regimen of corticosteroids during the first week
of hospitalization, affecting most subjects in this study.
Corticosteroids have an important effect on circulating
leukocytes. Corticosteroid treatment increases neutrophils due
to increased entrance from bone marrow and decreased vascular
removal. However, monocytes, lymphocytes, basophils, and
eosinophils are decreased after steroid treatment. This effect
is thought to be due to redistribution of these cells, although
lymphocytes are known to undergo steroid induced apoptosis
(75). In addition, corticosteroids have potent anti-inflammatory
effects. Corticosteroids inhibit recruitment of neutrophils and
monocytes (76) and inhibit neutrophil adherence to capillary
endothelial cells by decreasing expression of adhesion molecules
and the synthesis and release of prostaglandins (77, 78). It is
therefore very likely that corticosteroid treatment has affected
the cell counts used in this study. As nearly all patient received
corticosteroid treatment, it is not possible to control for this

effect in our multivariate regression models. Additional studies
will be needed to confirm the findings described herein in SAH
subjects not treated with corticosteroids.

In addition to the effect of corticosteroids, this study has
several other important limitations. This is a single center study,
which limits its generalizability. This study is also retrospective,
and it is therefore prone to selection bias. Given that multiple
comparisons among cell types and across different days were
made, there is a risk of type I error. We have adjusted
P-values considered to be significant in univariate analyses
for cell counts for multiple comparisons using a Bonferroni
correction to mitigate this risk. We attempt to explore the
pathophysiological basis for the connection between leukocytes
and outcomes, however our study is limited to clinically available
differentials. Subtypes of each leukocyte may play distinct roles
(e.g., lymphocyte subtypes may be beneficial or harmful). Future
flow cytometry studies will be used to answer questions about
specific cell types. Several variables of interest in the study
require qualitative assessment such as GCE, mFS, and DCI. We
attempt to control for any variability and subjectivity by having
all variables adjudicated by multiple reviewers.

This study determined the time course of peripheral
leukocyte responses after SAH. We found that monocytes
were associated with DCI and poor functional outcome, in
a sex dependent fashion. Monocytes were elevated in men
compared to women. In men, monocyte counts predicted the
occurrence of DCI, while in women monocyte counts were
associated with infection. Both neutrophil count and NLR were
associated with worse outcomes. We suspect increased NLR
(reflective of increased neutrophils and decreased lymphocytes)
results in an immunosuppressive environment that contributes
to infection risk, and this plays a role in outcomes. We
suggest that monocytes (especially in males) play a key role
in driving systemic and central inflammation after SAH,
while neutrophils and NLR affect outcomes by modulating
infection risk. Monocyte count may help to predict DCI
and outcomes after DCI and may serve as a target for
therapeutic intervention.
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