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The inner ear is a complex organ housed within the petrous bone of the skull. Its intimate

relationship with the brain enables the transmission of auditory and vestibular signals

via cranial nerves. Development of this structure from neural crest begins in utero and

continues into early adulthood. However, the anatomy of the murine inner ear has only

been well-characterized from early embryogenesis to post-natal day 6. Inner ear and

skull base development continue into the post-natal period in mice and early adulthood

in humans. Traditional methods used to evaluate the inner ear in animal models, such as

histologic sectioning or paint-fill and corrosion, cannot visualize this complex anatomy

in situ. Further, as the petrous bone ossifies in the postnatal period, these traditional

techniques become increasingly difficult. Advances in modern imaging, including high

resolution Micro-CT and MRI, now allow for 3D visualization of the in situ anatomy of

organs such as the inner ear. Here, we present a longitudinal atlas of the murine inner

ear using high resolution ex vivo Micro-CT and MRI.
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INTRODUCTION

Congenital malformations of the inner ear are recognized causes of congenital hearing deficits,
sensorineural hearing loss, and gait and balance disturbances (1–3). The membranous labyrinth,
which is housed within the petrous bone at the skull base, serves as a common sensory
organ for the cochlear and vestibular systems. The resonation of circulating endolymph within
the scala media of the cochlea is detected by the organ of Corti which transmits sensory
information via the cochlear nerve to the brainstem, where these signals are interpreted
as sound. Endolymph continues from the cochlear duct to the vestibular components of
the membranous labyrinth including the semicircular canals. The direction of circulating
fluid within these orthogonally oriented canals is detected by the vestibular nerve and
transmitted to the brainstem where it is interpreted as three-dimensional orientation.
Abnormal development of the membranous labyrinth and other components of the inner
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ear can result in significant deficits in hearing and balance. While
malformations of the inner ear may be drastic, subtle errors in the
development of this complex system can lead to severe symptoms
(4, 5). Thus, intimate knowledge of this anatomy is necessary for
recognition of these pathologies in both mice and humans.

Many of these pathologies occur in heritable syndromes with
known genetic aberrations (6, 7), emphasizing the importance
of establishing mouse or other animal models. Murine inner
ear anatomy has been well-studied from embryo through P6
with the greatest emphasis on embryologic days 9 through
17.5 (8, 9). However, similar to humans, the murine skull
base, including the petrous bone, continues to grow until
P120 (10). Therefore, to study the genetic and molecular basis
of disease in these models first requires an atlas detailing
inner ear anatomy from embryo to adult. To date, there is
no high-resolution longitudinal imaging atlas of the inner ear
in mice.

Herein, we present the anatomy of the inner ear within the
intact head visualized at various time points in development
including, embryo, post-natal, and adult, using high resolution
ex vivo Micro-computed tomography (CT) and magnetic
resonance imaging (MRI). We chose to evaluate the embryo
at E14.5 because the components of the inner ear have
reached a recognizable configuration at this time point (9).
At our next time point, we evaluated the murine inner ear
at post-natal day 8 (P8) because at the early post-natal stage

FIGURE 1 | Overview of murine inner ear anatomy at three stages of development. Multimodal, 2D coronal images overlayed with 3D segmentation of the inner ear at

embryo, post-natal, and adult stages (top row). Isolated 3D segmentations of the inner ear at each stage of development are shown (bottom row).

the skull base is still undergoing development (10). Finally, we
evaluated the inner ear at 5 months, which represents the adult
stage, because the skull base and inner ear have completely
ossified (10).

RESULTS

Herein we present a high-resolution, multimodal longitudinal
atlas of the murine inner ear from embryo to adult. Figure 1
shows representative results of our longitudinal imaging study
of murine inner ear anatomy at E14.5, P8, and adult stages.
Images were acquired usingMicro-CT and 14 TMRI. Using these
ex vivo imaging modalities, we were able to evaluate the inner
ear within the intact whole head in two and three dimensions
at these developmental stages. In the embryo, we performed
Micro-CT following immersion in phosphotungstic acid (PTA),
a radio dense contrast agent (11), allowing distinction of tissues
through variable X-ray attenuation that would otherwise appear
homogenous on Micro-CT or MRI.

Figure 2 shows a Micro-CT image with 3D segmentation of
the inner ear at E14.5. A complete, annotated fly-through video
of Micro-CT images with 3D segmentation of the embryological
inner ear at E14.5 is displayed in Supplementary Video 1.
Samples were immersed in PTA prior to image acquisition.
At this stage, the primordial semi-circular canals and ampullae
are visible.
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FIGURE 2 | Micro-CT image with 3D segmentation of the embryological inner ear at E14.5. The anatomy of the embryonic inner ear in the sagittal plane on the 2D

Micro-CT image (left). The 3D inner ear segmentation is shown overlayed on the Micro-CT image of the embryo head (right). The rudimentary semi-circular canals and

common crus (red) and cochlea (blue) are shown. ASC, anterior semi-circular canal; LSC, lateral semi-circular canal; PSC, posterior semi-circular canal; CC, common

crus.

At the next stage (P8) we evaluated, the membranous
labyrinth, including the cochlea, has reached its mature
configuration. Figure 3 shows an MR image with 3D
segmentation of the inner ear at P8. A complete, annotated
fly-through video of MR images with 3D segmentation of the
post-natal inner ear at P8 is displayed in Supplementary Video 2.
In addition to reaching its mature configuration, a significant
increase in bone density is appreciated as the inner ear structures
have undergone extensive but not complete ossification.

Figure 4 shows a Micro-CT image with 3D segmentation of
the adult inner ear. A complete, annotated fly-through video of
Micro-CT images with 3D segmentation of the adult inner ear
is displayed in Supplementary Video 3. At this stage, the inner
ear has completed maturation and the bony labyrinth has fully
ossified. The semicircular canals have grown to their full diameter
and are arranged in three perpendicular planes (Figure 4). At this
time point (5 months), the surrounding posterior skull base has
reached its final morphology.

Micro-CT images of the adult inner ear following PTA
immersion allows for visualization of the soft tissue structures
of the membranous labyrinth within the bony labyrinth
as seen in Figure 4. This high-resolution in situ imaging
provides visualization of nearby anatomical structures such
as the adjacent cerebellar tonsils as seen in Figure 5 and
Supplementary Video 4. The proximity of the cerebellum to
the inner ear in the mouse highlights the aforementioned
embryologic relationship wherein neural crest cells migrate from
the rhombomeres and envelope the early CN VIII ganglion to
form central connections. These connections persist as CN VIII
which can be seen entering the cochlear and vestibular canals in

Supplementary Video 4. The cochlear nerve and spiral ganglion
are also visible within the modiolus of the cochlea.

DISCUSSION

Here, we present a high-resolution, multimodal atlas of the
murine inner ear in the context of its surrounding anatomy
spanning from embryo to adult. Currently, a comprehensive
longitudinal atlas of the in situ, murine inner ear throughout its
development has not been reported. Traditionally, the inner ear
has been studied using techniques such as histologic sectioning,
paint-fill and corrosion, and whole mount (12–15). While these
methods provide excellent microscopic anatomic and cellular
detail, they do not provide gross anatomical information of
the inner ear relative to its surrounding structures. In addition,
pre-processing steps required are invasive, often damaging the
underlying structure of interest. These techniques are limited
to certain stages in mouse development due to difficulty of
manipulating the petrous bone after ossification. Based on these
considerations, we aimed to generate highly resolute images of
the in situmurine inner ear.

We chose the imaging modality best suited to evaluate the
inner ear anatomy at each stage based on the limitations of
the techniques. In the adult, the significant ossification of the
petrous bone would create artifacts that would limit resolution
of the inner ear on MRI; thus, we chose Micro-CT. At the early
post-natal stage, the bone is significantly less ossified, making
visualization of the inner ear on MRI more feasible.

In this study, we demonstrate that the inner ear
continues to undergo significant developmental changes
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FIGURE 3 | MR image with 3D segmentation of the post-natal inner ear at P8. Shown here is an MR image of the post-natal day 8 mouse head in the coronal view.

The 3D segmentation is seen overlayed on the 2D image (right). The color seen in the 2D image corresponds with its respective 3D segmentation. While the inner ear

structures have not fully completed maturation, they have reached their mature configuration. ASC, anterior semi-circular canal; LSC, lateral semi-circular canal; PSC,

posterior semi-circular canal; CC, common crus; ELS, endolymphatic sac; AMP, ampulla.

FIGURE 4 | Micro-CT image with 3D segmentation of the adult inner ear. Shown here is a Micro-CT image of the adult mouse head in the coronal view. The 3D

segmentation is seen overlayed on the 2D image (right). The color seen in the 2D image corresponds with its respective 3D segmentation. At this stage, inner ear

structures have completed maturation and reached their final configuration. ASC, anterior semi-circular canal; LSC, lateral semi-circular canal; PSC, posterior

semi-circular canal; CC, common crus; ELS, endolymphatic sac; AMP, ampulla.

throughout the postnatal period, which have not been
previously described.

The membranous labyrinth arises from its embryologic
precursor, a thickening in neuroectodermal tissue termed the

otic placode, which is induced by rhombomeres 5 and 6 in the
underlying the primitive hindbrain between embryonic day 8
and day 8.5 (12, 16). The otic placode subsequently invaginates
to form the otic cup and eventually, a rudimentary otocyst by
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FIGURE 5 | 3D volume render of the inner ear of a Micro-CT imaged, PTA-immersed murine head. A representative volume of interest from the same sample is

shown. (A–C) show orthogonal planes of the acquired data at various depths. A, Ampulla; AN, Auditory Nerve; C, Cerebellum; CT, Cerebellar Tonsil; CC, Common

Crus; CO, Cochlea; EAC, External Auditory Canal; M, Modiolus; OoC, Organ of Corti; OW, Oval Window; S, Stapes; U, Utricle.

E9.5 (9). Following induction of the neurogenic domain of the
otic placode, neuroblasts delaminate from the otic epithelium
at the anteroventral otic cup and converge to form the neurons
of the cochleovestibular (CN VIII) ganglion. The emergence
of these neuroblasts occurs in close proximity to neural crest
cells migrating from the hindbrain at rhombomere 4 toward the
second pharyngeal arch (17). The primordial CN VIII ganglion
is subsequently enveloped by this neural crest stream, forming
central axonal connections with the developing hindbrain by
E10.5 (9). The necessity of this complex interaction of these
migrating neural crest cells with ectoderm, mesenchyme, and
neuronal precursors for proper formation of the inner ear was
highlighted by several lineage tracing studies. These studies
demonstrated that neural crest cells give rise to the glial cells,
melanocytes of the stria vascularis, and a portion of the bony
labyrinth (18, 19). At approximately E16.5, the rudimentary
otocyst has given rise to the recognizable structure of the
membranous labyrinth. This includes a vestibular component,
comprised of the maculae located within the primitive utricle and
saccule, and an auditory component, consisting of the cochlear
anlage. The cochlear anlage develops from the ventral portion
of the rudimentary otocyst and will go on to form the mature
cochlea after coiling one and three-quarter turns by E17 (12).
This early embryonic period also gives rise to the endolymphatic
duct and sac, which emerge as a single dorsal protrusion from the

rudimentary otocyst at∼E10.5 (20). At E13.5 these structures are
anatomically distinguishable (9).

At E14.5, the cochlea has begun to coil, but it has not yet
reached its mature configuration of 1.75 turns. Additionally, the
semicircular canals, utricle, and saccule are underdeveloped as
evidenced by an apparent lack of fluid filling these structures.

At our next evaluated time point, P8, we see a more
mature inner ear including a coiled cochlea and a fluid-filled
membranous labyrinth within a larger petrous bone. Studies
in humans have indicated that the skull base, including the
petrous bone which houses the inner ear, experiences the
most rapid period of growth within the first 12 months of
age (21). Thus, we evaluated murine inner ear anatomy at
the early post-natal stage to characterize structural changes
from its embryonic form. At this stage, we see that while
the membranous labyrinth has neared complete maturation,
the bony labyrinth has not. The semi-circular canals are
now fluid-filled spaces containing endolymph and perilymph.
The endolymphatic duct and sac are easily distinguishable
and have undergone significant development compared to the
previous stage (E14.5). The endolymphatic sac will eventually
reach its final position partially within the temporal bone and
partially in its extra-osseous location within the dura of the
posterior fossa (22). In addition, the opening of the tunnel
of Corti and formation of the spaces of Nuel occur between
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P6 and P10 (23). Whole head imaging at the post-natal stage
allowed us to visualize these structures within the context
of the surrounding petrous and temporal bones. By P8, the
membranous labyrinth is encased in a thin bony labyrinth
within the otic capsule of the petrous temporal bone at the
skull base. These bones will continue to develop to reach their
adult configuration.

At the adult stage, the cochlear nerve and spiral
ganglion are visible within the modiolus of the cochlea
(Supplementary Video 4). The modiolus is a broad-based bony
structure that constitutes the canonical central axis of the cochlea
and is comprised of spongy bone which transmits filaments
of the cochlear nerve through its perforations (1). Shortened
modiolar length has been identified as important criteria in
classifying congenital anomalies of the cochlea, such as Mondini
dysplasia (24). Further, the Micro-CT images following PTA
immersion allow for phenotypic characterization of portions
of the membranous and bony labyrinth that have distinct
embryologic relationships and clinical correlates to congenital
inner ear malformations (5). Thus, high resolution imaging
of inner ear structures can provide translatable, anatomic
information in mouse or other animal models such as rats
(25, 26). Further, our study can be used for comparison to
existing studies using Micro-CT to evaluate developmental ear
pathologies in mouse models.

Herein, we present a longitudinal anatomical atlas of the
murine inner ear ranging from embryo to adult. While
embryonic development of the inner ear has been previously
described, a longitudinal atlas of the in-situ bony and
membranous labyrinth has yet to be reported. To our knowledge,
our atlas is the first to report high-resolution 2D and 3D
representations of the intact murine inner ear at embryonic,
postnatal, and adult time points. Our MRI and Micro-CT
imaging techniques allowed the samples to be evaluated intact.
In addition, this allowed iterative sample processing and re-
imaging of the whole mouse head and preservation of important
underlying anatomical structures. The methodology used in
this study may prove useful for evaluating murine inner ear
malformations. We have provided annotated atlases for critical
embryologic, post-natal, and adult time points that can be
referenced when studying relevant disease models.

MATERIALS AND METHODS

We evaluated C57BL/6 mouse inner ear anatomy at the
embryologic (E14.5), post-natal (P8), and adult stages of
development usingMicro-CT and 14 TMRI. Post-natal and adult
mice were perfused with Microfil silicate polymer (Flowtech Inc,
Carver, MA) to allow for separation of vascular structures from
the surrounding bone as previously described (27).

Micro-CT
We evaluated the embryo and adult stages using high-resolution
Micro-CT. Images of the polymer-casted adult mice (n = 5;
male = 3, female = 2) fixed in 4% paraformaldehyde were
acquired as previously described (27). The parameters for
this adult scan using Skyscan1172 (Bruker Micro-CT, Kontich,

Belgium) were as follows: nominal resolution of 13.53µm,
0.5mm Aluminum filter and the X-ray source biased at 65
kV and 110 µA. Six projections were averaged together every
0.4◦ for a 180◦ scan, each with an exposure time of 1,600ms.
Images of the E14.5 (n = 3; male = 1, female = 2) fixed in
4% paraformaldehyde and contrast-enhanced with PTA were
performed on the Skyscan1272 (Bruker Micro-CT, Kontich,
Belgium), with a nominal resolution of 3.02µm, necessitated
the use of 0.5mm Aluminum and 0.038mm Copper filters
and the X-ray source biased at 90 kV and 110 µA. Ten
projections were averaged together every 0.10◦ for a 360◦ scan,
each with an exposure time of 2,175ms. Images of fixed and
polymer-casted murine samples were first acquired to visualize
normal bony inner ear anatomy. Mouse samples were then
decalcified in a 10% hydrochloric acid immersion for 72 h. To
visualize soft tissue of the membranous labyrinth, samples were
dehydrated in subsequent increasing ethanol concentrations and
then immersed in PTA before being scanned again using Micro-
CT as previously described (11).

Reconstruction was carried out with a modified Feldkampii
algorithm using the SkyScanTM NRecon software accelerated by
GPUiii. Gaussian smoothing, ring artifact reduction, and beam
hardening correction were applied (as applicable).

MRI
MRI images were acquired of the post-natal (P8) stage (n
= 3; male = 2, female = 1). The sample was immersed
in 4% paraformaldehyde for 36 h, then 0.1% Magnevist/PBS
solution for 24 h preceding MRI. The tissue was placed in
15mm NMR sample tubes, filled with Fluorinert to match the
magnetic susceptibility between the tissue and surroundings,
and positioned in the scanner where the coil performance was
optimized. Scans were performed using a 14 T MRI scanner
equipped with a 40mmbore scanner, capable of gradient strength
of 156 G/cm. The size of the radio frequency coil was 15mm.
The imaging parameters including field of view and matrix size
were maintained to achieve a constant isotropic resolution. Brain
images were acquired at 50µm isotropic resolution echo time
(TE) = 5ms, repetition time (TR) = 50 ms, flip angle = 30◦.
Scout images and 3D gradient echo images were acquired of
the sample.

Image Processing
To generate 3D segmentations of the bony and membranous
labyrinths, we used the semi-automated active contour
segmentation tool in the ITK-SNAP 3.0 software application
(Researchers at University of Pennsylvania and UNC,
USA) on all acquired images. The resulting segmentations
were proof-read and edited when necessary using the
paint brush tool in ITK-SNAP. We saved the proof-read
segmentation items as NIFTI files and converted them into
a mesh format compatible with Neuroglancer, an open-
source, interactive volumetric data viewing tool. The 3D
renders were visualized overlayed on acquired 2D images in
Neuroglancer (28).
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