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Symptomatic hemorrhagic transformation (HT) is one of the complications most likely

to lead to death in patients with acute ischemic stroke. HT after acute ischemic stroke

is diagnosed when certain areas of cerebral infarction appear as cerebral hemorrhage

on radiological images. Its mechanisms are usually explained by disruption of the

blood-brain barrier and reperfusion injury that causes leakage of peripheral blood cells. In

ischemic infarction, HTmay be a natural progression of acute ischemic stroke and can be

facilitated or enhanced by reperfusion therapy. Therefore, to balance risks and benefits,

HT occurrence in acute stroke settings is an important factor to be considered by

physicians to determine whether recanalization therapy should be performed. This review

aims to illustrate the pathophysiological mechanisms of HT, outline most HT-related

factors after reperfusion therapy, and describe prevention strategies for the occurrence

and enlargement of HT, such as blood pressure control. Finally, we propose a promising

therapeutic approach based on biological research studies that would help clinicians

treat such catastrophic complications.
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INTRODUCTION

Hemorrhagic transformation refers to hemorrhagic infarction that occurs after venous thrombosis
or arterial thrombosis and embolism (1, 2). Autopsy studies have reported an HT rate of 18–42%
in acute ischemic stroke due to arterial occlusion (1, 3). The frequency of HT has been reported
mainly in clinical studies using brain imaging modalities, such as computed tomography (CT)
or magnetic resonance imaging (MRI), rather than pathological studies (4). Therefore, prior to
considering the frequency of occurrence of HT, we need to understand the imaging and clinical
definitions of HT. Although rates of HT in ischemic stroke have been reported, more than half of
all cerebral infarctions demonstrate certain stages of HT (5).

The radiographic definition of HT is generally classified by the European Cooperative Acute
Stroke Study (ECASS) (6). On CT scans, the severity of HT is divided into two stages: hemorrhagic
infarction (HI) and parenchymal hemorrhage (PH) with or without mass effect. Each stage is
divided into two subtypes (7). Each characteristic is presented in Table 1 (8).

With recent advances in intravenous (9) or endovascular (10) reperfusion therapies for acute
ischemic stroke (11), stroke physicians need to deepen their understanding of cerebral hemorrhagic
complications. Although the overall risks of complications have been well-documented in various
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TABLE 1 | Characteristics of hemorrhagic transformation (HT) according to

European Cooperative Acute Stroke Study (ECASS) 2 (8).

Types of HT Mass effect Definition

Hemorrhagic infarction-1

(HI-1)

Absence of mass effect Small petechial bleeding

along the margins of the

infarcted area

Hemorrhagic infarction-2

(HI-2)

Confluent petechial bleeding

within the infarcted area

Parenchymal hemorrhage-1

(PH-1)

Mildmass effect Hematoma in <30% of the

infarcted area

Parenchymal hemorrhage-2

(PH-2)

Definite mass effect Hematoma in more than

30% of the infarcted area

randomized controlled trials (RCTs) of reperfusion therapies
(12), the mechanisms underlying cerebral hemorrhage or
hematoma after stroke in individual patients remain poorly
understood. Intracranial bleeding after acute ischemic stroke
has a significant impact on patient outcomes (13, 14), and
controlling the risk of bleeding plays an important role in
determining whether to proceed with recanalization (15).
Large parenchymal hematomas and symptomatic intracerebral
hemorrhage (sICH) are the most feared, tend to have a high
mortality rate, and appear in up to 6% of patients after
intravenous thrombolysis (16). In addition, infarction evolution
with HT can lead to significant neurological deterioration (17–
19). The frequency of HT is associated with different factors, such
as epidemiological factors (e.g., age, pre-stroke treatment, and
conditions), characteristics of the infarct (size of ischemic core
and timing of follow-up), reperfusion techniques in the acute
phase (intravenous thrombolysis, mechanical thrombectomy, or
combined), radiological diagnosis (CT or MRI techniques), and
use of antithrombotics after the acute phase (20–22).

CLINICAL PRESENTATIONS,
HISTOPATHOLOGY, AND RADIOLOGIC
FEATURES

Various criteria have been applied to define whether a
hemorrhagic infarction is symptomatic; however, only
parenchymal hematomas have been reported to be consistently
linked to worsening and long-term deterioration (23). Many
cases of HT, including most petechial hemorrhages, are
asymptomatic (24). Only sICH (parenchymal hematoma)
appears to be clinically evident and often exhibits rapid
neurological deterioration (25). In untreated patients, HT
rarely occurs during the first 6 h. It usually appears in the first
few days, most within 4 days of infarction (26, 27). Patients
who have undergone acute treatment with thrombolysis or
thrombectomy usually experience bleeding 24 h after stroke
onset (early HT) (28).

Pathologists have traditionally called petechial HT “red
softening.” Petechial HT is considered to be due to (a) insufficient
perfusion from adjacent collateral vessels or (b) reperfusion
of infarcted tissues with weakened vessels (extravasation)

(29). The former explains why HT occurs in patients with
permanently occluded vessels (30), while the latter explains why
the proportion of patients with HT is higher in those who receive
reperfusion therapy than in those who do not receive reperfusion
therapy (31).

Figure 1 shows the relationship between HT probability and
reperfusion (R) after ischemic stroke. The radiologic features
differ from those of petechial hemorrhagic infarction and
parenchymal hemorrhage (19). Petechial hemorrhagic infarction
usually appears as tiny punctate regions in the hemorrhage and is
often not individually resolved (32). In parenchymal hematomas
or hemorrhage, radiological features on both CT and MRI,
which combine the features of ischemic infarction and cerebral
hemorrhage, overlap (33).

MECHANISMS OF HT AFTER ISCHEMIC
STROKE

The blood–brain barrier (BBB) is a physiological barrier between
the brain parenchyma and brain circulation that nourishes brain
tissue, filters various substances from the brain to the blood, and
protects the brain (34, 35). The BBB is composed of endothelial
cells, basement membrane, pericytes, and astrocytes, collectively
referred to as the neurovascular unit and linked to circulating
peripheral blood cells (36, 37). Early disruption of the BBB plays
a pivotal role in HT formation during acute ischemic stroke
(38). Leukocyte types and various molecules are associated with
HT after ischemic stroke (39). Neutrophils and brain tissue are
major sources of matrix-metalloproteinase-9 (MMP-9) within
the first 18–24 h after stroke (28, 40). Intravenous infusion of
exogenous tissue plasminogen activator (tPA) can increaseMMP-
9 levels by activating neutrophils (41), and endogenous tPA can
increase MMP-3 levels by acting on endothelial cell lipoprotein
receptor protein (LRP) (42), and can increase MMP-2 levels
by activating platelet-derived growth factor-CC as a trigger via
astrocyte platelet-derived growth factor receptor A (43). Figure 2
shows a possible mechanism for early vs. delayed HT.

Theoretically, cerebral infarction does not occur until the
cerebral blood flow reaches a minimum threshold, where oxygen
and glucose cannot be sufficiently guaranteed (44). As in other
organs, infarcted cerebral tissue tends to bleed, and cerebral
hemorrhage can lead to severe neurological deterioration (22).
Mechanisms related to HT can be considered from various
perspectives, such as histological changes, vascular occlusion,
collateral circulation, BBB disruption, and infarct size (45, 46).

Acute cerebral ischemia leads to considerable damage to
capillary cells, which causes an increase in vascular permeability
and extravasation of blood in the brain parenchyma (47, 48). The
twomain factors described in this process are oxidative stress and
reperfusion injury, which cause damage to blood vessels through
various injury mechanisms, such as inflammation, leukocyte
infiltration, vascular activation, and extracellular proteolysis (49,
50). The consequences are destruction of the basal lamina and
endothelial tight junctions (51). Among the molecular processes
involved,MMP-9 has been shown to play an important role in the
destruction of basal lamina type IV collagen (52, 53). Destruction
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FIGURE 1 | Illustration showing correlation between HT and reperfusion time after ischemic stroke. Under the risk factors commonly associated with HT; (A) no HT

(no bleeding regardless of reperfusion); (B) early HT (definite bleeding usually 6–24 h after stroke); (C) delayed HT (definite bleeding usually more than 24 h after

ischemic stroke). HT, hemorrhagic transformation; ROS, reactive oxygen species.

of the basal lamina leads to leakage of macromolecules into
interstitial fluids in the central nervous system (54). In contrast
to cytotoxic edema (cell death from ionic pump failure), the
resulting ionic gradient causes interstitial edema, known as
“vasogenic edema” (55). Vasogenic edema can lead to lesions in
adjacent tissues. Therefore, this mechanism can worsen, causing
malignant infarction, resulting in fatal consequences and high
risk of HT (56).

Reperfusion can trigger harmful cascades, such as oxidative
stress, suppression of protein synthesis, platelet activation,
activation of the complement system, leukocyte infiltration, basal
lamina disruption, and eventual cerebral cell death in the central
nervous system (57–60). Reperfusion injury alone seems to be
enough to cause fatal hematoma, but all ischemic strokes with
tissue reperfusion do not cause hematoma (29). Fragments of
thrombus with a large thrombotic burden can contribute to
bleeding complications in the delayed phase (> 24 h) after acute
stroke. Fragmentation of a large thrombus can lead to distal
migration and damage to the vascular bed (61).

In summary, the development of HT after stroke involves
multiple interconnected pathological processes from peripheral
blood cells to neurovascular units, such as hyperactive ischemic
cascades with increased MMP levels, excessive levels of ROS,
coagulopathy, BBB breakdown, and reperfusion injury.

FACTORS ASSOCIATED WITH HT AFTER
ISCHEMIC STROKE

Although the usefulness of these HT-related factors may be
limited in clinical practice, some factors predict HT. Given the
fibrinolytic or antithrombotic therapy in acute ischemic stroke
settings, imaging techniques, and predictive biomarkers can help
screen specific patients at increased risk of HT as a group of

particular interest (62–64). Advances in the use of neuroimaging
and composite scores can lead to more personalized approaches
for HT prediction, but various factors should be considered
when drawing conclusions that may affect the timing of HT
detection (16, 28). This point can be influenced by the accuracy
of imaging modalities used, such as CT or MRI with or without
gradient-echo or susceptibility-weighted sequences (65), which
aremore sensitive to the detection of blood products (64). Factors
associated with HT after ischemic stroke are shown in detail in
Table 2.

REVERSAL OF COAGULOPATHY WITH
VARIOUS AGENTS

Although coagulopathy correction remains the mainstay of
treatment after tPA infusion, no specific agent has been found
to be most effective in dealing with fatal HT expansion, which
includes sICH (86). In patients with sICH, which occurs
within 36 h after tPA infusion, there are several suggestions
that can be considered depending on the mechanisms
of action of reversal agents (87). The details are listed
in Table 3.

PREVENTION OF HT EXPANSION

Hematoma expansion or sICH is a major predictor of death and
disability in patients with acute stroke withHT (88). Therefore, in
addition to aggressive reversal of coagulopathy, other strategies
to prevent hematoma expansion may be needed as therapeutic
targets in sICH.

Elevation and variability in blood pressure have been
linked to the risk of hematoma enlargement in patients
with spontaneous ICH in observational studies (89). In
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FIGURE 2 | Possible mechanisms in early and delayed HT. The disruption of the BBB is a common pathway in HT formation following acute ischemic stroke. Various

molecules from neutrophils and peripheral blood in possible processes in early HT are mainly associated with HT after ischemic stroke. Exogenous tPA can also

increase MMP-9 levels by activating neutrophils and increasing MMP-2 levels. Conversely, in possible processes for delayed HT, the brain tissue is a major source of

MMP-9 within the first 18–24 h following stroke, and endogenous tPA can act on endothelial cells to increase MMP-2 release from astrocytes as well as MMP-9

release from microglia. HT, hemorrhagic transformation; NVU, neurovascular unit; MMP, matrix-metalloproteinase; ROS, reactive oxygen species; tPA, tissue

plasminogen activator; BBB, blood-brain barrier; VEGF, vascular endothelial growth factor.

patients with spontaneous intracerebral hemorrhage, studies
have shown that intensive control of systolic blood pressure is
relatively safe to lower to 140 mmHg, but this that measure
had no apparent effect compared with the systolic blood
pressure target of 180 mmHg (90). Although the optimal
target for blood pressure control in sICH is still unclear,
the treatment goal is to supply adequate blood flow to
the ischemic area, reduce the pressure on the brain with
autoregulation impairment, and eventually reduce the risk of
hematoma expansion (91). However, the effects of BP on
hematoma enlargement are for primary intracranial hemorrhage
and are independent of those in patients with HT after
ischemic stroke. Nonetheless, the recent Enhanced Control of
Hypertension and Thrombolysis Stroke Study (ENCHANTED)

trial has shown that intensive blood pressure control potentially
reduces the risk of major intracranial hemorrhage in patients
with acute ischemic stroke receiving intravenous thrombolytic
therapy (92).

Patients with acute ischemic strokemay be at risk of additional
ischemia, especially in a low blood pressure environment,
if occluded vessels are not reopened following thrombolytic
therapy or mechanical thrombectomy. Although several studies
have linked poor neurological outcomes to decreased mean
arterial pressure (93), Rasmussen et al. only included patients
whose blood pressure was measured during endovascular
procedures or intravenous alteplase infusion procedures, and
the results were stratified according to the presence of
sICH (94).
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TABLE 2 | Various associated factors with HT.

Associated factors High risk Low risk

Clinical features

Age (21) Old Young

Sex (21) Male Female

Weight (66) Obese Normal weight

Temperature (67) Fever Normothermia

Glucose (68) Hyperglycemia Normoglycemia

Blood pressure (68) Hypertensive Normotensive

Variability of blood pressure

(69)

Yes No

Stroke severity (21) Severe stroke (≥22 on

NIHSS)

Mild stroke (1–5 on

NIHSS)

Size/type of infarct (21) Large/embolic territorial

(MCA, ACA, PCA,

cerebellar)

Small/lacunar or small

vesseldisease

Atrial fibrillation (21) Yes No

Congestive heart failure (22) Yes No

Renal impairment (70) Yes No

Previous stroke (21) Yes No

Diabetes (21) Yes No

Platelet count (16) Low No

Previous antiplatelet

treatment (68)

Yes No

OTT (66) Late (≥ 180min) Early (< 180min)

ERT (71) Late (> 6 h) Early (≤ 6 h)

Biochemical factors

MMP-9/c-Fn (70) High Low

Fibrinogen (16) Low High

Ferritin (28) High Low

S100B (72) High Low

TAFI (73) High Low

PAI-1 (73) Low High

VAP-1/SSAO activity (70) High Low

APC (28) High Low

PDGF-CC (74) High Low

Genetics

Leukocyte mRNA (MCFD2,

VEGI/AREG, MARCH7,

SMAD4) (75)

Low/High High/Low

A2M (76) High Low

Factor FXII (76) Low High

Factor FXIII V34L (77) High Low

Imaging findings

Early signs of ischemia (21) Yes No

Focal hypodensity, edema,

mass effect on baseline (20)

Yes No

Leukoaraiosis (22) Yes No

BBB permeability (16) Yes No

Areas of hypoperfusion on

CTP (78)

Yes No

HARM (79) Yes No

MRI enhancement pattern

(63)

Yes No

Collateral flow (29) Low High

(Continued)

TABLE 2 | Continued

Associated factors High risk Low risk

ADC value (80) Low High

Cerebral blood flow or

volume (28)

High Low

Infarct volume on DWI (25) Large Small

Composite rating scores

HAT (0-5 points) (81) High Low

MSS (0-4 points) (82) High Low

SITS-SICH (0-12 points) (66) High Low

SEDAN (0-5 points) (83) High Low

GRASPS GWTG (0–101

points) (70)

High Low

SPAN-100 (0–1 points) (84) High Low

THRIVE (0–9 points) (85) High Low

NIHSS, National Institutes of Health Stroke Scale; MCA, middle cerebral artery; ACA,

anterior cerebral artery; PCA, posterior cerebral artery; OTT, onset to treatment; ERT,

endovascular recanalization therapy; MMP-9, matrix metalloproteinase-9; c-Fn, cellular

fibronectin; S100B, S100 calcium-binding protein B; TAFI, thrombin activatable fibrinolysis

inhibitor; PAI-1, plasminogen activator inhibitor; VAP-1, vascular adhesion protein-

1; SSAO, semicarbazide-sensitive amine oxidase; APC, activated protein c; PDGF-

CC, platelet-derived growth factor-cc; mRNA, messenger ribonucleic acid; MCFD2,

multiple coagulation factor deficiency protein 2; VEGI, vascular endothelial growth

factor; AREG, Amphiregulin; MARCH7, membrane-associated RING-CH-type finger

7; SMAD4, smad family member 4; A2M, alpha-2-macroglobulin; BBB, blood-brain-

barrier; CTP, computed tomography perfusion; HARM, hyperintense acute injury marker;

MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient; DWI, diffusion-

weighted imaging; HAT, hemorrhage after thrombolysis; MSS, multicenter stroke survey;

SITS-SICH, safe implementation of treatments in stroke symptomatic intracerebral

hemorrhage; SEDAN, blood sugar, early infarct signs, hyperdense cerebral artery sign,

age, NIHSS; GRASPS GWTG, glucose at presentation, race, age, sex, systolic blood

pressure at presentation, and severity of stroke at presentation (NIHSS)-Get with the

Guidelines; SPAN-100, stroke prognostication using age and NIHSS; THRIVE, totaled

health risks in vascular events.

One study related to thrombolysis and blood pressure showed
that decreased systolic blood pressure was associated with
improved neurological outcomes and lower rates of sICH (86,
95). In the European Cooperative Acute Stroke Study II (ECASS
II) clinical trial, higher systolic blood pressure was associated
with worse functional outcomes and sICH (93). However,
there was no clear evidence that lower blood pressure led
to worse functional outcomes (87). In the presence of lethal
HT after tPA infusion (especially parenchymal hemorrhage
type 2), few data on blood pressure treatment are available,
especially when compared with other types of HT. In tPA-
related HT, healthcare providers should determine the target
blood pressure and consider the severity of sICH, risk of bleeding
enlargement, and risk of impending ischemia (96). Theoretically,
with incomplete recanalization, higher blood pressure targets
may be needed to maintain adequate collateral blood flow
to the ischemic bed and reduce the risk of infarct growth
among patients with HI-1 and HI-2 (97). Under complete
recanalization, strict blood pressure control measures may be
reasonable (98).

Stricter blood pressure control may bemore beneficial and less
harmful for patients with parenchymal hematoma at higher risk
of hematoma enlargement. Hematomas with smaller volumes
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TABLE 3 | Potential reversal agents for treatment of HT.

Reversal agent Suggested dose A promising treatment group Adverse effects

Cryo-precipitate 10U All sICH patients Lack of pathogen inactivation, risk of

transfusion related lung injury, and delay in

obtaining the solution

Platelets 6–8U MostsICH patients (except for patients with

thrombocytopenia, which platelet count <100,000/µL)

Lack of pathogen inactivation, risk of

transfusion-related lung injury

PCC 20–40mL sICH patients on warfarin treatment before alteplase

administration (adjunct treatment to cryo-precipitate)

Risk of thrombotic complication

FFP 12 mL/kg sICH patients on warfarin treatment before alteplase

administration but cannot treat PCC (adjunct treatment to

cryoprecipitate)

Risk of thrombotic complications, and volume

overload

Vitamin K 5–10mg sICH patients on warfarin treatment before alteplase

administration

Risk of anaphylaxis

Antifibrinolytic agent Amicar: 1–4 g/h

TXA: 10 mg/kg

All sICH patients (especially, those who decline blood

products)

Risk of thrombotic complications

rFVIIa 20–160 µg/kg Unclear Risk of thrombotic complication

sICH, symptomatic intracerebral hemorrhage; PCC, prothrombin complex concentrates; FFP, fresh frozen plasma; Amicar, aminocaproic acid; TXA, tranexamic acid; rFVIIa, recombinant

factor VIIa.

are generally left untreated (99), and deep-seated (thalamus or
brainstem) hemorrhages are usually not evacuated.

In summary, healthcare providers should determine blood
pressure targets by weighing the risk of worsening ischemia based
on the severity of hemorrhage and its risk of expansion. Patients
with incomplete recanalization may need higher blood pressure
targets to maintain sufficient blood flow to the ischemic bed
and reduce the risk of infarct growth. Conversely, patients with
complete recanalization may need strict blood pressure control
to avoid impending HT.

BLOOD PRESSURE MANAGEMENT AFTER
THROMBECTOMY FOR PREVENTING HT

Observational studies have shown an increased risk of HT in
patients with high blood pressure and high variability in blood
pressure, suggesting a close relationship between hemodynamics
and HT (69). High variability in blood pressure has been
considered a strong risk factor for cerebral edema and post-stroke
HT, as rapid changes in blood pressure can easily rupture already
damaged blood vessels due to ischemic insult (100, 101). Current
guidelines recommend maintaining blood pressure below a fixed
threshold of 180/105 mmHg for at least 24 h, regardless of
thrombolytic or endovascular intervention (96, 102). A recent US
study reported that a peak systolic BP of 158 mmHg in the first
24 h after endovascular therapy best dichotomized good and bad
outcomes (103). A prospective randomized trial reported neutral
results when determining whether a target systolic blood pressure
(SBP) < 130 mmHg after endovascular reperfusion can reduce
the risk of intracranial hemorrhage (104). Therefore, lowering
the post-reperfusion BP target can be considered to prevent
reperfusion injury and promote tissue restoration in ischemic
penumbra (98).

Cerebral autoregulation is the intrinsic dilative-constrictive
capacity of the cerebral vasculature that preserves stable blood
flow in the face of systemic blood pressure changes (105, 106).

Autoregulatory capacity in acute stroke is crucial for maintaining
stable blood flow to the ischemic penumbra and avoiding
excessive hyperperfusion (107).

Petersen et al. reported more longitudinal autoregulation
modes, indicating dynamic autoregulatory failures up to 1
week after emergent large vessel occlusion (ELVO) strokes
(108). Figure 3 shows the presence of HT within or above
the autoregulatory limits due to fluctuations in blood pressure.
This investigation showed that the autoregulatory parameter
in the ipsilateral cerebral hemisphere was lower than that in
the opposite hemisphere, indicating a decrease in the ability to
buffer blood pressure fluctuations (91). In patients with stroke
with cerebral autoregulation impairment, restoration tends to be
delayed for up to 3 months, emphasizing the clinical relevance of
autoregulation in stroke research (109, 110).

In summary, continuous optimization of blood pressure
would be a good method for patients tailored to their own
physiology, where hemodynamic management represents
an appropriate and neuroprotective avenue for critically ill
patients. Exceeding the upper limits of autoregulation may
predispose patients to reperfusion injury, and maintaining
blood pressure within autoregulatory limits may avoid
bleeding complications while achieving favorable outcomes.
Furthermore, trajectory analysis has the potential to
provide more individualized hemodynamic management
during and after thrombectomy procedures in intensive
care settings.

MEDICAL TREATMENT AND
NEUROSURGICAL CONSIDERATIONS

Hemorrhagic transformation after ischemic stroke can be
suspected based on clinical presentation (neurological worsening
in National Institutes of Health Stroke Scale, NIHSS, score) and
radiological findings within 48 h on CT or MRI (111, 112). First,
hemodynamic stabilization should be performed, followed by
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FIGURE 3 | Sequential BP changes, cerebral autoregulation, and HT (91). (A) Patient with BP deviation from autoregulatory limits: Relative hyperperfusion above the

upper limit of autoregulation may lead to HT and unfavorable outcomes. The yellow arrowhead points out the radiological HT after cerebral ischemic stroke. (B)

Patient with acceptable BP fluctuations: Strictly controlled blood pressure within personalized limits of autoregulation can prevent secondary brain injury by protecting

against HT after stroke. BP, blood pressure; ULA, upper limit of autoregulation; MAP, mean arterial pressure; LLA, lower limit of autoregulation.

transfer to a neuro-intensive care unit if available (113). To
evaluate the mechanisms of HT, HT-associated factors, such as
clinical features, biochemical factors, genetics, imaging findings,
and composite rating scores, should be analyzed. Temperature
and glycemic controls should then be performed, such as
mechanical prophylaxis for deep vein thrombosis (86). Second,
blood pressure control and correction of coagulopathies should
be mainstays of HT treatment (114). Finally, neurosurgical
considerations are needed as soon as possible if hazardous
HT is suspected (115). A plausible algorithm for appropriate
clinical approaches to HT after ischemic stroke is depicted in
Figure 4.

It is challenging to construct evidence-based treatment
algorithms for surgical interventions because of the lack of
expected data to guide the therapeutic timing and surgical
techniques to be implemented (116). Nonetheless, neurosurgical
treatment can be considered in patients with sICH where
outcomes can be improved despite ischemic injury. Indeed, the

risks and benefits of rapid surgical decompression vs. iatrogenic
injury must be carefully weighed in the setting of possible tPA-
associated coagulopathy.

Neurosurgical treatment can also be considered in patients
with supratentorial ICH who exhibit neurological deterioration,
coma, significant midline shift, or elevated intracranial pressure
refractory to medical treatment. The goal is to decompress
the brain and reduce the impact of mass effect, malignant
edema, and toxic blood byproducts (117). Open craniotomy
can eliminate the compressive effect of a hematoma higher
than 30 cm3 in volume from lobar, cerebellar, or surgically
accessible basal ganglia hematomas (118, 119). However, this
requires an incision through the cortex and white matter
tracts along the path to the lesion. The clinical effectiveness of
these interventions remains controversial (120, 121). Minimally
invasive craniotomy and stereotactic hematoma evacuation are
currently under investigation for spontaneous ICH and post-
thrombolytic hemorrhage.
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FIGURE 4 | Treatment algorithm for appropriate medical and surgical approaches to HT after ischemic stroke (115). NIHSS, National Institutes of Health Stroke Scale;

CT, computed tomography; MRI, magnetic resonance imaging; ICU, intensive care unit; LMWH, low molecular weight heparin; UFH, unfractionated heparin; SBP,

systolic blood pressure; IV, intravenous; PCC, prothrombin complex concentrates; FFP, fresh frozen plasma; INR, international normalized ratio; DOAC, direct oral

anticoagulants; EVD, external ventricular drainage; ICP, intracranial pressure.

POTENTIAL THERAPEUTIC
INTERVENTIONS ALONG WITH
BIOLOGICAL RESEARCH ON HT

Since HT in acute ischemic stroke is radiologically diagnosed, the

timing of HT detection is affected by the accuracy of imaging

modalities, such as CT or MRI, with or without gradient-echo

or susceptibility-weighted imaging sequences that are more

sensitive to blood products (122).
Strong evidence exists that matrix metalloproteinases,

especially MMP-9, play a pivotal role in the pathogenesis of

the abnormal permeability of the BBB, an important culprit

of HT (42, 52, 53). The use of drugs to block the release of

MMP-9 is challenging. The phosphodiesterase-III inhibitor

cilostazol prevented the development of HT, reduced brain

edema, prevented endothelial injury via reduction of MMP-9

activity, and prevented the BBB from opening in an experimental
model (123–125). Another drug, the broad-spectrum MMP
inhibitor BB-94, reduced the risk and severity of HT in rats
with homologous clot-induced middle cerebral artery occlusion
compared with rats treated with intravenous tPA alone (41). The
MMP-9 inhibitor minocycline reduced the risk of HT after tPA
in animal models (126, 127), and the Minocycline to Improve
Neurologic Outcome in Stroke (MINOS) human trials showed
a decrease in plasma MMP-9 levels in patients treated with
intravenous tPA (128, 129). Targeted temperature management
may be an important step to mitigate HT after recanalization
in patients with clinically malignant ELVO, as it reduces the
metabolic rate and excessive free radical levels, protects the BBB
by reducing MMP-2 or MMP-9 expression, and inhibits immune
system responses (130, 131). Nevertheless, effective management
of lethal HT requires further experimental studies and trials
based on core molecular mechanisms.
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CONCLUSION

Symptomatic intracerebral hemorrhage is a life-threatening
complication requiring emergent medical and surgical treatment
in patients with acute ischemic stroke. Therefore, we need
to understand possible mechanisms and treat this potentially
serious complication with systematic algorithms in future
stroke therapy.
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