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Introduction: About 30% of epilepsy patients are resistant to treatment with antiepileptic

drugs, and only a minority of these are surgical candidates. A recent therapeutic

approach is the application of electrical stimulation in the early phases of a seizure

to interrupt its spread across the brain. To accomplish this, energy-efficient seizure

detectors are required that are able to detect a seizure in its early stages.

Methods: Three patient-specific, energy-efficient seizure detectors are proposed in

this study: (i) random forest (RF); (ii) long short-term memory (LSTM) recurrent neural

network (RNN); and (iii) convolutional neural network (CNN). Performance evaluation

was based on EEG data (n = 40 patients) derived from a selected set of surface EEG

electrodes, which mimic the electrode layout of an implantable neurostimulation system.

As for the RF input, 16 features in the time- and frequency-domains were selected.

Raw EEG data were used for both CNN and RNN. Energy consumption was estimated

by a platform-independent model based on the number of arithmetic operations (AOs)

and memory accesses (MAs). To validate the estimated energy consumption, the RNN

classifier was implemented on an ultra-low-power microcontroller.

Results: The RNN seizure detector achieved a slightly better level of performance, with

a median area under the precision-recall curve score of 0.49, compared to 0.47 for CNN

and 0.46 for RF. In terms of energy consumption, RF was the most efficient algorithm,

with a total of 67k AOs and 67k MAs per classification. This was followed by CNN (488k

AOs and 963kMAs) and RNN (772k AOs and 978kMAs), wherebyMAs contributedmore

to total energy consumption. Measurements derived from the hardware implementation

of the RNN algorithm demonstrated a significant correlation between estimations and

actual measurements.

Discussion: All three proposed seizure detection algorithms were shown to be

suitable for application in implantable devices. The applied methodology for a

platform-independent energy estimation was proven to be accurate by way of hardware

implementation of the RNN algorithm. These findings show that seizure detection can
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be achieved using just a few channels with limited spatial distribution. The methodology

proposed in this study can therefore be applied when designing new models for

responsive neurostimulation.

Keywords: seizure detection, responsive neurostimulation, low-power hardware implementation, random forest,

recurrent neural network, convolutional neural network

INTRODUCTION

Problem Definition
Epilepsy is a brain disorder characterized by recurrent epileptic
seizures (1) and is one of the most common neurological
diseases, affecting nearly 70 million people worldwide (2).
Epileptic seizures are defined as episodes of excessive or
abnormal synchronous neuronal activity in the brain, and
can be accompanied by clinical neurological symptoms such
as abnormal movements, abnormal sensory phenomena, loss
of consciousness, or alterations in consciousness. Epilepsy is
therefore associated with considerable neurological morbidity.
Epileptic seizures can vary in form, not only between different
patients but also within a single patient.

Despite advances in the development of medication, about
30% of epilepsy patients are resistant to a treatment with
antiepileptic medications (3). Nevertheless, only 7–8% of these
patients are surgical candidates (4).

In the case of focal seizures, surgical resection of the brain
region(s) generating the seizures may be used to prevent further
seizures. Nonetheless, because not all of these patients have
a unifocal seizure onset zone (SOZ) and the epileptogenic
brain tissue cannot always be resected without significant
functional loss, more innovative therapeutic approaches are
urgently required.

A recently proposed treatment approach for these patients
is electrical stimulation of the epileptic focus during the early
phases of a seizure in order to interrupt its spread across
the brain (2). This can be accomplished using a closed-loop
neurostimulation implant, which records electrical brain
activity via a set of electrodes and continuously monitors
electroencephalography (EEG) activity applying a seizure
detection algorithm. It then triggers electrical stimulation at
the SOZ via the same electrodes in the advent of an emerging
seizure. This approach requires the early detection of seizures
with high accuracy based on EEG. Furthermore, the selected
seizure detection algorithm should be computationally efficient
to have a low energy consumption for long-term application in
an implantable, battery-powered device.

Currently, the only FDA-approved implantable device for
clinical applications that applies this principle is the so-called
“RNS device” (Neuropace Inc., USA). This device provides
electrical stimulation via a generator fixed to the skull, with
electrodes within or directly above the cortical region of the
epileptic focus (1). Whereas, this device has proven to be
efficacious both under short-term and long-term applications
(3, 5, 6), its implantation is complex and the risk of infection at
the implantation site is high, due to the intracranial placement of
the electrodes (4).

In addition, the RNS device suffers from a high number of
false detections. As false detection rates (FDRs) of the device
are not reported explicitly, they can only be derived from the
length of reported stimulation times. According to Heck et al.
(3) a mean stimulation period of 5.9min was applied. With
a pulse burst duration of 100ms, this corresponds to 3,540
stimulations per day and a minimum of 354 detections per
day and 10,620 detections per month. At a baseline seizure
frequency of 8.7 per month, this corresponds to >1,220 false
detections per crisis event. This high number of interventions
leads to the question of how much efficacy is related to closed-
loop suppression of seizure-related ictal activity, in contrast to
long-term depression of seizure probability by neuromodulation.
In addition, improved seizure detection algorithms with higher
specificity of interventions can lead to a longer neurostimulator
battery life, due to the reduced number of stimulations;
accordingly, it may lead to fewer side effects of the stimulation.

Previous Studies
The development of seizure detection algorithms based on EEG
data began several decades ago (7). The initial objective was
to reduce the workload of reviewing continuous long-term
recordings in epilepsy monitoring units and presenting the
neurologist with intervals of only the highest clinical relevance.
In addition, more recent studies have addressed the development
of seizure detection algorithms for responsive stimulation to
prevent the onset or spread of seizure activity in the early
phase of a seizure (8). Such application scenarios require a
reliable seizure detector at a reasonable computational load.
Furthermore, performing an intervention exactly at the onset
of a seizure, requires early detection, which is considered in
more recent approaches (9–11). Because of the high variation in
EEG patterns that characterize a seizure (12), the large variability
in background EEG activity among patients, and the intra-
individual fluctuations in EEG activity, the problem of seizure
detection remains an active research topic (13–15). While several
publications have proposed seizure detection algorithms for
either offline or online applications, only a limited number of
studies have addressed the limitations of seizure detection for
closed-loop applications. One particular limitation is the use of
only a few electrodes for seizure detection, which is driven by
properties of the neurostimulator. Seizure detection using a low
number of electrodes has recently achieved increased interest,
as this concept enables mobile seizure monitoring (16–18). In
contrast, outpatient monitoring with a complete electrode setup
is seen as stigmatizing—as in any application that exposes the
patient to the public—and is therefore not feasible in practice.
A recent study by Vandecasteele et al. (19) described a seizure
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detection algorithm based on a support vector machine classifier
using behind-the-ear EEG data derived from only four electrodes.
However, although the proposed model had a relatively low
FDR, it also had low sensitivity (19). In another recent study,
Dan et al. (20) proposed a method for detecting electrographic
patterns during absence seizures (short, non-motor generalized
onset seizures); this was based on a linear multichannel filter
which was precomputed with the spatiotemporal signature of
the seizure and the peak interference statistics that could run on
a microcontroller. Nevertheless, this particular method requires
20 recording channels. Therefore, the need to develop a seizure
detection algorithm that can detect seizures in early stages not
only with high sensitivity and specificity, but also with low
computational power and a limited number of electrodes has not
yet been fulfilled.

Regarding energy estimation of the seizure detection
algorithms, several methods have been introduced. García-
Martín et al. (21) reviewed the current approaches used to
estimate energy consumption in machine learning. They
suggested dividing the common methods of energy estimation
into three different categories, namely at the software-application
level, the software-instruction level, and the hardware level (21).
The software categories describe the energy related to the
algorithm features, and are based either directly on the
application level, or on the underlying instructions. Here,
a model links the instructions to the energy demand. The
hardware level relates the energy caused by the application to
the components in the hardware setup. Among the methods,
the instruction level in the software category is most relevant to
the scope of this study. At the instruction level in particular, the
energy consumption is evaluated on the basis of program-specific
instructions. This approach was followed by Rouhani et al. (22),
in which the power consumption of a deep neural network
(DNN) was estimated using the number of multiply-accumulate
(MAC) operations. Likewise, Taghavi et al. (23) estimated the
hardware requirements of DNNs and decision tree ensembles
in terms of MAC operations and parameters required for the
classification model. They compared several studies using energy
efficiency, hardware complexity and classification performance
as parameters (23). Yang et al. (24) applied this approach to
estimate the energy consumption for a CNN algorithm. They
constructed the total energy consumption by first extending the
model based on MAC operations and model parameters with the
number of memory accesses (MAs). Next, they weighted these
parameters with measured MAC operations and MA energies to
calculate the total energy dissipation (24).

Own Approach
A minimally invasive, implantable neurostimulation approach
was recently developed using subgaleally placed stimulation
electrodes (EASEE System, Precisis AG, Heidelberg). The
subcutaneous system uses electrodes that are placed outside the
cranium over the SOZ, and connected to a pulse generator on
the trunk (Figure 1). For the integration of a seizure detection
algorithm into this kind of fully implantable intervention
device, several limitations must first be considered. The

FIGURE 1 | A minimally invasive electrode setup as a part of an implantable

system for focal epilepsy (Copyright © Precisis AG, Heidelberg, Germany).

seizure detection algorithm must perform well despite a
low number of electrodes, limited spatial coverage, and low
computational power. To address this issue, three patient-
specific seizure detection algorithms that only apply four
channels each were developed and their performance was
evaluated: random forest (RF), convolutional neural network
(CNN), and long short-term memory (LSTM) recurrent
neuronal network (RNN). In addition, to evaluate their
suitability for application in an implantable, responsive
neurostimulator, their respective computational load and
power consumption were estimated. As in this study, the
classification rate is 1Hz; the estimated energy demand in µJ
is equal to the power consumption in µW. To estimate the
required computational load, an instruction-level model based
on application-specific instructions and MAs was developed
and validated.

The quality of subcutaneous recordings was compared to
standard surface EEG recordings by Duun-Henriksen et al. (25).
They showed that some aspects of the subcutaneous recordings
might be similar, or even superior, to surface EEG recordings
(25). Likewise, Weisdorf et al. (26) reported a high similarity
between EEG data from subcutaneous and proximate scalp
electrodes in patients with temporal lobe epilepsy. Accordingly,
the seizure detection algorithms developed in the current study
were tested on surface EEG data from electrodes configured to
resemble the subgaleal electrode placement.
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FIGURE 2 | Schematic outline of the study design.

MATERIALS AND METHODS

A schematic outline of the study design is presented in Figure 2.
In the following sections, the methodology used for evaluating
performance and estimating power consumption is described.
A more detailed description of the energy estimation method is
provided in the Supplementary Material section.

Dataset
The dataset consists of surface EEG recordings from 50 patients
(23 female; age range, 14–66 years; mean age, 32.5 years) with
focal-onset seizures at the Epilepsy Center Freiburg, Germany;
the total number of seizures was 357. Figure 2 demonstrates
how the dataset was split for training the different classifiers,
i.e., patients 1–10 were selected for pre-training (CNN only),
while the remaining 40 patients (11–50) were selected for
training and evaluation (all 3 methods). Due to considerable
imbalance between the ictal and interictal classes for each seizure,
an hour-long time window around each seizure was selected
for evaluation and the remaining data were then excluded
from analysis. Patients were selected based on long-term video
recordings that included at least five seizures, with electrodes
positioned over the SOZ according to the 10–10 electrode
layout (27). Electrode selection was performed to represent
device layout. Expert epileptologists defined the SOZ by visual
exploration of the seizure onset electrodes recordings, taking into
account the inter-electrode distances. The study was approved

by the local Ethics Review Board. Informed consent of the
patient covered the in-house use of EEG recordings. EEG data
were recorded at a 256Hz sampling rate on a 256-channel
DC amplifier with 24-bit resolution (Compumedics, Abbotsford,
Australia). For anti-aliasing, a low-pass filter with a cut-off
frequency of 100Hz was applied. Five electrodes covering the
SOZ were selected for seizure detection in each patient.

Data Preprocessing
A small number of preprocessing steps were applied to reduce
the effects of noise and artifacts on the performance of the
seizure detection algorithms. First, invalid segments of the EEG
signals, including segments where the signal was not recorded
due to electrode deficiency or during the electrode impedance
measurement, were excluded from analysis. Next, to improve
the signal quality, a 10th order Chebyshev Type-II IIR (infinite
impulse response) bandpass filter with a stopband attenuation of
40 dB and respective stopband frequencies of f1 = 0.1 Hz, and
f2 = 48 Hz was applied. The settings were chosen to filter power
line noise and reduce the influence of broad-bandmuscle activity,
spanning up to 200Hz (28). To remove high-amplitude sharp
artifactual transients, another artifact rejection step was added in
which periods of Tp = 1 s that contain amplitudes higher than
1mV were removed. This threshold was set in such a way that
allowed amplitudes in the range of 100µV [typical of EEG signals
in healthy subjects (29)], as well as interictal spikes up to ∼140
µV (30) to remain in the data. Moreover, the selected threshold
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value allows a good trade-off between excluding artifacts vs.
retaining the scarcely represented ictal patterns in the data, so
as to avoid further imbalance in the dataset. Finally, to account
for the locality of the target electrode configuration, the EEG
channels were re-referenced by subtracting the recordings of
the centrally positioned electrode from those of each of the
peripheral electrodes.

Seizure Detection
Seizure detection can be modeled as a time-series classification in
which ictal phases (seizures) and interictal phases (non-seizures)
are classified. In this section, the three proposed supervised-
learning algorithms for seizure detection are detailed.

Random Forest (RF)
RF is an ensemble-learning method for classification or
regression that operates by constructing a group of decision trees
in which each tree is grown using binary decisions (each parent
node is split into two children) (31). This method combines the
“bagging” technique with the random selection of features. The
randomness of each tree is accomplished in two ways: first, by
random selection of a subset of approximately two thirds of the
data for training the tree, and second, by feature selection of
the nodes of each tree, which is done using a randomly selected
subgroup of features. The remaining one third of the training
data is used for out-of-bag error evaluation and performance
calibration of the tree. In this study, the number of binary
decision trees was set to 100. Entropy was selected as the
branching index for growing each decision tree. The best feature
(splitter) from the eligible, randomly selected subset of features,
which has the highest importance, is used to split the node. In
line with the Liaw and Wiener (32) results, the optimal number
of randomly selected features at each tree node is sqrt(N), where
N is the number of features. In this study, 16 time- and frequency-
domain features were calculated from the EEG data as input.
The time-domain features were mean, maximum, mean absolute
deviation (MAD), variance, skewness, kurtosis, line length and
entropy. Frequency-domain features included values for the
maximum, mean, and variance of the power spectrum, power
in the theta (4–8Hz), beta (13–30Hz), and gamma band (30–
45Hz), spectral entropy, and epileptogenicity index, the latter of
which is defined as the ratio of power in the higher frequency
bands (beta + gamma) vs. the lower frequency bands (theta +

alpha) (33). As a result, four features were randomly selected
at each decision tree node. To maintain a limited tree size and
to confine the required memory for hardware implementation,
the maximum depth of the decision tree was limited to 10.
Bootstrap samples were used while building the decision trees.
The sample weights for each class were adjusted to be inversely
proportional to the class frequencies in the training data. A non-
overlapping time window of 1 s was selected for seizure detection.
For implementation of the RF, the freely available and open
source Scikit-learn machine learning library was used (34).

Convolutional Neural Network (CNN)
CNN is a class of DNNs that were inspired by biological processes
(35) and are commonly applied for pattern recognition (36). A

CNN consists of an input layer, multiple hidden layers, and an
output layer. The hidden layers consist of convolutional layers,
pooling layers, and potentially fully connected layers. In the
convolutional layers, the input is convolved with filters to detect
patterns, and the results are conveyed to the activation function
which is usually a rectified linear unit (ReLU). In addition,
CNNs may include local or global pooling layers that reduce
the dimensions of the data. The pooling layer helps to control
overfitting by making the pattern representation almost invariant
to minor translations of the input. This is accomplished by
striding a window over the output of the activation function and
pooling the average or maximum value. Subsequently, the results
matrix is flattened and fed to the fully connected layers to drive
the classification decision.

To create the inputs for the convolutional network, sliding
windows of 1 s over the EEG data were processed. First, the
data was rescaled by dividing it by the standard deviation
of the training data. Next, the data was normalized using an
estimation of the hyperbolic tangent function, as shown in the
following equation:

x̂ (t) = tanh(0.2 · x (t))

To facilitate hardware implementation of the hyperbolic
tangent function and avoid the need for a lookup table, a
linear approximation of the hyperbolic tangent was applied
for classification:

lintanh(x) : =







x/1.2 −1.2 ≤ x ≤ 1.2
1 x > 1.2
−1 x < −1.2

The architecture of the proposed CNN in this study is shown
in Table 1. Four channels of simultaneously recorded raw EEG
data with a duration of 1 s (256 data points) were selected as
the input. In the first convolutional layer, a kernel size that
extends over time and all four EEG channels was used to facilitate
efficient learning of the spatiotemporal patterns. No padding was
applied in the convolutional layers. In all hidden layers, batch
normalization was applied after the convolutions were performed
(37). The ReLu was selected as the activation function. Dropout
regularization was used during training to reduce overfitting
and generalization error (38). In the last two layers, two fully
connected layers were employed.

Due to the limited amount of available data for each patient,
the transfer learning method was applied for training the model.
This is generally done by applying the gained knowledge from
a learning problem to improve learning on a related problem.
Accordingly, the model was first pre-trained with data from 10
patients. For each of the remaining 40 patients, the model was
subsequently fine-tuned using patient-specific data. Because the
classes (ictal vs. interictal) were imbalanced, the class indices were
weighted to balance the weighting of the loss function during the
training phase (39). Each model was trained for 500 epochs with
a batch size of 512. For weight optimization, an Adam solver (40)
with a learning rate of 10−3 was used. Binary cross-entropy was
selected as the loss function.
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TABLE 1 | Architecture of the proposed CNN.

Layer Operation Output Parameters #

Input (C × 256) C × 256 × 1 –

1 15 × Conv2D (C × 25) 1 × 232 × 15 1,515

Batch Normalization 1 × 232 × 15 60

2 MaxPool2D (1 × 4) 1 × 58 × 15 0

Dropout (0.2) 1 × 58 × 15 0

3 15 × Conv2D (1 × 11) 1 × 48 × 15 2,490

Batch Normalization 1 × 48 × 15 60

4 MaxPool2D (1 × 4) 1 × 12 × 15 0

Dropout (0.2) 1 × 12 × 15 0

5 10 × Conv2D (1 × 5) 1 × 8 × 10 760

Batch Normalization 1 × 8 × 10 40

Dropout (0.2) 1 × 8 × 10 0

6 Dense (8) 8 648

7 Dense (4) 4 36

8 Sigmoid 1 5

C, Number of channels.

Recurrent Neural Network (RNN)
Recurrent Neural Networks (RNNs) are a class of neural
networks with recurrent connections that allow the network to
store information over time. RNNs started to gain attention with
the introduction of LSTM cells, which significantly improves
their performance. The LSTM cell was first introduced by
Hochreiter and Schmidhuber (41) to overcome the problem
of vanishing gradients in RNNs. With its internal state, the
LSTM cell is capable of storing information over time, depending
on its input and output values. The flow of information
is controlled by the so-called gates that can learn which
data in a sequence is important to remember or disregard.
Gates can be seen as controlling valves with the ability to
let the information pass through by multiplying it by the
gate values. These features allow LSTM cells to be used in
time-series problems. Combined with other neural network
layers, they form an LSTM neural network. Such networks
are used across many different applications and are considered
especially useful in sequence prediction or sequence classification
problems (42).

The proposed RNN architecture is based on the work of
Hussein et al. (43) with a few modifications to reduce the
complexity of the model. Similar to CNN, four channels of
simultaneously recorded raw EEG data with the duration of 1 s
(256 data points) were selected as the input. As shown in Table 2,
the network consists of an LSTM layer containing 20 cells with an
input size of 256. Similar to the CNN, a dropout layer is used for
regularization. This is followed by a time-distributed dense layer
consisting of 20 dense cells with a linear activation function that
is computed at every time step. Subsequently, the global average
pooling layer averages the dense cell outputs over time. Finally,
as this is a binary classification task, an output dense layer with a
sigmoid activation function is used that simplifies the calculation.

The classifier performance was investigated with both raw
data and its time-derivative for each individual channel. The

TABLE 2 | Architecture of the proposed RNN.

Layer Operation Output Parameters #

Input (C × 256) C × 256 × 1 –

1 LSTM (20) 256 × 20 2,000

Dropout (0.1) 256 x 20 0

2 Time-Distributed Dense (20) 256 x 20 420

3 Global Average Pooling 1D 20 0

4 Dense (1) 1 21

C, Number of channels.

latter was calculated through the difference of subsequent values
for all electrodes and all time steps as:

1xck = xck − xck−1

where c corresponds to the electrode number and k ∈ {1, . . . ,K}
is the sample index with K samples in the corresponding seizure.
Next, the training data were prepared by striding a moving
window over the sample axis of the input data. For training, a
step size of strideinter−ictal = 16 was chosen for the interictal
class, and a strideictal = 1 was used for the ictal class; this was
done both to account for the imbalance and to increase the ictal
sample size. For validation, a single seizure that was excluded
from the training data was used with the same stride settings as
those used for training. The test set was created with a moving
window step size of stride = 256. Furthermore, early stopping
(44) was applied as another regularization technique to prevent
overfitting and reduce training time. The patience parameter was
set to 10 epochs. It defines the maximum number of epochs
than may occur until an improvement in the validation dataset
is observed, before stopping the training process. Validation loss
was used as the performance metric to decide whether early
stopping was necessary. The samples were presented with a mini-
batch size of 256. The binary cross entropy was chosen as the loss
function and the Adam optimizer chosen to tune the learning
rate. Finally, to further improve the classifier performance, the
output probabilities were median filtered with a moving median
size of three.

Performance Evaluation
For performance evaluation of the seizure detection algorithms,
the “leave-one-out” method was used for cross-validation,
whereby in every iteration one seizure was selected for testing
and all remaining data were used for training. The EEG data
from ten patients were used to pre-train the CNN model.
Performance evaluation was conducted across the remaining
40 patients (total number of seizures = 286) for each of
three proposed classifiers. Evaluation metrics were calculated
for each patient separately and then averaged across all the
patients. Metrics for the performance evaluation of seizure
detection algorithms are either dependent on a threshold-level
set for the seizure probability, or are threshold-free. Accepted
threshold-dependent metrics for performance evaluation of the
seizure detectors are sensitivity, FDR, and average detection
delay. For calculation of the sensitivity, a seizure was counted
as correctly detected when it was detected at least once
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during the ictal phase. Regarding the FDR, false detections
within a 5 s window were counted only once, since they
generally refer to the same detected pattern. Nevertheless, there
is an inevitable trade-off between these threshold-dependent
evaluation metrics. For example, a higher sensitivity and lower
detection delay can be attained if a higher FDR is accepted.
While the use of these metrics facilitates the estimation of
seizure detector performance in different application scenarios,
the use of threshold-free metrics simplifies the comparison of
the classifier performance by combining threshold-dependent
metrics into one threshold-free metric. To yield a threshold-
free comparison of the classifiers, the area under the curve
(AUC) of the receiver operating characteristic (ROC) and
precision-recall (PR) curves were selected as performance
metrics. For calculating threshold-free metrics, the true and
false detections were counted for each time window (1 s), which
is different from how the threshold-dependent metrics were
calculated. Considering that detection delay is not projected
in the AUC, a modified version of the selected metrics was
used as additional metrics, denoted as “early seizure AUC.” In
this case, only those seizures detected within the first 10 s of
seizure onset (as determined by the epileptologist) were deemed
successfully detected.

Energy Estimation
The energy estimation of the proposed seizure detection
algorithms in this study is based on the number of arithmetic,
memory read, and store operations. The total energy required
was estimated via the energy costs per operation (24). The
method in Yang et al. (24) was modified to use the energy
estimation per operation based on the findings reported in
Horowitz (45), instead of measuring the energy for specific
hardware. Additional measurements were performed, and
assumptions were made for operations not included in
their proposed method. Table 3 shows an overview of
the operations and corresponding energy consumption
relevant for the developed model. Horowitz (45) defines
the rough energy cost in a 45 nm process technology for the
fundamental operations and MAs. In addition, Horowitz
included the energy cost of the microprocessor overhead,
which deliberately was not taken into account in the current
study for the purpose of obtaining a hardware-independent
measure. Nevertheless, the proposed model can be adapted
to specific hardware if required. In addition, it enables the
identification of operations that have a higher impact on
energy consumption. Hence, it helps in implementing efficient
signal processing algorithms, or aids in selecting the most
suitable microprocessor.

The total energy is calculated as Etot = (Nload + Nstore) · Em +
∑

x Nx · Ex, where Nload is the number of load operations, Nstore

the number of store operations, Em theMA energy,Nx and Ex the
number of operation x and the corresponding energy defined in
Table 3.

The following assumptions were additionally made: (1) the
energy required for a MAC operation EMAC is defined as EMAC =

Eadd + Emult . (2) The energy overhead of the square root
function, which is not included in Horowitz (45), corresponds

TABLE 3 | Energies assumed for the estimation of the power consumption.

Parameter Energy

Em 5 pJ

Eint32−add 0.1 pJ

Eint32−mult 3.1 pJ

Efloat32−add 0.9 pJ

Efloat32−mult 3.7 pJ

Ecompare
a 0.9 pJ

Efloat32−divide
b 26.3 pJ

Efloat32−1−cycle
c 3.7 pJ

Em is half the cache energy estimated by the energy cost table for 45 nm at 0.9 V

from Horowitz (45) for an 8 kB 64-bit wide cache access, as only 32-bit loads are

considered in this study. Efloat32−add , Efloat32−mult, Eint32−add , Eint32−mult values are also

from Horowitz (45).
aAs a compare operation can be performed as a subtraction which is basically an addition,

the same energy is assumed for the compare operation. bA benchmark on the Ambiq

Apollo 3 Blue with ARM Cortex M4F processor measured by executing three different

measurements with a loop containing float multiply, divide and both instructions to cancel

out loop and other overhead, showed a factor of 7.1 of float division energy consumption

compared to float multiply energy consumption. cOther floating-point operations that take

one clock cycle are considered to consume as much as a multiply operation.

to that of a division operation. This assumption is based on
the specification of the ARM Cortex-M4F floating-point unit,
which states that the two operations have the same number of
execution cycles.

Random Forest Energy Estimation
For energy estimation of the RF classifier, the number of
required arithmetic and memory operations for the 16 time-
and frequency-domain features were first calculated. A 32-
Bit floating-point arithmetic was chosen to obtain an energy
estimation value comparable to that of the RNN and CNN.
Divisions by a constant are considered as multiplications, as
their energy consumption is lower compared to a division.
Each feature is considered to be computed over the sample
or time axis in the input data array vin ∈ R

Nw×C, for
Nw = Fs · Tw, where Fs is the sampling frequency and Tw is
the length of the window required for an observation. In this
section, individual energy considerations are made for a single
input channel. Consequently, the total energy is calculated by
multiplying the required energy for a single channel with the
number of channels C, assuming that all features are calculated
for each channel.

Time-Domain Features
To improve computational efficiency and avoid redundant
calculations, zero-mean values of the signal and their
square values were calculated only once, and then shared
along a set of features. The required number of arithmetic
operations (AOs) and MAs were estimated based on the
number and type of mathematical operations needed
to calculate the features. Table 4 shows the equations
that were considered for the calculation of the time-
domain features, with x being the vector containing the
input samples.
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TABLE 4 | Assumed equations for the Time-domain features.

Time-Domain feature Equation

Maximum max − val = max(x)

Mean x = 1
Nw

·
∑Nw

i=1 xi

MAD MAD = 1
Nw

∑Nw
i=1

∣

∣xi − x
∣

∣

Variance var = 1
Nw

∑Nw
i=1

(

xi − x
)2

Skewness gm = 1

Nw ·s
3

∑Nw
i=1

(

xi − x
)3

Kurtosis w = 1

Nw ·s
4

∑Nw
i=1

(

xi − x
)4

Line Length LL =
∑Nw

k=2 |xk − xk−1|

Entropy H = −
∑

i pi · log2(pi )

TABLE 5 | Frequency-domain features and their respective equations that were

considered in this work.

Time-Domain feature Equation

Spectral entropy H = −
∑

i pi · log2(pi ), with pi =
Pi

∑L−1
i=0 Pi

Mean spectral power P = 1
L
·
∑L

i=1 Pi

Maximum spectral power maxP = max (P)

Spectral power variance varP = 1
L

∑L
i=1

(

Pi − P
)2

Band power BP =
∑f2/1f

i=f1/1f Pi , with 1f = 1
tw

Epileptogenicity index Epiindex =
Pβ+Pγ

Pθ+Pα

P is the power spectrum vector, obtained by the DFT, f1 the lower band frequency, f2 the

upper band frequency of the band power, and tw the duration of the sampled window in

the time-domain.

Frequency-Domain Features
The calculation of the frequency-domain features is based on the
power spectrum P ∈ R

L, where L is the number of frequency
bins. It is obtained using the squared values of the Discrete
Fourier Transform (DFT) of the windowed raw time-domain
signal x (t). To minimize spectral leakage, a Hanning-window
was applied before performing the DFT. The equations of the
frequency-domain features are summarized in Table 5.

Random Forest Classifier
For the classifier itself, the highest possible energy consumption
was considered, whereby all 100 trees are used for classification
and the tree branches are developed to the maximum depth,
which, in this case, was set to 10.

Convolutional Neural Network and Recurrent Neural

Network Energy Estimation
The same scheme was applied for estimating the AOs for
the proposed CNN and RNN models, where each processing
layer was considered individually. For the CNN model, all
the convolutional layers were estimated according to the
standard CNN implementation. Batch normalization parameters
were incorporated into the CNN filter parameters. The same
applies to the RNN, where the original LSTM implementation
was considered. For calculation of hyperbolic tangent and
sigmoid activation functions, look-up tables with approximated
values were used in both architectures. A more detailed

description of the individual layers can be found in the
Supplementary Material section.

Energy Estimation Validation
To validate the feasibility of estimating energy consumption
based on the number of MAs, instructions and AOs, the
RNN classifier was implemented into an ultra-low-power Apollo
3 Blue microcontroller from Ambiq (Austin, Texas, USA).
The energy consumption was measured and compared to the
energy calculated.

The energy consumption was measured with the Texas
Instrument EnergyTraceTM technology for different numbers of
LSTM cells, NLSTM ∈ {2, . . . , 20}. The LSTM cells in the model
were decreased stepwise from 20 to 2, and the corresponding
classification energy consumption was determined for each step.

The validity of the model was proven by analyzing the
correlation between measured and calculated classification
energy. For this purpose, a linear ordinary least squares
regression was performed using the Statsmodels toolbox, which
is a Python module (46). The quality of the fit was investigated
by evaluating the residuals of the fit with the adjusted R2-
value (R2: coefficient of determination). In addition, a t-test was
conducted to investigate the significance (significance level: 5%)
of the estimated coefficients. Pearson correlation coefficients were
calculated using SciPy, a free and open-source python library, as
measure of correlation between the two values.

RESULTS

In this section, the results are presented in two parts. First, the
implemented seizure detectors are compared by using several
metrics to evaluate and compare their performance. Using these
metrics provides valuable insight into the characteristics of
these seizure detectors as well as their suitability for closed-
loop applications. In the second part, the results of the power
consumption estimation for the proposed seizure detection
algorithms are presented. These estimations are based on
hardware implementation on the Apollo 3 Blue microcontroller.

Classifier Performance
Boxplots were selected for visualization of the results because
they display the spread of the plotted variable and provide an
indication of the variable distribution, such as symmetry and
skewness. Moreover, boxplots display the outliers, which help in
the understanding how often a classifier fails to perform robustly.
The AUC-ROC scores of the three seizure detection algorithms
are shown in Figure 3.

For the RNN classifier, two types of input were used and their
performance was evaluated. Application of the time-derivative of
the data, in place of using the raw data as inputs to the RNN,
improved the mean AUC-ROC across all patients ∼2.5% for
normal seizure detection, and 6.4% for early seizure detection,
respectively. For this reason, the results of the time-derivative are
presented here.

The median (mean) AUC-ROC score was the highest across
all patients for the RNN 0.941 (0.910), compared to that of the
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FIGURE 3 | Comparison of the three classifiers across 40 patients using the AUC-ROC score as the performance metric.

FIGURE 4 | Comparison of the three classifiers across 40 patients using AUC-PR score as the performance metric.

RF 0.929 (0.914) and CNN 0.916 (0.876). The average AUC-
ROC score for early seizure detection was similar between the
RNN 0.853 (0.840) and the RF 0.855 (0.847), followed by CNN
0.827 (0.824).

Due to the fact that “ictal” and “interictal” classes are very
imbalanced, another useful measure of prediction success is the
AUC-PR score. The PR curve shows the trade-off between the
precision and recall of different thresholds. The AUC-PR score of
the three classifiers across 40 patients is shown in Figure 4.

The RNN had the highest median (mean) AUC-PR score
across all patients [0.487 (0.548)], compared to that of the RF
0.462 (0.481), and the CNN 0.470 (0.511). The average AUC-
PR score for early seizure detection was similar between the
RNN 0.080 (0.153) and CNN 0.093 (0.152), but lower for the RF
0.038 (0.099).

For a more intuitive representation of seizure detector
performance, sensitivity (Figure 5), FDR (per hour), and average
detection delay (in seconds) for optimized probability thresholds,
based on F1-score, were calculated for all seizure detectors across
the 40 patients.

Median (mean) sensitivity across all 40 patients were 1.0 (0.90)
for the RNN, 1.0 (0.93) for the RF, and 1.0 (0.94) for the CNN.
The FDR (per hour) across all patients was 7.77 (12.93) for the

RNN, 18.59 (22.49) for RF, and 14.25 (17.89) for CNN. The
median (mean) average detection delay (s) across all patients
was 8.05 (9.70) for the RNN, 7.65 (8.70) for RF, and 5.60 (6.62)
for CNN.

Energy Estimation
The total number of MAs and AOs required for hardware
implementation of the proposed seizure detection algorithms is
shown in Figures 6, 7. A window size of tw = 1s was chosen,
resulting in a number of samples, Nw = Fs · tw = 256, multiplied
by the number of channels, C = 4.

Figure 6A shows the number of MAs, AOs, and the resulting
energy estimation for the calculated time and frequency domain
features of EEG as input for the RF classifier. Thereby, it
underlines the difference of energy consumption among the
different features. The most energy intense operations are
required to calculate the power spectrum, the spectral entropy,
and the entropy.

Figure 6B shows the number of MAs, AOs, and
corresponding energy for every layer of the CNN. It can be
observed that the network consumes most of the energy in
the convolutional layers. About 69% of the energy in the
convolutional layers relates to MAs.
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FIGURE 5 | Comparison of the seizure detectors across 40 patients using sensitivity, FDR (per hour), and average detection delay (s) as the performance metrics.

Figure 6C shows that the LSTM layer is by far the most energy
intense layer of the RNN. The energy ratio of energy related to
MA is about 58% of 6.42µJ. The Time-Distributed (Dense) layer,
however, shows with 69% of 1.55 µJ the same behavior as the
convolutional layer in the CNN.

Figure 7 compares the three algorithms and underlines the
superiority of the RF classifier over the RNN and the CNN in
terms of energy consumption. RNN requires 16.6 times and the
CNN 14.5 times more energy than that consumed by the RF.

The total number of AOs required for CNN, RNN, and RF
were estimated as denoted in Table 6.

Energy Estimation Validation
The energy model was evaluated based on the RNN
implementation. The results showed that all the coefficients of
the fitted linear regression (as shown in Figure 8) are significant.

A linear trend with a slope b1 of 32.29 and an offset b0 of
17.06 µJ were observed for the RNN implementation using an
Apollo 3 Blue ARM Cortex-M4F microcontroller. The model
was proven to be accurate with an adj R2 value of 0.9990 and
a high correlation coefficient r of 0.9995. As b1 serves as a
hardware-dependent scaling factor, it follows that the measured
energy consumption for this specific hardware setup is over the
estimated energy consumption by this factor. Its high value in this
case is due to the instruction overhead, which is not part of the
model. Furthermore, the offset b0 is explained by the hardware-
dependent static power consumption in the target system.

An oscillation of the residuals of the linear fit with varying
number of LSTM cells can be observed in Figure 8. A possible
cause of this phenomenon is the loop-unrolling of the pre-
compiled ARM DSP-library. A loop unrolling with a factor of
4 is applied to the vector dot-product function that triggers the
running of extra loop-overhead code for vectors longer than a
multiple of 4.

DISCUSSION

In this study, the development of seizure detection algorithms
for integration into responsive neurostimulators was addressed.
As such a system needs to be implantable into the patient’s body,
there are considerable restrictions in terms of computational
load and energy consumption. Considering these aspects,
three seizure detection algorithms were proposed and
their performance, as well as the required energy for their
implementation in embedded systems, were estimated and
compared. Results of the performance comparison showed
that the RNN classifier outperforms the other classifiers.
Comparison of the required energy using an energy model
based on the respective numbers of specific AOs and MAs
revealed that the RF classifier is the most efficient seizure
detection algorithm, followed by the CNN and RNN. To
evaluate the accuracy of the energy estimation of the seizure
detection algorithms, the RNN classifier was implemented on an
ultra-low-power microcontroller.
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FIGURE 6 | Estimated number of arithmetic operations, memory accesses, and energy using the proposed method: (A) RF, (B) CNN, and (C) RNN.
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FIGURE 7 | Comparison of the classification energy consumption and the number of operations for the proposed seizure detection classifiers.

TABLE 6 | Estimated energies, number of arithmetic operations, and memory

accesses for the CNN, RNN, and RF classifier.

Classifier Energy (µJ) Number of operations (×103)

Total Operations Memory Arithmetic Memory

accesses operations accesses

CNN 7.01 2.19 4.81 488 963

RNN 8.04 3.15 4.89 772 978

RF 0.495 0.147 0.348 68.4 69.5

The introduced energy estimation model showed good
compliance with the energy measurements of the RNN
implementation running on an ARM Cortex-M4F-based
microcontroller. This notion was validated for the RNN classifier
by a significant constant factor in the linear regression fit of
the estimated energy with the measured energy over varying
numbers of LSTM cells.

A comparison of energy consumption with the existing
“RNS device” (Neuropace Inc., Mountain View, CA, USA) is
difficult to perform, since detailed information about the energy
consumption of the seizure detection algorithms are missing.
Only a rough estimation on the basis of battery capacity and
longevity for the whole system, including the required energy
for stimulation, can be performed. The overall power for a
patient profile with low stimulation frequency is ∼40 µW.
Nevertheless, more detailed information is available for some
other prototype devices. For example, a modified ActivaPC
device from Medtronic (Minneapolis, Minnesota, USA), which
was developed for bi-directional brain machine interfaces by

Stanslaski et al. (47), offers 8MB of RAM. It can operate in a
time-domain mode, with a power consumption of 100 µW per
channel and a spectral mode with a power consumption of 5 µW
per channel. A simple classification stage offers a linear support
vector machine with a typical power consumption of 5 µW per
channel (47). This is comparable to the power consumption of
the proposed models in this study based on RNN (68.1 µW per
channel), CNN (60.8 µW estimated per channel), and RF (8.3
µW estimated per channel). An interesting comparison between
local feature computation (2.1 µW) and external classification
(43 µW) with radio transmission of the data (1,733 µW) for
external processing is provided in a study by Verma et al.
(48), which clearly favors the use of low-power processing on
the edge device over transferring the data to a more powerful
external device.

RNN classifiers were used for seizure detection in several
recent studies. For example, Abbasi et al. (49) proposed a seizure
detection algorithm in which an LSTM architecture with double-
layered memory units was applied. They reported a sensitivity
of 96.7% on the Bonn University dataset (49). Their proposed
network consisted of 100 and 128 LSTM cells in the first
and second layers, respectively, which results in a considerably
higher computational load and a subsequent higher energy cost
compared to the proposed architecture in this study. Similarly,
Ahmedt-Aristizabal et al. (50) proposed a seizure detection
algorithm based on the RNN-LSTM. They used an LSTM-NN
architecture with two subsequent LSTM layers (128 and 64
cells) and obtained an AUC-ROC of 98.52% on the dataset
from University of Bonn (50). In another study, Hussein et al.
(43) introduced an LSTM architecture where raw EEG data in
sequences of 23.6 s were passed on to a recurrent layer with 80
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FIGURE 8 | Measured classification energy over the calculated energy and its

linear regression curve. The energies are determined by measuring the energy

of an RNN implementation on an Apollo 3 Blue ARM Cortex-M4F

microcontroller unit under the variation of the number of LSTM cells

from 2 to 20.

LSTM cells followed by a fully connected layer with 80 cells, a
global average pooling layer and a 2-cell classification layer. They
reported this methodology as having 100% accuracy, sensitivity,
and specificity on the Bonn University dataset (43). As previously
mentioned, the model proposed by Hussein et al. influenced
the architecture of the RNN model described in the current
study, which was modified to contain just one recurrent layer
with 20 LSTM cells. This modification then renders the RNN
model a better candidate for application in implantable devices.
In addition, the use of a muchmore comprehensive dataset in the
current study enables more precise performance evaluation.

Similar to the RNN, CNN and RF have been recently
employed for seizure detection (51, 52). For example, Hugle
et al. (53) proposed a CNN model for the early detection of
seizures from intracranial EEG signals that was designed for
implementation on a low-power microcontroller. They reported
a median sensitivity level of 0.96, an FDR of 10.1 per hour,
and a detection delay of 3.7 s. In comparison, the present study
found median sensitivity level of 1, an FDR of 14.25 per hour,
and a detection delay of 5.60 s. As there are differences in the
signal characteristics of the applied dataset in these two studies,
a direct comparison is not possible. In an earlier study from
the current research group, Manzouri et al. (54) proposed a
seizure detection algorithm based on RF for efficient hardware
implementation in implantable devices. The proposed model
was similar to that described in the current study, however; 10
features for classification were applied, and a median AUC-ROC
score of 0.89 was obtained, compared to 0.93 in the present study.
However, because a dataset of intracranial recordings which have
a higher signal-to-noise ratio (55), was used in Manzouri et al.
(54), a direct comparison of classifier performance with the
present study is not possible.

Regarding power consumption, Liu and Richardson (56)
implemented and compared the power consumption of a DNN,

CNN, and LSTM-based model on the CHB-MIT database. The
median (mean) sensitivity of the suggested DNN, CNN, and
LSTM models were 0.857 (0.874), 1.00 (0.967), and 1.00 (0.976),
respectively, compared to 1.0 (0.899) for RNN and 1.0 (0.940)
for CNN in the present study. Although these values are similar
between the two studies, they are not directly comparable due
to the use of different datasets. By applying a sliding window-
based weighted majority voting algorithm, Liu et al. reduced the
FDR and reported values of 0.14 (0.169) 1/h for the DNN, 0.084
(0.102) 1/h for the CNN, and 0.063 (0.071) 1/h for the LSTM
(56), all of which are lower than those of the current study.
Although the deep learning models applied by Liu et al. showed
high performance, they exceed the complexity of the seizure
detection models proposed in the current study. The CNNmodel
with the best performance-to-energy trade-off proposed by Liu
et al. requires 2.4M MAC operations, whereas the proposed
CNN model in the current study requires only 472k. The higher
complexity results in a high demand for memory, inference time
and power consumption.

Since the dataset used in the study is selected based on the
geometry of the suggested subgaleal electrodes and is not yet
publicly available, it is not possible to perform a one-to-one
comparison with other studies that used public datasets such
as the CHB-MIT Scalp EEG database (57) or the EPILEPSIAE
database (58). Nevertheless, the results of this study allow a direct
comparison between three state-of-the-art algorithms for such
an electrode setup, which may have similar properties to future
implantable devices. Sub-clinical seizures and their impact on
seizure detection algorithm performance were not investigated
in this study. Sub-clinical seizures are defined as electrographic
seizures with rhythmic ictal discharges that evolve in frequency
and space, without any subjective or objective alteration in
behavior or consciousness (59). Indeed, the development of more
robust seizure detectors may be facilitated by including sub-
clinical seizures in the performance analysis of seizure detection
algorithms. Another aspect to consider during the evaluation
of seizure detection algorithms is the strong imbalance between
ictal and inter-ictal classes. Evaluation of the proposed models
over longer periods of recordings can provide a more realistic
representation of the clinical performance of these models in
long-term and ultra-long-term recordings.

Regarding energy estimation, the influence of the code
compilation process on energy estimation was not investigated.
However, incorporating this aspect into the analysis would give
an overview of how different compiler settings influence the
energy demand of the implemented algorithm.

Different hardware implementations of the seizure detection
algorithms could be conceived by designing application-
specific integrated circuits. For example, specialized hardware
accelerators could be built to reduce the number of requiredMAs.
In this case, the applicability of the model is limited. Besides,
adjustment of the model is necessary because some neural
network weights can be preserved in the hardware registers.
As a result, less MA overhead is needed. However, the model
helps to identify the aspects which are key to the design of
ASICs. Moreover, it aids in selecting the right accelerator for the
chosen algorithm.

Frontiers in Neurology | www.frontiersin.org 13 March 2022 | Volume 12 | Article 703797

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Manzouri et al. Energy-Efficient Seizure Detection for Neurostimulators

How the energy consumption of the proposed classifiers
can be further optimized will be investigated in future studies.
One possibility for this is the application of pruning (22)
or quantization techniques. The latter allows for the use of
single-instruction multiple-data instructions to perform AOs
on multiple data, instead of only two operands in a typical
microprocessor setup. Horowitz (45) outlined how this method
saves energy by decreasing the ratio of instruction overhead
for the same number of AOs. He also suggested using
integer calculations with small bit-widths to reduce energy
consumption. The intensive use of single-instruction multiple-
data for neural network applications was proposed by Lai
et al. (60) by introducing the CMSIS-NN library from ARM
Ltd. (Cambridge, England, UK). A more modern approach
is the application of DNN-Accelerators. For microcontroller
systems, one possibility was introduced by ARM with the
Ethos neural processing unit. Among other things, they
improved the memory access of network parameters, which
showed significant improvement in inference, speed, and power
consumption (61).

The proposed methodology for energy estimation in the
current study can be used to verify both the suitability
and applicability of the developed seizure detection models
for implantable devices, and provides a reliable estimation.
Furthermore, the three proposed models in this study are all
candidates for utilization in implantable devices and can be
selected based on the specific requirements, limitations, and
application of the implantable device.
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