
ORIGINAL RESEARCH
published: 15 July 2021

doi: 10.3389/fneur.2021.704060

Frontiers in Neurology | www.frontiersin.org 1 July 2021 | Volume 12 | Article 704060

Edited by:

Sharon Chiang,

University of California, San Francisco,

United States

Reviewed by:

Souptik Barua,

Rice University, United States

Kais Gadhoumi,

Duke University, United States

*Correspondence:

Rachel E. Stirling

rachelstirling1@gmail.com

Specialty section:

This article was submitted to

Epilepsy,

a section of the journal

Frontiers in Neurology

Received: 01 May 2021

Accepted: 17 June 2021

Published: 15 July 2021

Citation:

Stirling RE, Grayden DB, D’Souza W,

Cook MJ, Nurse E, Freestone DR,

Payne DE, Brinkmann BH, Pal Attia T,

Viana PF, Richardson MP and

Karoly PJ (2021) Forecasting Seizure

Likelihood With Wearable Technology.

Front. Neurol. 12:704060.

doi: 10.3389/fneur.2021.704060

Forecasting Seizure Likelihood With
Wearable Technology

Rachel E. Stirling 1*, David B. Grayden 1,2,3, Wendyl D’Souza 2, Mark J. Cook 2,3,

Ewan Nurse 2,4, Dean R. Freestone 4, Daniel E. Payne 1, Benjamin H. Brinkmann 5,

Tal Pal Attia 5, Pedro F. Viana 6,7, Mark P. Richardson 6 and Philippa J. Karoly 1,2,3

1Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia, 2Departments of Medicine

and Neurology, St Vincent’s Hospital, The University of Melbourne, Melbourne, VIC, Australia, 3Graeme Clark Institute for

Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia, 4 Seer Medical, Melbourne, VIC, Australia,
5 Bioelectronics Neurophysiology and Engineering Lab, Department of Neurology, Mayo Clinic, Rochester, MN, United States,
6 School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,

United Kingdom, 7 Faculty of Medicine, University of Lisbon, Lisbon, Portugal

The unpredictability of epileptic seizures exposes people with epilepsy to potential

physical harm, restricts day-to-day activities, and impacts mental well-being. Accurate

seizure forecasters would reduce the uncertainty associated with seizures but need to

be feasible and accessible in the long-term. Wearable devices are perfect candidates to

develop non-invasive, accessible forecasts but are yet to be investigated in long-term

studies. We hypothesized that machine learning models could utilize heart rate as a

biomarker for well-established cycles of seizures and epileptic activity, in addition to

other wearable signals, to forecast high and low risk seizure periods. This feasibility

study tracked participants’ (n = 11) heart rates, sleep, and step counts using wearable

smartwatches and seizure occurrence using smartphone seizure diaries for at least 6

months (mean = 14.6 months, SD = 3.8 months). Eligible participants had a diagnosis

of refractory epilepsy and reported at least 20 seizures (mean = 135, SD = 123)

during the recording period. An ensembled machine learning and neural network model

estimated seizure risk either daily or hourly, with retraining occurring on a weekly basis

as additional data was collected. Performance was evaluated retrospectively against

a rate-matched random forecast using the area under the receiver operating curve. A

pseudo-prospective evaluation was also conducted on a held-out dataset. Of the 11

participants, seizures were predicted above chance in all (100%) participants using an

hourly forecast and in ten (91%) participants using a daily forecast. The average time

spent in high risk (prediction time) before a seizure occurred was 37min in the hourly

forecast and 3 days in the daily forecast. Cyclic features added the most predictive value

to the forecasts, particularly circadian and multiday heart rate cycles. Wearable devices

can be used to produce patient-specific seizure forecasts, particularly when biomarkers

of seizure and epileptic activity cycles are utilized.

Keywords: seizure forecasting, cycles (cyclical), seizure cycles, circadian rhythms, multiday rhythms, wearable
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INTRODUCTION

Epilepsy is one of the most common neurological disorders,

affecting roughly 1% of the world’s population (1) and responsible

for 20.6 million disability-adjusted life-years (DALYs) lost, which
is comparable to breast cancer in women and lung cancer in men

(2). Epilepsy is characterized by an increased predisposition of
the brain to generate epileptic seizures, which often result in vast
neurobiological, cognitive, psychologic, and social consequences

(3). Despite decades of new drug development and surgical
treatment, up to one-third of people with epilepsy continue to

suffer from recurrent seizures (4, 5). While most people are
symptom-free for more than 99.9% of their day-to-day life,
epileptic seizures are sudden, potentially catastrophic events that
can be life-threatening both for the person with epilepsy and
others. Crucially, sudden death in epilepsy (SUDEP), most often
following a convulsive seizure, is 27 times more likely than
sudden death in control populations, a mortality burden second
only to stroke when compared to other neurologic diseases (6, 7).
Aside from these risks, living with epilepsy can take a major
toll on quality of life and independence, as the unpredictable
nature of seizures causes feelings of uncertainty (8) and impacts
participation in common day-to-day activities, such as going to
work, driving, and social interactions (9).

To address the uncertainty associated with epileptic seizures,
researchers acrossmany disciplines have spent years investigating
the potential for seizure prediction and forecasting (10). The
ability to reduce the uncertainty of when a seizure is about to
occur would have tremendous implications for quality of life, and
clinical management (10). Timely precautions against seizure-
related injury or timed adjustment of treatment according to
seizure likelihood (chronotherapy) could also reduce seizure-
related harm, hospitalizations, and healthcare-related costs (11).

Until recently, there was no scientific consensus as to whether
seizures would be predictable in a prospective setting since most
research was based on limited data [from short-duration in-
hospital electroencephalography (EEG) recordings] and some
presented methodological flaws (12). Access to better quality
data [made available in public databases (13, 14) and seizure
prediction competitions (15)], more rigorous statistical and
analytical methods, and results from a clinical trial of an
intracranial EEG seizure advisory system [NeuroVista (16)]
have shown promise that seizure prediction devices could
be possible in the foreseeable future. Additionally, there is
a better understanding of the pre-seizure state and of the
mechanisms underlying seizure generation (ictogenesis), with
contributions from basic science, network theory, multiscale
electrophysiological recordings, and functional neuroimaging
(17). Multiple patient-specific seizure precipitants have also been
identified, including stress (18, 19), poor sleep (18), exercise
(20), diet (21), weather (22, 23), alcohol use (24) and poor drug
adherence (25).Many of these factors have shown potential utility
in forecasting seizures (18, 23).

Yet perhaps the most significant breakthrough for the field
of seizure forecasting has been the characterization of short-
and long-term seizure occurrence cycles (11, 26, 27), which
typically occur in circadian and multiday (often weekly and

monthly) periodicities (27, 28). Similar cycles have been reported
in interictal epileptiform activity (IEA) (26), EEG markers of
brain critical slowing (29) and heart rate (30), all of which
have been linked to seizure timing, suggesting that seizures are
co-modulated by underlying biological cycles. An individual’s
seizure cycles can be utilized to generate seizure forecasts using
both self-reporting seizure diaries (31–33) and electrographic
seizures (34). However, the discrete nature of seizure events
means that the underlying biological cycles may be stronger
predictors of seizure occurrence than seizure cycles alone (29,
34, 35). This has already been successfully demonstrated with
cycles of IEA in a retrospective seizure forecasting study using an
implanted intracranial EEG device (34). Furthermore, algorithms
incorporating biological cycles seem to outperform algorithms
using more traditional EEG features, such as spectral power
and correlation (15).

However, seizure forecasting algorithms typically rely on
chronic EEG recordings from invasive, implanted devices, which
require surgery (and associated risks), are costly, and may not
be an option for many people with epilepsy. Minimally-invasive
or non-invasive wearable devices that monitor continuous
biomarkers of seizure risk are, therefore, ideal candidates for
most people who desire seizure forecasts (9). Currently, some
wearable devices are commercially available for seizure detection
(36), although there are also promising results highlighting the
utility of wearables in seizure forecasting. Wearable sensors
can be used to detect actigraphy, blood volume pulse, body
temperature, cerebral oxygen saturation, electrodermal activity
and heart rate, all of which have all shown promise in
seizure prediction (37–40). Periodic wearable signals, such as
temperature (41) and heart rate (30) may also be used as a
biomarker for seizure cycles (35). For example, our recent work
in seizure timing and heart rate, measured from a wearable
smartwatch, shows that seizures are often phase-locked to
underlying circadian and multiday cycles in heart rate (i.e., there
is a strong preference for seizures to occur at specific phases of
individual-specific heart rate cycles, such as near the peak or
trough of a multiday cycle) (30).

To address the need for non-invasive seizure forecasting, this
study aimed to develop a wearable device-based seizure forecaster
using a long-term dataset from an observational cohort study,
Tracking Seizure Cycles. We hypothesized that cycles in heart
rate can be leveraged, in addition to other wearable signals (other
heart rate features, step count and sleep features), to forecast high
and low seizure risk periods. We also investigated the relative
contributions of cycles, heart rate, sleep and activity features to
forecasting performance.

MATERIALS AND METHODS

Study Design
This retrospective and pseudo-prospective feasibility study was
designed using training and testing datasets, followed by pseudo-
prospective evaluation using a held-out dataset.We utilized long-
term smartphone seizure diaries and a wearable smartwatch to
forecast seizure likelihood and elucidate the relationship between
seizures and non-invasively measured wearable signals, namely
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heart rate, sleep stages, sleep time, and step count. The study was
approved by the St Vincent’s Hospital Human Research Ethics
Committee (HREC 009.19) and all participants provided written
informed consent.

Participants
Adults (18 years and over) with a confirmed epilepsy diagnosis
and healthy controls were recruited between August 2019
and January 2021. Participants with epilepsy had uncontrolled
or partially controlled seizures and were recruited through
neurologist referral. All participants provided written
informed consent.

Data Collection
Continuous data were collected via smartphone and wearable
devices for at least 6 months and up to 20 months. Participants
wore a smartwatch (Fitbit, Fitbit Inc., USA) and manually
reported seizure times in a freely available smartphone diary app
(Seer App, Seer Medical Pty Ltd, Australia). Participants were
instructed to report all their clinically apparent events, including
generalized and focal seizures (both aware and unaware). The
smartwatch continuously measured participants’ heart rates (via
photoplethysmography) at 5 s resolution (one recording every
5 s). The smartwatch also estimated sleep stage (awake, REM, and
light and deep sleep) and step count each minute.

Training, Testing and Held-Out Evaluation
Datasets
Participants were required to have 2 months or more of
continuous wearable data recordings, at least 80% adherence (i.e.,
they must have worn the device at least 80% of the time) and a
minimum of 20 seizures reported during the recording time to be
eligible for seizure forecasting. Eligible participant demographic
information is given in Table 1.

The training dataset included at least 2 months of continuous
recordings (M = 5.4 months, SD = 4 months) and at least 15
seizures (M = 35, SD = 47). The patient-specific training cut-
off date was the final day that both of these criteria were met.
The testing dataset included participants’ continuous recordings
(M = 6.6 months, SD = 3.1 months) and seizures (M = 87,
SD = 112) reported from their training cut-off date until 1
February 2021. As a further requirement for seizure forecasting,
participants must have had at least five lead seizures (at least
an hour apart in the hourly forecast and at least a day apart
in the daily forecast) reported during the testing period. Any
continuous recordings (M = 2.6 months, SD = 0.5) and seizures
(M = 13, SD = 14) reported from 1 February 2021 until 25
April 2021 were included in the held-out evaluation cohort, so
long as the participant reported at least one seizure during this
period. This data was held-out to evaluate the performance of the
forecasting algorithm in a pseudo-prospective setting.

Data Preprocessing
The heart rate, step count, and sleep signals were all processed
separately. Heart rate features included rate of change in heart
rate (RCH) and daily resting heart rate (RHR). Physical activity
features included steps recorded in the previous hour and steps

recorded on the previous day. Sleep features included total
time asleep (not including naps), time in REM, time in deep
and light sleep during main sleep, average HR overnight, sleep
time deviation from median sleep time over the past 3 months,
and wake time deviation from median wake time over the
past 3 months. All sleep features were calculated using sleep
labels derived from Fitbit’s sleep algorithm. Additionally, we
included cyclic features, comprising heart rate cycles (circadian
and multiday), last seizure time, and second-last seizure time.
Compared to the hourly forecast, the daily forecast only included
multiday cycles, days since last seizure time, days since second-
last seizure time, all sleep features, daily resting heart rate, and
steps recorded during the previous day.

To derive heart rate features and heart rate cycles, continuous
heart rate signals were initially down-sampled to one timestamp
per minute, followed by interpolation of short missing data
segments with a linear line (missing segments <2 h) or longer
missing data segments with a straight line at the mean heart
rate. RCH was used to estimate heart rate variability (HRV),
which is defined as the variations in RR intervals and is typically
derived using the QRS complex on an electrocardiogram (ECG).
RCH was calculated as the mean beats per minute (BPM) in
1min subtracted from the mean BPM in the previous minute,
representing the change in BPM over 2min. RCH was resampled
every hour for the hourly forecast or every day for the daily
forecast. Daily RHR was derived as the average of the bottom
quintile of BPM where no steps were recorded, thus minimizing
the potential for movement artifact.

To compute the heart rate cycles, we used a similar approach
to a method used to extract multiday rhythms of epileptic activity
(26) [see also (30) for further details]. Briefly, circadian and
multiday peak periodicities of heart rate (cycles) were derived
using a Morlet wavelet. The heart rate signal was filtered (using a
zero-order Butterworth bandpass filter) at the peak periodicities
and instantaneous phase of the cycle at each timepoint was
estimated using a Hilbert transform. Cycles were used as features
for the forecaster if seizures were significantly phase-locked to
the cycle [p < 0.05, according to Omnibus/Hodges-Ajne test for
circular uniformity (42)]. Each cyclic feature (cycle phases and
last/second last seizure time) was transformed into two linear
features by normalizing the signal from 0 to 2π and computing
the sine and cosine.

Forecasting Algorithm
The seizure forecast was presented in hourly and daily formats
to assess the accuracy of an hourly forecast compared to a daily
forecast. The hourly forecast gave the likelihood of a seizure at
the start of the hour, every hour. The daily forecast gave the
likelihood of a seizure for the day, shortly after waking from sleep
(based on Fitbit’s sleep end time).

To forecast the likelihood of a seizure hourly and daily,
we used an ensemble of a long short-term memory (LSTM)
neural network (43), a random forest (RF) regressor (43), and a
logistic regression (LR) classifier (43). An ensemble method was
chosen to allow the combination of diverse feature types. Figure 1
describes the architecture of the model. The training (green),
testing (orange) and evaluation (red) cohorts were different
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TABLE 1 | Eligible participants’ demographic information.

Participant Type of seizures (Focal,

Generalized or Both)

Total seizures during

monitoring

(frequency/month)

Training

recording length

(months)

Testing

recording length

(months)

Evaluation

recording length

(months)

Sleep scoring

(nights)

P1 Focal 57 (5.1) 4.2 4.3 2.7 334

P2 Focal 111 (8.8) 2.0 7.9 2.7 371

P3 Focal 27 (1.5) 12.6 3.1 2.7 549

P4 Focal 24 (1.4) 10.6 4.3 2.7 500

P5 Both 280 (17.0) 2.0 13.3 1.2 459

P6 Focal 246 (36.7) 2.0 2.1 2.6 199

P7 Generalized 28 (1.6) 8.5 5.9 2.7 501

P8 Focal 179 (14.6) 2.5 7.1 2.7 327

P9 Both 392 (19.6) 9.7 7.6 2.7 586

P10 Focal 94 (6.6) 2.4 9.2 2.7 428

P11 Focal 55 (3.9) 3.5 7.8 2.7 399

Summary 8 focal only, 1

generalized only, 2 both

generalized and focal

M = 136 (10.6) M = 5.5 M = 6.7 M = 2.6 M = 423

SD = 123 (10.8) SD = 4.0 SD = 3.2 SD = 0.5 SD = 112

Participants that had more than one seizure during the evaluation period are shown in red.

lengths in each participant, and algorithm retraining occurred
weekly during testing and evaluation. The forecast used an LSTM
model (which contains 7 days of memory) for all sleep features
in order to account for the potential effect of built-up sleep debt
on seizure risk (18). All other features (cycles, heart rate features
and step counts) then predicted seizure risk using a random
forest model. The random forest model was chosen because it
achieved the best results during testing using Python’s sklearn
library, when compared to other conventional machine learning
models (namely logistic regression, linear discriminant analysis,
K-nearest neighbors, naïve bayes and support vector machines).
A logistic regression model, which weighs inputs’ predictive
value, then combined the random forest and LSTM outputs into
one seizure risk value per hour or day. This was compared to
a rate-matched random model (occasionally referred to as the
chance model) using AUC scores. Other metrics were also used
to assess forecast performance (see Performance Metrics).

The LSTM model was trained on sleep features computed
daily after waking. A weekly history of sleep features was
incorporated into each row input, providing a 7 × 7 matrix
for each forecast, representing 7 days and 7 sleep features
per day. The LSTM model was composed of a single layer
with 64 memory units, followed by two densely connected
layers, and a linear activation function. All networks were
trained for 100 epochs. We selected the mean squared
error loss function as the cost function, using the Adaptive
Moment Estimation (Adam) optimizer (44). The LSTM
model outputted the likelihood of a seizure for the day
based on sleep features and was used as an input to the
LR classifier.

The RF regressors with the bootstrap aggregating technique
were trained on all physical activity, heart rate, and cyclic
features. In the model, the number of decision trees was 1000 and
the minimum number of samples required to be at a leaf node
was 120. From observation, these model parameters achieved

the highest accuracy across the board during training. Most
people, particularly participants with low seizure frequency (<2
seizures/month), had a highly imbalanced dataset, with non-
seizure hours/days occurring far more frequently than seizure
hours/days. RF models typically made more accurate predictions
on balanced datasets, so oversampling of seizure hours/days was
undertaken before training the RF model. The output of the RF
model was the likelihood of a seizure within the following hour
or day and was used as an input to the LR classifier.

The LR classifiers were trained on the outputs of the LSTM
and RF models. To aid the classifier in distinguishing between
non-seizure hours/days and seizure hours/days and to mitigate
the low resoltuion of self-reporting, the hour/day immediately
preceding and following the hour/day of each seizure were
removed in the training dataset. The output of the LR model
was the final likelihood of a seizure (risk value); the risk value
was represented as a continuous value between 0 for no seizure
and 1 for a “guaranteed” seizure within the next hour or day,
as appropriate.

The forecaster classified hours and days as either low,
medium, or high risk. The medium and high risk cut-
off thresholds were computed using the training dataset by
optimizing the metrics:

(C1) time spent in low risk > time spent in medium risk > time
spent in high risk;

(C2) seizures in high risk > seizures in medium risk > seizures
in low risk (29).

If C1 or C2 could not be satisfied, the optimization algorithm
maximized the product of the time in low risk and the number
of seizures in high risk (C3 and C4):

(C3) maximize the time spent in a low risk state;
(C4) maximize the number of seizures occurring in the high

risk state.
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FIGURE 1 | Forecasting model architecture. The logistic regression ensemble (combining LSTM, Random Forest Regressor, and all features) was trained on a training

dataset that included at least 15 seizures and at least 2 months of continuous recordings. Two forecasting horizons were compared: hourly and daily forecasts. The

LSTM model incorporated sleep features from the past seven nights and the random regressor included all other features (cycles, heart rate, and physical activity

features), in addition to the output daily seizure likelihood estimates from the LSTM model. The logistic regression ensemble utilized a 10-fold cross validation

approach to forecast seizure likelihood hourly or daily. The forecasting model was assessed (using AUC scores) on a retrospective testing set and a

pseudo-prospective held-out evaluation set and compared to a rate-matched random (RMR) model, where seizure frequency was determined by the training set. The

algorithm was retrained weekly to imitate a clinical forecast.

Retraining the algorithm was implemented to imitate a clinical
seizure forecasting device in which algorithm coefficients and
risk thresholds would be regularly updated. Retraining of the
seizure forecast occurred on a weekly basis as additional data
was collected.

Performance Metrics
To assess the performance of the hourly and daily forecasters, a
variety of different metrics were used. During algorithm testing
and for pseudo-prospective held-out evaluation, performance of
the ensembled model was evaluated using the area under the
receiver operating characteristic curve (AUC) and compared to
the AUC score of a rate-matched (seizure frequency derived from
all seizures that occurred in the training dataset) random forecast.
The AUC scores assessed the classifier’s ability to discriminate
between non-seizure hours/days and seizure hours/days.

Despite the usefulness of the AUC to measure performance,
the AUC can change depending on the forecasting horizon
(34); in this case, an hourly forecast compared to a daily

forecast. This motivated the use of Calibration Curves (CC) to
measure how well the predicted likelihood values corresponded
to observed probabilities, and the Brier score (or Brier loss)
to quantify the accuracy of the predictions. The CC metric
provides a visual representation of the forecaster’s ability to
estimate seizure risk. The ideal CC can be visualized as a
diagonal line, where the forecaster’s predicted seizure likelihood
values are equal to the actual seizure probabilities. Anything
above this line would be considered underestimating seizure
risk and anything below would be overestimating seizure risk.
The Brier score (or Brier Loss) is shown alongside the CC
metric, which is often used to assess calibration performance.
For the Brier Score, a perfectly accurate forecast would result
in a loss score of 0 and a poorly performing forecast would
result in a loss closer to 1. We also considered the accuracy
of the forecaster, time spent in low, medium and high risk
states, and seizures occurring in low, medium and high
risk states.

Analyses were executed using Python (version 3.7.9).
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FIGURE 2 | Receiver operator characteristic (ROC) curves for all participants in the (A) daily and (B) hourly forecast (retrospective testing cohort). The dashed

diagonal line represents a balanced random forecast. ROC curves show that hourly forecasts consistently outperformed a balanced random forecaster, and daily

forecasts mostly outperformed a balanced random forecaster. Patient-specific forecast performance was assessed by comparing the forecaster’s area under the ROC

curve (AUC) to the AUC of a rate-matched random forecast (different to the balanced random forecast shown above).

RESULTS

There were 11 out of 39 participants that met the inclusion
requirements (see Methods: Study Design and Participants)
(Table 1). Eligible participants had an average duration of 14.6
months (SD = 3.8) of continuous heart rate and activity
monitoring, and an average of 423 nights (SD = 112) that
recorded sleep stages and duration. Participant diaries included
an average of 136 (SD = 123) seizures reported during the
wearable monitoring period. Results from the cohort are given
in Figures 2–6 and Table 2. Eight of 11 participants (shown
in red in Table 1) in the testing cohort were also included in
the held-out evaluation cohort, as these people reported more
than one seizure during the evaluation period. The results from
the prospective evaluation cohort are shown in Figure 7 and
Table 2.

Forecast Performance and Metrics
Forecasting performance was quantified to determine
which participants would have benefitted from the non-
invasive seizure forecast. First, we used the AUC metric
to determine forecasting performance. The AUC score
quantifies how useful the forecast is, based on the amount
of time spent in a high-risk state. An excellent forecast
is often considered to have an AUC of >0.9. Of the 11
participants, AUC scores showed that seizures were predicted
above chance in all participants using an hourly forecast
(M AUC = 0.74, SD = 0.10) and in 10 participants using
a daily forecast (M AUC = 0.66, SD = 0.11) (Figure 2
and Table 2).

Both hourly and daily models usually performed well in
people with longer recording times. A weak positive correlation
was found between total recording length and AUC scores in
both the hourly (R2 = 0.63) and daily (R2 = 0.59) forecasters

FIGURE 3 | Forecasting and prediction performance metric results in the

retrospective testing cohort for the (B) hourly and (A) daily forecasters.

Individual participant bars are shown for each metric. Population box plots are

shown on the right of the bars, showing median and upper and lower quartiles

for each metric in the hourly and daily forecasters.

(Supplementary Figure 1). This suggests that the forecaster
improves over time.
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FIGURE 4 | Calibration curves and Brier scores for hourly and daily forecasts summarized for each participant in the retrospective testing cohort. The calibration

curves show the relationship between the forecasted likelihood of seizures (x-axes) and the actual observed probability of seizures (y-axes). For the calibration curves,

10 bin sizes were used, so forecast likelihood values were compared to actual probabilities from 0–10%, 10–20%,..., 90–100%. The ideal calibration curve for a

hypothetically perfect forecaster is shown in each plot.

FIGURE 5 | Example hourly forecasts showing high, medium, and low risk

states, and medium and high risk thresholds. Predicted seizure likelihood

(black line) derived from the hourly forecaster for P4 from the end of

September to the end of January. Seizures are marked with red triangles.

High, medium and low risk states are indicated by the red, orange and green

regions, respectively, and are separated by the medium and high risk

thresholds. Note that the medium risk and high risk thresholds—indicated by

the orange and red lines, respectively—can change after weekly retraining. The

cyclical seizure likelihood is mostly attributable to multiday heart rate cycles.

A relationship was also noticed between seizure frequency
and forecasting performance. The model performed worst in
the participant with the highest seizure frequency (P6) (0.57
and 0.46 for the hourly and daily forecaster, respectively). P6
had a seizure frequency of 36.7 seizures/month (i.e., more
than one per day), which was almost double the next highest
participant. Across the whole cohort, a weak negative correlation
was found between seizure frequency and AUC scores in both
the hourly (R2 = −0.58) and daily (R2 = −0.49) forecasters
(Supplementary Figure 2). This suggests that participants with
lower seizure frequencies (less than once per day) had more
accurate predictions using the current model than participants
with higher seizure frequencies.

Time spent in high, medium, and low risk, alongside the
seizure frequency in high, medium, and low risk, were also
considered (Figure 3). For the hourly forecast, median forecast
accuracy was 86% (min: 56%, max: 95%) and median time in
high risk was 14% (min: 5%, max: 45%). For the daily forecast,
median forecast accuracy was 83% (min: 43%, max: 97%) and
median time in high risk was 18% (min: 6%, max: 29%). Of the 11
participants, the average time spent in high risk (prediction time)
before a seizure occurred was 37min in the hourly forecast and 3
days in the daily forecast. Typically, greater AUC scores implied
that the participant spent more time in low risk andmost seizures
occurred in high risk. For example, P4 spent only 7% of their time
in high risk state, but 83% of their seizures occurred whilst in high
risk (see Figure 5 for an example forecast).

Additionally, we evaluated CC metrics and Brier scores
(Figure 4). Generally, people with more seizures had calibration
curves closer to the ideal diagonal line. Hourly and daily forecasts
were occasionally found to sit well below the ideal line, suggesting
that seizure risk was overestimated in these cases. Brier score
loss, another metric to assess forecast calibration performance,
varied independently to calibration curve variation. For example,
the participants with the highest seizure counts (P5 and P9)
had similar calibration curves for both the hourly and the daily
forecast; however, Brier loss scores were much greater for P9 than
P5. P4 had the lowest Brier loss scores in both the hourly and
daily forecast.

Feature Groups on Forecast Performance
To characterize the importance of feature groups on forecasting
performance, we analyzed AUC score change with the addition of
particular feature groups (Figure 6). Physical activity and heart
rate feature groups added little predictive value to the daily
forecaster. Sleep features appeared to add value to the daily
forecaster in some people, but this was not significant across

Frontiers in Neurology | www.frontiersin.org 7 July 2021 | Volume 12 | Article 704060

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Stirling et al. Seizure Forecasting With Wearables

FIGURE 6 | Auxiliary contribution of each feature group on forecasting performance in the retrospective testing cohort. AUC score change represents average change

computed over ten runs of the algorithm. Performance of each feature group was characterized by comparing the AUC score of the forecasting algorithm once the

feature group was added to the AUC score of the forecasting algorithm without the feature group. For example, in the case of physical activity, we compared the AUC

score when the algorithm included all feature groups to the AUC score when the algorithm included only heart rate, sleep, and cycles feature groups. *Indicates that

the feature group’s contribution was significantly greater than zero across the cohort, using a one-sided t-test (***p < 0.001 and **p < 0.01). (A) Daily forecast. (B)

Hourly forecast.

TABLE 2 | AUC scores of the hourly and daily forecasters for the testing and

evaluation cohorts.

Testing dataset Evaluation dataset

Hourly AUC Daily AUC Hourly AUC Daily AUC

Participant 1 0.79* 0.64* 0.68* 0.42

2 0.71* 0.61*

3 0.93* 0.62* 0.94* 0.69*

4 0.89* 0.92*

5 0.75* 0.72*

6 0.57* 0.46 0.55* 0.62*

7 0.67* 0.64* 0.41 0.45

8 0.70* 0.70* 0.82* 0.80*

9 0.76* 0.68* 0.57* 0.45

10 0.66* 0.66* 0.61* 0.80*

11 0.69* 0.61* 0.84* 0.45

Mean (SD) 0.74 (0.1) 0.66 (0.11) 0.68 (0.18) 0.59 (0.16)

*Indicates performance greater than chance (the rate-matched random forecast).

the cohort (p = 0.09). Physical activity added some predictive
value to the hourly forecaster; however, sleep and heart rate
features were the weakest predictors in the hourly forecaster. In
both the hourly and daily forecaster, the cycles feature group
was the strongest predictor across the whole cohort and for
most individuals. 10 of 11 participants (all expect P4) had a
significant (i.e., seizures were significantly locked onto the cycle
in the training dataset) circadian cycle and 10 of 11 (all except
P7) people had least one significant multiday cycle. Despite the
occasional negative AUC score change with the addition of a
feature group, it is important to note that it is unlikely that there
is significant positive or negative value added to the forecaster
when values are close to 0.

Held Out Evaluation Cohort Performance
The held-out evaluation cohort performed well in most cases
(Figure 7 and Table 2). The predictions (based on AUC scores)
were above chance in 7 of 8 (88%) people using the hourly
forecaster (M = 0.68, SD = 0.18) and 4 of 8 (50%) people using
the daily forecaster (M = 0.58, SD = 0.16). It is important to
note that the participant, P7, who did not perform better than
chance using the hourly forecast model had the lowest seizure
count during the evaluation period and was the only participant
without a significant multiday heart rate cycle.

DISCUSSION

Summary
People with epilepsy and their caregivers have expressed their
interest in non-invasive wearable devices for decades, particularly
for seizure forecasting (45) and detection (46). Wearable devices
are more acceptable to people with epilepsy than invasive,
cumbersome or indiscrete devices (45, 46). Nonetheless, very few
studies have investigated the feasibility of non-invasive wearables
in seizure forecasting, and although performance in current
studies is promising, their datasets are usually short-term (<1
week) (37, 40).

This study demonstrates that features recorded via non-
invasive wearable sensors can contribute to accurate seizure
forecasts. Individual forecasters performed better than chance
with all people when an hourly prediction horizon was used,
and with 10 of 11 people when a daily prediction horizon was
used. These results indicate that non-invasive seizure forecasting
is possible for people with epilepsy with seizure warning periods
of up to 24 h.

In the evaluation cohort, predictions were above chance in 7 of
8 people using the hourly forecaster and 4 of 8 people using the
daily forecaster. This is contrary to what we expected: that the
performance would improve with a longer period on which to
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FIGURE 7 | Receiver operator characteristic (ROC) curves for all participants in the (A) daily and (B) hourly forecast (held-out evaluation testing cohort). The dashed

diagonal line represents a balanced random forecast. ROC curves show that hourly forecasts mostly outperformed a balanced random forecaster, and daily forecasts

outperformed a balanced random forecaster half of the time. Patient-specific forecast performance was assessed by comparing the forecaster’s area under the ROC

curve (AUC) to the AUC of a rate-matched random forecast (different to the balanced random forecast shown above).

train the algorithm. The lack of improvement in AUC scores in
the evaluation cohort may be attributed to the shorter recording
lengths and seizure counts in the evaluation dataset compared
to the testing dataset, making it difficult to directly compare
the cohorts. Furthermore, the theoretical shift and change that
may occur in heart rate cycles over time was not considered in
this model. This shift in cycles may be mitigated by consistently
retraining the algorithm on a shorter period of data (e.g., the past
4 months, instead of all past data).

Generally, the hourly forecaster resulted in more accurate
predictions than the daily forecaster. The superior performance
in the hourly forecasts may be attributed to a number of factors,
such as the inclusion of circadian heart rate cycles, hourly step
count and RCH. The resolution of the daily forecaster would
also have played a role in the loss of information. For example,
high frequency seizure days (>1 seizure occurred on a day) were
weighted equally to low seizure frequency days (1 seizure on
a day).

Feature Importance
Overall, cyclic features (heart rate cycles and previous seizure
timing) were the strongest predictors of seizures in most cases
(Figure 6). Most people had a circadian and at least one multiday
cycle that aided prediction of seizure risk. This was expected
given recent incredibly strong performance of cycles for seizure
forecasting (29, 31, 34) and the previously demonstrated utility
of heart rate cycles as a biomarker for seizure risk (30). Cycles
are now becoming increasingly recognized as a fundamental
phenomenon of seizure risk; however, their underlying drivers
are still unknown. For recent reviews on cycles in seizure
forecasting, refer to Stirling et al. (10) and Karoly et al. (47).

Sleep features appeared to be useful predictors of seizure
likelihood for some people using the daily forecaster but were
weak predictors in the hourly forecaster. The lack of utility of
sleep features in the hourly forecaster may be attributed to the
design of the algorithm, as the sleep variable remains constant

for all hours of the day after waking, making it difficult for the
algorithm to distinguish between non-seizure and seizure hours.
In contrast, for some people, sleep was a useful feature in the daily
forecaster, which distinguishes seizure-days from non-seizure
days. This suggests that sleep does play a role in seizure risk for
some people. Sleep features, such as sleep quality, transitions and
length, have historically been associated with seizures in many
people with epilepsy (18, 23). It is possible that the role of sleep
as a seizure precipitant is highly patient-specific, which warrants
further investigation in larger cohorts.

Heart rate features—daily RHR and RCH (estimation of
HRV)—were not significantly predictive of seizures on a cohort
level, but appeared useful in some individuals (Figure 6).
HRV has been of interest to researchers for decades and is
known to reflect autonomic function (48). HRV has also been
used to predict seizures minutes in advance, albeit with high
false prediction rates (39). It is important to note, however,
that we have estimated HRV in the current algorithm using
a very basic method, but recent studies have revealed that
photoplethysmography-based methods for estimating HRV are
available and in the pipeline for wearable devices (49, 50). Daily
resting heart rate, on the other hand, is not often associated
with seizure risk, but seemed to be a useful feature in some
cases. However, daily resting heart rate is likely correlated with
multiday rhythms of heart rate and thus may not provide
distinct value compared to cyclic features that were derived from
heart rate.

Physical activity features were also predictive of seizures
in some people, namely in the hourly forecaster (Figure 6).
Physical activity is beneficial for mental health, quality of life,
and cognitive function for people with epilepsy (51). However,
people with epilepsy are less likely to engage in physical activity
than the general population (52), partially influenced by the
inaccurate historical belief that exercise can provoke seizures
(53). On the contrary, there is some evidence that increased
physical activity is associated with reduced seizure frequency (54,
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55). Physical activity is also known to benefit common psychiatric
comorbidities of epilepsy, such as anxiety and depression (56),
so exercise may indirectly reduce seizure frequency by impacting
other seizure precipitants, such as stress and reduced heart rate.
We did not explore whether the relationship between physical
activity was generally positive or negative in this study, but this
should be investigated in future work.

Note that the relative feature contributions found in this work
may depend on the specific choice of model and may be taken as
an indication of feature importance only. Future work may focus
on more rigorous methods for feature importance (57).

Demographic and Clinical Factors
We generally observed that the model performed best for
participants with longer recording times, and more consistently
over prediction horizons (Supplementary Figure 1). This
suggests that seizure forecasts utilizing wearable sensors perform
better with longer recording times, and are likely to improve over
time. We suggest that a clinical forecast requires a minimum
amount of data or events before starting to use the forecaster.
Future work should investigate the ideal number of events
required for the best results, taking into account an individual’s
seizure frequency, and the optimal number of cycles to observe
before incorporating the cycle into the forecaster.

Interestingly, the model tended to perform
better in participants with lower seizure frequencies
(Supplementary Figure 2). This relationship between seizure
frequency and forecasting performance was also observed in a
prospective forecasting study (16). Although it is well-known
that seizure frequency is important to quality of life (58), people
with fewer seizures are still subject to anxiety and fear caused by
the unpredictability of seizures (8, 59). Therefore, people who
have fewer seizures may have the most to benefit from accurate
forecaster, as a forecaster may enable them to go about their daily
lives without fear of an impending seizure.

Despite less than perfect accuracy in the current model, the
results may still meet the user requirements for a practical seizure
gauge device. Many people with epilepsy may use a forecasting
device despite less than perfect accuracy (45). For example,
subjects in a prospective seizure forecasting study found the
implanted device useful even though the median sensitivity was
only 60% (60). Moreover, shorter time horizons (minutes to
hours) seem to be preferable over longer time horizons (days)
(45). This is in line with the current results, where the shorter
time horizon (hourly) made more accurate predictions than
the longer time horizon (daily). Ultimately, prospective seizure
forecasting studies with non-invasive wearables are needed to
assess user requirements and clinical utility.

Limitations
This study has several limitations. First, self-reported seizure
diaries have inherent drawbacks and are known to be inaccurate
(61). Not everyone with epilepsy is aware of when they experience
a seizure, particularly if they predominantly experience focal
aware seizures. Self-reported events also rely on participant or
caregiver memory for seizure time recollection, which may cause
the forecaster to draw inaccurate conclusions during training.
However, self-reported events are non-invasive, easy to capture,

and remain the standard data source for medical practice and
clinical trials in epilepsy (10). Therefore, seizure diaries remain
important for non-invasive seizure forecasting. To improve the
accuracy of self-reported events, non-invasive seizure detection
devices are available for convulsive seizures, and detection of
non-convulsive seizures are in the pipeline (62).

Second, it is worth noting that the accuracy of heart
rate and sleep stages measured from smartwatch devices
has been investigated compared to electrocardiography
and polysomnography, respectively (63–65). These studies
collectively show that no significant difference was noted
between the heart rate captured using a Fitbit compared to an
electrocardiography device during sleep, but some errors did
emerge during exercise. Smartwatches are known to be useful
in obtaining gross estimates of sleep parameters and heart rate
but are not yet suitable substitutes for electrocardiography
and polysomnography. This suggests that complex parameters,
such as sleep stages and heart rate variability, may need
further investigation to understand their role as seizure drivers.
Wearable heart rate sensors are also subject to artifacts, although
measurement noise was likely to be at a higher frequency than
the time scale focused on in the current work.

Third, seizure number and seizure frequency are also limiting
factors on whether seizure forecasting is possible. When seizure
numbers are low, the forecaster may be unreliable in some
cases due to overfitting in the training set. The optimal learning
period based on seizure frequency should be investigated in
future. Fourth, the ensemble method was complicated because
we combined diverse feature types; however, given the main
contribution to performance was cyclic features, future work
should focus on developing simpler approaches. Cycles may
also shift or change over time, thus affecting the accuracy
of the forecaster. In a real-world implementation, we may
look to remove any past data beyond 1 year or remove
the oldest week of data every time a new week is added
to account for changes in seizure biomarkers and to reduce
memory requirements.

Finally, we attempted to balance our participant recruitment
so that it accurately reflected the population of people with
refractory epilepsy (variety of adult ages, epilepsy types and
seizure frequencies); however, the limited number of participants
in this study means that the population may not have been
accurately represented in the sample, particularly for people
with generalized epilepsy. We also endeavor to explore the
relationship between forecasting accuracy and epilepsy type in
the future.

CONCLUSION

We assessed the utility of electronic self-reported seizure diaries
and non-invasive wearable physiological sensor data to estimate
seizure risk in retrospective and pseudo-prospective cohorts.
This research has shown that non-invasive wearable sensors in
the field of seizure forecasting is not only possible, but feasible
and imminent. Prospective analysis and clinical trials should also
be undertaken on longitudinal datasets in the future.
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