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Adamantinomatous craniopharyngioma (ACP) is the most common tumor of the sellar
region in children. The aggressive behavior of ACP challenges the treatment for it.
However, immunotherapy is rarely studied in ACP. In this research, we performed
unsupervised cluster analysis on the 725 immune-related genes and arrays of 39 patients
with ACP patients in GSE60815 and GSE94349 databases. Two novel immune subtypes
were identified, namely immune resistance (IR) subtype and immunogenic (IG) subtype.
Interestingly, we found that the ACPs with IG subtype (34.78%, 8/23) were more
likely to respond to immunotherapy than the ACPs with IR subtype (6.25%, 1/16) via
tumor immune dysfunction and exclusion (TIDE) method. Simultaneously, the enrichment
analysis indicated that the differentially expressed genes (DEGs) (p < 0.01, FDR < 0.01) of
the 1G subtype were chiefly involved in inflammatory and immune responses. However,
the DEGs of the IR subtype were mainly involved in RNA processing. Next, immune
infiltration analysis revealed a higher proportion of M2 macrophage in the 1G subtype than
that in the IR subtype. Compared with the IR subtype, the expression levels of immune
checkpoint molecules (PD1, PDL1, PDL2, TIM3, CTLA4, Galectin9, LAGS, and CD86)
were significantly upregulated in the IG subtype. The ssGSEA results demonstrated
that the biofunction of carcinogenesis in the IG subtype was significantly enriched,
such as lymphocyte infiltration, mesenchymal phenotype, stemness maintenance, and
tumorigenic cytokines, compared with the IR subtype. Finally, a WDR89 (the DEG
between IG and IR subtype)-based nomogram model was constructed to predict
the immune classification of ACPs with excellent performance. This predictive model
provided a reliable classification assessment tool for clinicians and aids treatment
decision-making in the clinic.

Keywords: adamantinomatous craniopharyngioma (ACP), immune microenvironment (IME), classification,
immunotherapy, nomogram
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INTRODUCTION

Craniopharyngioma (CP) constitutes 1.2-4.6% of all intracranial
tumors, accounting for 0.5-2.5 new cases per 1 million
population per year globally, of which 30-50% are diagnosed
during childhood and adolescence (1-3). The two histological
subtypes of CP, adamantinomatous CP (ACP) and papillary CP
(PCP) differ in their genesis and age distribution (4). ACP has
a bimodal age distribution, with peak incidences in children
aged 5-15 years and adults aged 45-60 years. In the childhood
and adolescent age group, the APC histological type with cyst
formation is the most common. PCPs occurs almost exclusively
in adults, at a mean patient age of 40-55 years, and no sex
differences have been observed (1, 2, 5, 6).

The current standard treatment for CP is surgery with or
without radiotherapy. Although CP is considered histologically

benign (WHO grade I), the prognosis and outcomes of CPs are
frequently impaired due to the hypothalamus-pituitary location
of the CP and tumor-related and/or treatment-related injury to
these important structures (7, 8). There is an urgent need for
safe and effective alternative therapies to reduce side effects and
improve quality of life.

In recent years, cancer immunotherapy has experienced
remarkable advances and shifted the paradigm for the treatment
of malignancies. Impressive clinical responses have been achieved
for several types of solid cancers (such as melanoma, non-
small cell lung cancer, and bladder cancer) after treatment with
immune checkpoint blockade (ICB) therapy (9). However, cancer
immunotherapy is rarely studied in patients with CP.

Through in-depth analysis of the genomic, transcriptomic,
and proteomics of patients with ACP, researchers found that
the immune response process plays an important role in the
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FIGURE 1 | ACPs classification based on immune infiltration. (A) The immune microenvironment (IME) of ACPs in the GSE68015 database could be divided into two
different clusters, namely cluster 1 and cluster 2. (B) The IME of ACPs in the GSE94349 database could also be divided into two different clusters (cluster A and
cluster B). (C,G) After merging these two databases, ACPs in the cluster 1 group could be matched with ACPs in the cluster B group well, and ACPs in the cluster 2
group could be matched with ACPs in the cluster A group well. (D-F) The accumulative bar diagram showed that the ACPs with cluster 2 and cluster A (50%, 4/8;
71.43%, 10/14) were more likely to respond to ICB immunotherapy than the ACPs with cluster 1 and cluster B (0%, 0/7; 30%, 3/10). (G) Immune classification and
naming of ACPs. ICB, immune checkpoint blockade; IG, immunogenic; IR, immune resistance.
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FIGURE 2 | Identification of DEGs in the IG and IR subtypes of ACPs. (A) Heat map displaying the DEGs between-group cluster 1 and cluster 2 ACPs in the
GSE68015 database. The heat maps display the DEGs between (B) cluster 1 and normal pituitary, (C) cluster 2 and normal pituitary. (D) A total of 3,112 cluster 1
upregulated genes were compared with 10,637 DEGs between the cluster 1 and normal pituitary groups, yielding a set of 2,283 overlapping genes. (E) A total of
1,713 cluster 2 upregulated genes were compared with 10,078 DEGs between the cluster 2 and normal pituitary groups, yielding a set of 1,400 overlapping genes.
(F) Heat map displaying the DEGs between-group cluster A and cluster B ACPs in the GSE94349 database. The heat maps display the DEGs between (G) cluster A
and normal pituitary, (H) cluster B and normal pituitary. (I) A total of 2,466 cluster A upregulated genes were compared with 11,984 DEGs between cluster A and
normal pituitary groups, vielding a set of 1,887 overlapping genes. (J) A total of 2,557 cluster B upregulated genes were compared with 13,509 DEGs between the
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pathogenesis of ACP (10). The tumor immune process (or
the tumor-immunity cycle) is the basis of immunotherapy and
the key to treatment strategies and drug development (11).
Therefore, patients with CP have the potential to benefit from
cancer immunotherapy.

In this research, we collected a total of 401 samples, including
210 RNA-sequencing data from the GSE68015 database and
110 RNA-sequencing data from the GSE494349 database to
investigate the intratumoral immune profile of ACP and explore
a novel immune classification for predicting immunotherapy
responsiveness. Subsequently, we constructed a gene-based
classification prediction model to guide clinical diagnosis
and treatment.

PATIENTS AND METHODS

Databases
We collected a total of 401 samples, including 210 RNA-
sequencing data from the GSE68015 database and 110

RNA-sequencing data from the GSE494349 database.
GSE68015 and GSE94349 databases were downloaded from
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.gov/
geo). GSE68015 database (n = 210) contains 15 ACP tumor
samples, nine normal pituitary tissue samples (controls), 16
normal brain tissue samples, and 170 other primary pediatric
and adult brain tumor samples. GSE94349 database (n =
191) includes 24 ACP tumor samples, 23 normal pituitary
samples, 27 normal brain tissue samples, and 117 surgical tumor
samples of other primary pediatric and adult brain tumor types.
Gene expression profiles were performed using Affymetrix
HG-U133plus2 chips (Platform GPL570).

Bioinformatic Analysis

ESTIMATE algorithm was applied to calculate the fraction of
stromal and immune cells with the R package “estimate” (12).
The proportion of tumor-infiltrating immune cell (TIC) was
explored using the CIBERSORT algorithm (13). The differentially
expressed genes (DEGs) between cluster 1 and cluster 2 groups
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FIGURE 3 | Enrichment analysis in the IG and IR subtypes of ACPs. GO and KEGG enrichment analysis of DEGs in the cluster 1 (A,B) and cluster 2 (C,D) groups.
Enrichment analysis of DEGs in the cluster A (E,F) and cluster B (G,H) groups. The top 20 items were displayed in the bubble chart.
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the GSE68015 and GSE94349 databases. (C,D) The Scatter plot indicated the ratio differentiation of eight biofunctions among cluster 1/2, cluster A/B and normal
pituitary groups. (E,F) Pie charts displayed the distribution of these biofunctions between cluster 1/2 and cluster A/B groups.

were determined using a threshold p-value of 0.05 by Morpheus
online software (https://software.broadinstitute.org/morpheus/)
(14). Pearson correlation analysis was applied to identify genes
correlated with WDR89 (Pearson |R| > 0.5). Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
were applied for DEGs and genes that were most correlated
with  WDR89 (15). We obtained the metagene signatures
for angiogenic activity (16), antiapoptotic and proapoptotic
(17), tumorigenic cytokines (18), mesenchymal phenotype (19),
lymphocyte infiltration (20), proliferation (20), and stemness
maintain (21). Single-sample gene set enrichment analysis
(ssGSVA) was performed to acquire the enrichment score of each
biofunction signature using the “GSVA” R package (22).

Construction of Immune Classification
Predicted Model

The least absolute shrinkage and selection operator (LASSO)
method and logistic regression analysis were used to identify the
best predictive genes (23). A gene-based nomogram model was

constructed to predict the classification of ACPs using the “rms”
R package (24).

Prediction of the Immunotherapy

Response

Tumor immune dysfunction and exclusion (TIDE) is a
computational method developed in 2018 to predict the ICB
response (25). A Bonferroni-corrected p-value < 0.05 was
considered statistically significant.

Statistical Analysis
R language (version 3.6.1, http://www.r-project.org) was used as
the principal tool for statistical analysis and graphic work.

RESULTS

ACPs Classification Based on Immune

Infiltration
First, we performed unsupervised cluster analysis on the 725
immune related genes and arrays of 15 patients with ACP in the
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nomogram model to predict the immune classification of ACPs in the GSE68015 and GSE94349 databases.

GSE60815 database. The immune microenvironment (IME) of
ACPs was divided into two different clusters, namely cluster 1 and
cluster 2 (Figure 1A). Similarly, unsupervised cluster analysis
was performed on the 725 immune related genes and arrays
of 24 patients with ACP in the GSE94349 database, ACPs were
also divided into two different clusters (cluster A and cluster B)
(Figure 1B). After merging these two databases, we performed
unsupervised cluster analysis on the 725 immune related genes
and arrays of 39 patients with ACP again. The results showed that
cluster 1 matched well with cluster B, and cluster 2 matched with
cluster A (Figures 1C,G). The TIDE results showed that the ACPs
with cluster 2 and cluster A (50%, 4/8; 71.43%, 10/14) were more
likely to respond to immunotherapy than the ACPs with cluster
1 and cluster B (0%, 0/7; 30%, 3/10) (Figures 1D-F). Therefore,
we defined cluster 2/cluster A as the immunogenic (IG) subtype
and cluster 1/cluster B as the immune resistance (IR) subtype
(Figure 1G).

Enrichment Analysis in the IG and IR
Subtypes of ACPs

In the GSE68015 database, we found 4,825 DEGs (3,112
upregulated genes of cluster 1 and 1,713 upregulated genes
of cluster 2) between the cluster 1 and the cluster 2 groups

(Figure 2A), 10,637 DEGs that were identified between cluster
1 and the normal pituitary groups (Figure2B) and 10,078
DEGs between the cluster 2 and the normal pituitary groups
(Figure 2C). Then, we compared the above-mentioned genes. A
total of 2,283 and 1,400 overlapped DEGs specific to the cluster
1 and cluster 2 groups were yielded, respectively (Figures 2D,E).
Simultaneously, in the GSE94349 database, we found 5,023 DEGs
(2,466 upregulated genes of cluster A and 2,557 upregulated
genes of cluster B) between the cluster A and the cluster B
groups (Figure 2F), 11,984 DEGs between cluster A and the
normal pituitary groups (Figure 2G), and 13,509 DEGs between
the cluster B and the normal pituitary groups (Figure 2H). Then,
we compared the above-mentioned genes, and a total of 1,887
and 1,961 overlapped DEGs specific to the cluster A and cluster
B groups were detected, respectively (Figures 2LJ).

Finally, the enrichment analysis results indicated that
the DEGs of the IG subtype were chiefly involved in
various inflammatory and immune responses, as well as
a chemokine signaling pathway, antigen processing, and
presentation (Figures 3A,B,E,F). However, the DEGs of the
IR subtype were mainly involved in RNA splicing, RNA
catabolic process, cell cycle, Wnt, and Hippo signaling pathway
(Figures 3C,D,G,H).
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FIGURE 9 | WDR89 related expression profile in ACPs relative to a broad range of pediatric and adult brain tumor types. (A,B) WDR89 mRNA expression in ACPs
relative to a broad range of pediatric and adult brain tumor types in the GSE68015 and GSE94349 databases. (C,D) Expression of WDR89 in the IG and IR subtype of

Scores in the IG and IR Subtypes of ACPs
In both GSE60815 and GSE94349 databases, the ESTIMATE
results suggested that compared with the normal pituitary
group, ACPs had higher immune and stromal scores. In ACPs,
compared with IR subtype (cluster 1 and cluster B groups), ACPs
in IG subtype (cluster 2 and cluster A groups) had higher immune
and stromal scores, while the purity of tumors was lowered
(Figures 4A-D).

The Proportion of TICs in the IG and IR

Subtypes of ACPs

The CITICSORT results found that compared with the normal
pituitary group, the proportion of M0 and M2 macrophages was
significantly higher in ACPs. The proportion of M2 macrophage
in the IG subtype (cluster 2 and cluster A groups) was higher
than that in the IR subtype (cluster 1 and cluster B groups).
However, the proportion of T cell CD4 memory resting and mast

cell resting in the normal pituitary group was distinctly higher
than that in the ACPs (Figures 5A-F).

Expression of Immune Checkpoint
Molecules in the IG and IR Subtypes of
ACPs

We also discovered that the expression levels of immune
checkpoint molecules (PD1, PDL1, PDL2, TIM3, CTLA4,
Galectin9, LAG3, and CD86) were significantly increased in IG
subtype (cluster 2 and cluster A groups) compared with IR
subtype (cluster 1 and cluster B groups) (Figures 6A-D).

ssGSVA Between the IG and IR Subtypes
of ACPs

To further investigate the different biofunctions between
the IG and IR subtypes of ACPs, the ssGSEA analysis
demonstrated that the biofunction of carcinogenesis, such
as lymphocyte infiltration, mesenchymal phenotype, stemness
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maintenance, and tumorigenic cytokines, in IG subtype
were significantly enriched compared with IR subtype
(Figures 7A-D). Moreover, the proportion of lymphocyte
infiltration and mesenchymal phenotype in the IG subtype of
ACPs was obviously higher than that in the IR subtype of ACPs
(Figures 7E,F).

Construction of the Classification

Prediction Model

In the GSE60815 database, we identified 4,825 DEGs (3,112
upregulated genes of cluster 1 and 1,713 upregulated genes of
cluster 2) for LASSO and logistic analysis and identified the
best six independent predicted genes (WDR89, PRKCI, DHX40,
EIF4B, GOLGA2P7, and MIR65161) (Figures 8A-F). A gene-
based classification prediction model was constructed afterward.
ROC curves showed that the WDR89-based predictive model
provided a reliable classification assessment in the training sets
(area under curves (AUC) = 0.971) and validation sets (AUC
= 0.929) (Figures 8G,H). Finally, we developed a WDR89-
based nomogram model to predict the classification of ACPs
(Figure 8I).

WDRB89-Related Expression Profile in ACPs
Relative to a Broad Range of Other Primary

Pediatric and Adult Brain Tumor Types

In the GSE60815 and GSE94349 databases, expression profile
analysis suggested that compared with the normal brain group
(including pituitary) and most other primary pediatric and
adult brain tumors (including MEN, GNCT, MPNST, RMS,
PA), WDR89 was highly expressed in ACPs (Figures 9A,B). In
addition, the expression of WDR89 in the IR subtype of ACPs
is higher than that in patients with the IG subtype of ACP
(Figures 9C,D).

GO and KEGG Analysis of
WDR89-Associated Genes in ACPs

Functional enrichment analysis demonstrated that genes

negatively relevant to WDR89 (Pearson |R| > 0.5)
were mostly involved in neutrophil activation, T cell
activation, leukocyte proliferation, and TNF signaling
pathway (Figures 10A,C,D). However, genes positively

relevant to WDR89 were associated with RNA splicing,
DNA replication, cell cycle, and Hippo signaling pathway
(Figures 10B,E,F).
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DISCUSSION

Cancer immunotherapy has completely revolutionized the
treatment landscape of malignant tumors, which is a new type
of treatment that has emerged after surgery, chemotherapy,
radiotherapy, and targeted therapy (26, 27). Although cancer
immunotherapy has been widely used in many tumors, there are
still many challenges, such as limited efficacy and serious side
effects (27, 28). Relevant studies have shown that only about
13% of patients could benefit from ICB therapy, and it is not
yet possible to accurately determine which patients could benefit
from immunotherapy (29).

Adamantinomatous craniopharyngiomas mostly have large
cystic components. The rapid growth of the cystic component
will compress and destroy the neighboring key structures.
Therefore, the study of the pathogenesis of ACP cysts is
particularly important. Up to now, studies have found that
the expression of many inflammatory molecules in the cystic
component of ACP are upregulated, such as alpha-defensins
1-3, IL6R, IL2RB, IL-1B, IL-6, CXCL1, CXCL8 (IL-8), IL-10,
CXCR2, CXCL1 (GRO), IDO-1, IL-18, TNE and IENG (30-
33). At the same time, related studies have also found that the
expression of inflammatory molecules in the solid components
of ACP is also upregulated, which further supports the important
role of immune response in the pathogenesis of ACP (32, 34).
A recent study found that immune checkpoint molecules PD-
1 and PD-L1 are overexpressed in epithelial cell clusters in
ACP (35), and these clusters of epithelial cells were found to
play an important role in the growth of ACP (36-38). This
research provides theoretical support for the treatment of ICB
in ACPs.

Immune cells can induce excessive activation of intracellular
signaling pathways or activation of abnormal signaling pathways
by secreting proinflammatory factors and chemokines, and
ultimately promote tumor proliferation, invasion, and metastasis
(39, 40). A related study found that there was a large number
of immune cell infiltrations between ACPs and important
structures such as the hypothalamus, and there is also tight
adhesion formation. The degree of inflammatory response is
significantly positively correlated with the incidence and severity
of the hypothalamus-pituitary deficiency (41). Therefore, we
inferred that the inflammatory response between the tumor and
important structures may cause the difficulty of tumor dissection
during the operation, which may lead to the occurrence of
serious postoperative complications and tumor recurrence. The
inflammatory response may be one of the important factors for
the worse prognosis of ACPs.
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