
ORIGINAL RESEARCH
published: 19 October 2021

doi: 10.3389/fneur.2021.712773

Frontiers in Neurology | www.frontiersin.org 1 October 2021 | Volume 12 | Article 712773

Edited by:

Mohd Farooq Shaikh,

Monash University, Malaysia

Reviewed by:

Pablo Casillas-Espinosa,

Monash University, Australia

Nirnath Sah,

Johns Hopkins University,

United States

*Correspondence:

Honghua Zheng

honghua@xmu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Epilepsy,

a section of the journal

Frontiers in Neurology

Received: 21 May 2021

Accepted: 24 August 2021

Published: 19 October 2021

Citation:

Lu P, Wang F, Zhou S, Huang X,

Sun H, Zhang Y-W, Yao Y and

Zheng H (2021) A Novel CNTNAP2

Mutation Results in Abnormal

Neuronal E/I Balance.

Front. Neurol. 12:712773.

doi: 10.3389/fneur.2021.712773

A Novel CNTNAP2 Mutation Results
in Abnormal Neuronal E/I Balance
Ping Lu 1,2†, Fengpeng Wang 3†, Shuixiu Zhou 4†, Xiaohua Huang 5, Hao Sun 1,

Yun-Wu Zhang 1, Yi Yao 3 and Honghua Zheng 1,5,6*

1 Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of

Medicine, Xiamen University, Xiamen, China, 2 Jiangsu Province Hospital of Integrated Chinese and Western Medicine,

Nanjing, China, 3Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen,

China, 4Department of Neurology, Xiamen University Hospital, Xiamen, China, 5Basic Medical Sciences, College of Medicine,

Xiamen University, Xiamen, China, 6 Shenzhen Research Institute, Xiamen University, Shenzhen, China

CNTNAP2 (coding for protein Caspr2), a member of the neurexin family, plays an

important role in the balance of excitatory and inhibitory post-synaptic currents (E/I

balance). Here, we describe a novel pathogenic missense mutation in an infant with

spontaneous recurrent seizures (SRSs) and intellectual disability. Genetic testing revealed

a missense mutation, c.2329 C>G (p. R777G), in the CNTNAP2 gene. To explore

the effect of this novel mutation, primary cultured neurons were transfected with wild

type homo CNTNAP2 or R777G mutation and the morphology and function of neurons

were evaluated. When compared with the vehicle control group or wild type group, the

neurites and the membrane currents, including spontaneous excitatory post-synaptic

currents (sEPSCs) and inhibitory post-synaptic currents (sIPSCs), in CNTNAP2 R777G

mutation group were all decreased or weakened. Moreover, the action potentials (APs)

were also impaired in CNTNAP2 R777G group. Therefore, CNTNAP2 R777G may lead

to the imbalance of excitatory and inhibitory post-synaptic currents in neural network

contributing to SRSs.
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INTRODUCTION

In the central nervous system, the neuron network relies on effective signal transmission, especially
the neurotransmitter transmission between neuron synapses. The balance between excitatory and
inhibitory currents (E/I balance) became a hotspot of nervous system disorders’ study in recent
years (1–6). The relationship between inhibitory and excitatory synaptic transmission does not
always remain stable, which may result in a lot of circuit dysfunctions and diseases, such as
epilepsy, depression, anxiety, fragile X syndrome, Rett syndrome, Autism Spectrum Disorder
(ASD), schizophrenia, and so on (7, 8). Additionally, studies suggest that gene alterations may be
one of the underlying reasons (9). Gene deletion ormutation can change the excitability of neurons.
For example, dysregulation of hippocampal inhibition was observed in Cntnap2−/− mouse, which
recapitulates the major features of ASD (10).
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CNTNAP2 (coding for protein Caspr2) gene locates in
the long arm of the seventh autosomal chromosome (7q35)
and encodes a protein named Caspr2 (Contactin-Associated-
protein-like-2), which is a neuronal glycoprotein. Caspr2 is a
transmembrane protein with a short intracellular fragment and
a large extracellular component, which benefits interactions with
other proteins, such as CNTN2, TAG-1, Kv1 channel, and protein
4.1B (11–13). CNTNAP2 has been confirmed to be involved
in several nervous system diseases including epilepsy, ASD,
schizophrenia, language difficulties, and intellectual disability
(14–21). Moreover, Caspr2 can cluster with the shaker Kv1.1 and
Kv1.2 channels in the near lateral region of the flying junction
of the axons with myelin sheath, involved in nerve conduction
of myelin sheath axons (11, 22), and the process of neuron
migration in mouse cortex (23). In CNTNAP2 knockout mice,
it was found that the activity of neural network was reduced,
the dendrites were smaller, and the number of excitatory and
inhibitory synapses was reduced, all of which may be caused by
the effects of CNTNAP2 deficiency on the neuronal synapses and
dendrites (24).

Here, we describe a novel pathogenic CNTNAP2 mutation
in an 8-month-old infant who manifested spontaneous
recurrent seizures (SRS) and intellectual disability. Whole exome
sequencing revealed a novel pathogenic mutation, c.2329 C>G
(p. R777G), in the CNTNAP2 gene, causing the imbalance of
excitatory and inhibitory post-synaptic currents in the neural
network and contributing to SRSs.

MATERIALS AND METHODS

Patient Reports and Ethics
An 8-month-old male infant had been presenting with infantile
spasm since the age of 6 months. The seizure frequency was 2–3
clusters per day. He received standard anti-seizure medications
(ASMs), including Valproate 30 mg/kg/d, Topiramate 1 mg/kg/d,
and Lamotrigine 1 mg/kg/d. However, none of those treatments
were effective. He had intellectual disability. He was unable
to roll over or crawl alone. The history of his mother’s
pregnancy and delivery was normal. One of his collateral brothers
suffered autism. We received approval from the Medical Ethics
Committee of Fujian Medical University Xiamen Humanity
Hospital using human materials (Permitted number HAXM-
MEC-202000701-012-01).We also received informed consent for
research from the participants or guardians.

Genetic Procedures and Sanger
Sequencing
Genetic testing was performed using targeted exome sequencing
at Fuzhou Kingmed for Clinical Laboratory, China. DNA was
extracted from blood of the patient using QIAamp Blood
DNA Mini Kit (QIAGEN) and was purified by the magnetic
bead method. DNA was subsequently amplified by PCR and
connected with the upper joint sequence, captured, and purified
by the TruSight one sequencing panel (Illumina Inc, USA).
The obtained final DNA libraries were sequenced using a
NextSeq500 sequencer (Illumina Inc, USA). Candidatemutations
were verified by Sanger sequencing.

Plasmid Construction
The human CNTNAP2 cDNA was obtained from Han’s Lab,
School of Life Sciences, Xiamen University. Wild type pEGFP-
N1-CNTNAP2 plasmid was prepared by inserting coding
sequence of the human CNTNAP2 gene into the pEGFP-N1
vector. The CNTNAP2 R777G mutation was obtained by PCR-
based site-directed mutagenesis with c.2329 C>G.

Transfection of Primary Neuron
According to the widely used protocol pioneered by Beaudoin
(25), the primary neurons were isolated from the cortex of
post-natal 0–1 day C57BL/6 mice in the Laboratory Animal
Center of Xiamen University. All efforts were aimed to lessen
animals’ suffering. All animal experiments were performed in
accordance with the protocols of the Institutional Animal Care
and Use Committee at Xiamen University (Permitted number
XMULAC20170255). After 13–14 days’ mixture culture, the
primary neurons were, respectively, transfected with plasmid of
vehicle, wild type CNTNAP2, or CNTNAP2 R777G mutation by
LipofectamineTM 2000 (Thermo) according to the manufacturer’s
instructions. Cells were then collected for further assay after 24 h.

Quantification of Neurite Extension by
Concentric Circle Intersection Count
For the transfected neuronal immunofluorescence observation,
the primary transfected neurons with vehicle, wild type
CNTNAP2, or CNTNAP2 R777G mutation plasmid were fixed
and captured with a Nikon T-P2 DIGITAL SIGHT microscope
(Nikon, Japan). High-power field of at least five neurons
per section from three independent experiments were selected for
quantifying the number of intersections by Nikon NIS-Elements
D 4.00.12 Viewer software. A series of concentric circles with
radius increasing at 100 pixel (px) and spanning from 100 to
400 px range were plotted with the number of intersections
against distance from the neuron center. The number of neurite
intersections (branch) with each circle line along the distance
from the neuron center was then manually quantified using a set
of 12 neuron images in each group.

Solution for Electrophysiology Recording
Artificial Cerebrospinal Fluid (ACSF): 120mM sucrose, 64mM
NaCl, 2.5mMKCl, 1.25mMNaH2PO4, 26mMNaHCO3, 10mM
d-glucose, 10mMMgSO4, 0.5mM CaCl2, pH 7.4, 290 mOsm.

Pipette Solution for recording spontaneous excitatory post-
synaptic currents (sEPSCs) and spontaneous inhibitory post-
synaptic currents (sIPSCs): 140mM CsCH3SO3, 2mM MgCl2
6H2O, 5mM TEA-Cl, 10mMHEPES, 1mM EGTA, 2.5mMMg-
ATP, 0.3mM Na-GTP, pH 7.4, 290 mOsm. The solution was
filtered by 0.22µm filter membrane after preparation in case the
pipette was plugged.

Pipette Solution for recording action potentials (APs):
140mM K+ gluconate, 4mM NaCl, 0.1mM CaCl2, 10mM
HEPES, 1.1mM EGTA, 0.3mM Na2-GTP, 2mM Mg-ATP, pH
7.4, 290 mOsm. The solution was filtered by 0.22µm filter
membrane after preparation in case the pipette was blocked up
during whole-cell patch recording.
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FIGURE 1 | Pedigrees of the case carrying a CNTNAP2 R777G mutation. (A) 3.0T MRI (axial T1) of the patient (left) and normal control (right) showed mild

enlargement of ventricle (white arrow). (B) 3.0T MRI (sagittal T1) showed corpus callosum dysplasia (blue arrow). (C) EEG showed intermittent hypsarrhythmia and

superimposed with epileptic discharges at bilateral parieto-occipital area (black arrow). (D) CNTNAP2 DNA from peripheral blood leucocytes of the patient was

analyzed by Sanger sequencing (the upper red arrow indicates normal base sequence and the lower red arrow indicates the c.2329 C>G mutation).

Cortical neurons were recorded in whole-cell configuration
24 h after transfection. The extracellular solution was ACSF
as described previously (26). Patch pipettes were pulled from
borosilicate glass and fire-polished to a resistance of 3–5 M�.
After pouring with pipette solution, neurons were voltage
clamped at −70mV for sEPSCs recording or at −0mV for
sIPSCs. Currents were recorded using pCLAMP 10.3 software
with an Axopatch 700B amplifier (Molecular Devices: Axon
CNS, MultiClamp 700B, Digidata 1440A, USA). To detect
the events of post-synaptic currents, we set threshold of
sEPSCs at 5 pA and sIPSCs at 10 pA, respectively. All the
events were estimated as the 10%−90% rising time and
decay time (ms). Recordings were filtered at 5 kHz and
digitized at 20 kHz. The data were low-pass filtered using a
1 kHz cutoff and analyzed with Mini-Analysis 6.0.3 software
(Synaptosoft, USA).

Action Potential Recording
Quantitative electrical stimulations were applied to induce the
neuronal APs. The input current increased by 10 pA in a stepwise
manner. The amount of induced APs in different groups was
recorded accordingly. The resting membrane potentials varied
from −70 to −75mV in this experiment. We set −70mv as
holding potential for recording sEPSC and −10mv for sIPSC.
The access resistance was also monitored during the experiment.
The access resistance was usually 10–20 M�. If the access

resistance was <10 M� or more than 20 M�, the data were
excluded in our experiment.

Statistical Analysis
All data were represented as mean ± standard error of mean
(SEM). Statistical significance was determined by one-way
analysis of variance (ANOVA) and by Bonferroni’s post-hoc
test by GraphPad Prism 6.0 statistical software. p < 0.05 was
considered significant.

RESULTS

Identification of the Novel CNTNAP2
R777G Mutation
Brain MRI showed that the bilateral ventricular system was
mildly enlarged (Figure 1A) and the corpus callosum was
dysplastic (Figure 1B). Long-term EEG showed hypsarrhythmia
background and frequently multifocal epileptic discharges
(Figure 1C). Whole exome sequencing revealed a novel point
mutation c.2329 C>G (p. R777G) in the CNTNAP2 gene
(Figure 1D).

CNTNAP2 R777G Decreases the Neurite
Extension
Caspr2 is an adhesion molecule required for the formation of
axoglial paranodal junctions surrounding the nodes of Ranvier
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FIGURE 2 | Effects of CNTNAP2 R777G on the morphological change of primary cultured neurons. (A) Schematic diagram of the pEGFP-N1-CNTNAP2 plasmid,

which can express GFP and Caspr2 simultaneously. (B) Representative fluorescent images of primary cultured neurons transfected with vehicle, wild type or

CNTNAP2 R777G plasmid, respectively. The enlarged images below are magnified views of the dotted square regions. (C) The number of neurites intersections in

each circle was counted to obtain a statistical diagram of the number of dendrites of primary cultured neurons in different groups, with the radius of 100, 200, 300,

and 400 px, respectively. (D) Schematic diagram of neurites intersections. Scale bar: 100µm. ANOVA and Bonferroni’s post-hoc test, *p < 0.05, ns, not significant.

(27). Therefore, it is probable that this novel mutation affects
the function of Caspr2. To determine this, wild type pEGFP-
N1-CNTNAP2 or CNTNAP2 R777G mutation plasmid was
prepared (indicated in Figure 2A). Then, we overexpressed

CNTNAP2 R777G at a level comparable to that of wild type
Caspr2 in primary cultured neurons. We found that the

number of neurites in CNTNAP2 R777G group was decreased
when compared with wild type (WT) group (Figure 2B).

The dendrite branches were also reduced with an increasing

distance from neuron soma, and the mutation neuron dendrites
were sparse, especially distal dendrites (Figure 2C). Figure 2D
indicated the schematic diagram of neurite intersections.
These results indicate that CNTNAP2 R777G decreases the
neurite extension.

CNTNAP2 R777G Affects Post-synaptic
Currents of Neurons
Given that loss of Caspr2 contributed to the aggregates of
cytoplasmic glutamate receptor (28, 29), we wondered whether
the neuronal excitability was disrupted by CNTNAP2 R777G
mutation. We then employed primary cultured neurons with the
whole cell patch to analyse the excitability of cells. We variably
clamped the membrane potential to differentially record sEPSCs
and sIPSCs, which are rough methods of measuring neuron
excitability (30, 31). We found that both the amplitude and
frequency of sEPSCs in CNTNAP2 WT group were increased
whereas CNTNAP2 R777G group showed lower amplitude of
sEPSCs when compared with control group (Figures 3A,B),
suggesting the important role of Caspr2 in neural excitatory
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FIGURE 3 | CNTNAP2 R777G affects the post-synaptic currents of neurons. (A) The trace of sEPSCs or sIPSCs. (B) The amplitude and frequency of sEPSC in

different groups. (C) The amplitude and frequency of sIPSC in different groups. n = 8 for each group. ANOVA and Bonferroni’s post-hoc test, *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.

FIGURE 4 | CNTNAP2 R777G impairs the action potentials of neurons. (A) The sequential sweeps of APs in different groups evoked with different intensity of injected

currents. (B) Evoked action potentials were quantified to compare the neuronal excitability in different groups. n = 4 or 5 for each group. ANOVA and Bonferroni’s

post-hoc test, *p <0.05, ***p<0.001.

activity. One study reported that loss of Caspr2 would increase
post-synaptic excitatory responses (32). In contrast, the novel
R777G mutation might negate the function of Caspr2 and

compromise its physiological function. However, the amplitude
and frequency of sIPSC in Caspr2 WT group also increased
compared with control group (Figure 3C). These results might
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be explained as a compensatory change in CNTNAP2WT group
in response to the increased excitability of neurons. Therefore,
these results indicate that CNTNAP2 R777G lost the function of
maintaining the normal E/I balance.

CNTNAP2 R777G Mutation Impairs the
Action Potential of Neurons
Action potentials is always considered as one of the indicators of
neural excitability. All the receptor-mediated sEPSCs and sIPSCs
belong to partial synaptic events so that we can evaluate the
neural excitability through APs induced by the integration of
many synaptic activities (33). Action potentials resulted from
transient changes in the permeability of the axon membrane
to sodium and potassium ions (34). We recorded neural APs
induced by exogenous current and got a cluster of APs when the
neurons were stimulated by inputted currents (Figures 4A,B). In
the current experimental conditions, the tested neurons exhibited
a tonic pattern whereas the phasic pattern of APs was not noted in
the tested neurons. As expected, neurons inCNTNAP2WTgroup
induced more APs than those in other groups, further proving
that Caspr2 participate in the formation of neuronal excitation
(Figures 4A,B). In addition, APs threshold was detected in
three groups, and neurons in CNTNAP2 R777G group showed
the highest APs threshold with the fewest number of APs
compared with those in other groups (Figures 4A,B). These
results suggest that CNTNAP2 R777G mutation impairs the AP
of neurons.

DISCUSSION

In this study, we identified a novel pathogenic R777G mutation
in CNTNAP2 gene in an atypical infant with SRSs. This
CNTNAP2 R777G mutation caused the imbalance of sEPSCs
and sIPSCs in the neural network, contributing to SRSs, which
was consistent with the literature on CNTNAP2 knockdown
experiments. Furthermore, as a susceptible gene of epilepsy,
CNTNAP2 mutation or deletion results in the break of E/I
balance in neuronal network.

Caspr2 is a member of the axon superfamily that promotes
intercellular interactions in the nervous system. Our finding
that CNTNAP2 R777G decreases the neurite extension is
consistent with other researchers’ findings that deletion
of Caspr2 resulted in the deficit in dendrite arborization
and reduction in the dendritic length and branching of
interneuron (35).

Axon and dendrite terminals play key roles in synaptic
function in the neural network and the receptor-mediated
membrane currents are indicators of neuronal excitability.
GABAergic synapses reside on dendritic shafts, soma, and axon
initial segments in the formation of predecessor axon-dendrite
contacts (36). On the contrary, glutamatergic synapses form
almost exclusively on dendritic spines (37). Some researchers also
observed that depletion of Caspr2 in neurons decreased synaptic
strength in a cell-autonomous fashion, impaired terminal
dendrites and spine development, and suppressed neural network
activity (24). Additionally, Caspr2 plays an important role in

the development and activity of normal neuronal network
whereas mutation in CNTNAP2 gene can disorganize normal
Caspr2 functions.

Researchers recently observed that deletion of Caspr2 resulted
in the reduction of the amplitude of α-amino-3-hydroxy-
5-methyl-4-isoxazole propionate receptor (AMPAR) and N-
methyl-D-aspartate receptor (NMDAR)-mediated EPSCs and
the amplitude of γ-aminobutyric acid type A (GABAA) receptor-
mediated IPSCs (24, 38, 39). In other words, the synaptic
transmission was reduced in CNTNAP2-deficient neurons. The
synaptic transmission of GABAergic interneuron was also
decreased in CNTNAP2 knockout mice (23). It is still unclear
what the reason for the sEPSCs alterations in CNTNAP2
R777G group is, which may result from abnormal synapses or
decreased neurites induced by CNTNAP2 R777G in neurons.
Therefore, these results indicate that CNTNAP2 R777G lost
the function of maintaining the normal E/I balance. Although
Caspr2 was recently reported to be expressed in both excitatory
and inhibitory synapses and effects of Caspr2 depletion were
found on excitatory and inhibitory currents (38, 39), the
specific types of neurons CNTNAP2 R777G affects needs to be
further explored.

Given that Caspr2 can cluster with Kv1.1 and Kv1.2 channels
involved in the nerve conduction of myelin sheath axons (11,
22), there is a possibility that this result is due to a change in
voltage-gated ion channels, such as Kv1.1 or Kv1.2. CNTNAP2
R777G neurons showed the highest APs threshold with the
fewest number of APs compared with other groups, which
may result in circuit dysfunctions and diseases. However, how
this CNTNAP2 R777G mutation contributes to SRSs in vivo
remains elusive.

In conclusion, this study provides clinical and experimental
data to demonstrate a novel pathogenic R777G mutation in
CNTNAP2 gene in an atypical infant with SRSs. Nevertheless,
the findings of the present study are limited. Without a large
family showing seizure and enough gene samples from family
members, it is difficult to demonstrate thatCNTNAP2R777Gwas
fully responsible for this disease. Additionally, the overexpression
system in this study is artificial. It is interesting to investigate
whether Cntnap2 R777G mutant mouse develops SRSs in
future work.
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