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Objective: Perceptual alternations evoked by binocular rivalry (BR) reflect cortical

dynamics strongly dependent on the excitatory–inhibitory balance, suggesting potential

utility as a biomarker for epileptogenesis. Therefore, we investigated the characteristics

of BR in patients with idiopathic generalized epilepsy (IGE) and potential associations

with clinical variables.

Methods: Sixty-two healthy controls (HCs) and 94 IGE patients completed BR task.

Perceptual alternation rates were compared between HC and IGE groups as well as

among the HC group and IGE patients stratified according to the presence or absence

of interictal activity on the ambulatory electroencephalogram (EEG), termed the abnormal

ambulatory EEG group (AB-AEEG, n= 64) and normal ambulatory EEG group (N-AEEG,

n = 30), respectively.

Results: The IGE patients demonstrated a slower rate of BR perceptual alternation

than HC subjects (t = −4.364, p < 0.001). The alternation rate also differed among the

HC, AB-AEEG, and N-AEEG groups (F = 44.962, df = 2, p < 0.001), and post hoc

comparisons indicated a significantly slower alternation rate in the AB-AEEG group

compared with the N-AEEG and HC groups (0.28 vs. 0.46, and 0.43Hz). Stepwise

linear regression revealed positive correlations between the BR alternation rate and both

the ambulatory EEG status (β, 0.173; standard error, 0.022 p < 0.001) and Montreal

Cognitive Assessment score (β, 0.013; standard error, 0.004; p = 0.003). Receiver

operating characteristic curve analysis of the BR alternation rate distinguished AB-AEEG

from N-AEEG subjects with 90.00% sensitivity and 76.90% specificity (area under the

curve = 0.881; 95% confidence interval = 0.801– 0.961, cut-off = 0.319). Alternatively,

Montreal Cognitive Assessment score did not accurately distinguish AB-AEEG from N-

AEEG subjects and the area under the receiver operating characteristic curve combining

the BR alternation rate and Montreal Cognitive Assessment score was not markedly

larger than that of the BR alternation rate alone (0.894, 95% confidence interval =

0.822–0.966, p < 0.001). K-fold cross-validation was used to evaluate the predictive

performance of BR alternation rate, MoCA score, and the combination of both, which
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yielded average AUC values of 0.870, 0.584 and 0.847, average sensitivity values of

89.36, 92.73, and 91.28%, and average specificity values of 62.25, 13.42, and 61.78%,

respectively. The number of interictal epileptiform discharges was significantly correlated

with the alternation rate in IGE patients (r = 0.296, p = 0.018). A forward stepwise linear

regression model identified the number of interictal epileptiform discharges (β, 0.001;

standard error, 0.001; p= 0.025) as an independent factor associatedwith BR alternation

rate in these patients.

Conclusion: These results suggest that interictal epileptiform discharges are

associated with disruptions in perceptual awareness, and that the BR may be a

useful auxiliary behavioral task to diagnosis and dynamically monitor IGE patients with

interictal discharge.

Keywords: binocular rivalry, idiopathic generalized epilepsy, electroencephalogram, excitatory neurotransmitter,

inhibitory neurotransmitter

INTRODUCTION

When incongruent images are presented to the two eyes,
perceptual awareness spontaneously alternates every few seconds
between one image and the other rather than forming a
stable composite (1–3). This phenomenon, known as “binocular
rivalry” (BR), is mediated by competitive interactions between
populations of neurons that code for the two inputs at various
levels of visual processing.

Binocular rivalry is a specific example of a more general
phenomenon termed bistable perception. Since the stimulus

remains constant, the spontaneous perceptual alternation
characteristic of bistable perception reflects inherent dynamic

operations in the brain and thus may offer a tool to distinguish
normal from abnormal neural dynamics. Functional imaging
techniques and electrophysiology have revealed that as the
perceptual awareness of one image (precept) is suppressed, there
is a concomitant reduction in response amplitude within brain
regions processing that image, and that this reduction is reversed
as the percept regains dominance (4, 5). Brain imaging studies
also indicate that bistable perception is associated with shifting
neural dynamics within both early visual areas (6) and higher
centers such as frontal and parietal cortex (7–11). Transcranial
magnetic stimulation studies by Carmel and colleagues suggested
that activity in parietal cortex reflects the rate of bistable
perception (10, 12, 13). Thus, the dynamics of these perceptual
changes can be utilized to infer underlying neural dynamics
(14, 15). The neural dynamics reflective of BR critically depend
on the balance between excitation and inhibition (E/I balance)
in the cortex (2, 16–20), suggesting that the characteristics of BR
may change in pathological conditions involving E/I disruption,
such as epilepsy and autism spectrum disorder.

The major underlying pathological mechanism in epilepsy
is an imbalance between glutamatergic excitation and γ-
aminobutyric acid (GABA)-ergic inhibition (21–24), which
results in uncontrolled synchronous neuronal excitation (25, 26).
Furthermore, unregulated firing of neurons is also observed in
autism spectrum disorder, and indeed there is high comorbidity
between epilepsy and autism spectrum disorder (27). Therefore,

diagnosis and prognosis may benefit from measurement of
general glutamatergic and GABAergic function. Although
magnetic resonance spectroscopy has been applied to measure
the GABA concentration in the human brain, results are often
ambiguous and dependent on the scanning sequence (28, 29).
Alternatively, E/I balance in the cortex may be inferred from
psychophysical tasks. For instance, BR is clearly linked to
cortical E/I balance (30–32), Freyberg et al., 2015, (33, 34).
Moreover, forms of epilepsy classified as idiopathic generalized
epilepsy (IGE) are disorders of presumed genetic origin without
macroscopic brain abnormalities (35). Therefore, BR may be an
ideal task for indirect assessment of E/I balance in IGE.

Epileptiform discharges can be viewed as an eruption of excess
excitatory drive (36) that is reflected by a higher frequency and
amplitude waveform on the electroencephalogram (EEG) (37,
38). The EEG of IGE patients features symmetrical waves starting
at a focus and rapidly spreading to bilateral brain networks (39).
Further, IGE patients may also exhibit abnormal waveforms in
the absence of seizures, termed interictal epileptiform discharges
(IEDs) that are frequently measured by ambulatory EEG.

As the balance between γ-GABAergic inhibitory mechanisms
and glutamatergic excitatory mechanisms underlies both IGE
and BR, BR may be altered in IGE and thus serve as a useful
diagnostic or prognostic marker. It is therefore of interest to
explore the features of BR in IGE patients and the associations
between BR changes and relevant clinical factors.

MATERIALS AND METHODS

Participants
Ninety-four patients with IGE (48 males, 46 females) were
enrolled from the Department of Neurology, First Affiliated
Hospital of Anhui Medical University, Hefei, Anhui Province,
China. Sixty-two healthy control (HC) subjects (28 males, 34
females) were also enrolled, all students or social personnel.
IGE and HC subjects were matched for age, gender, and
years of education. All patients were clinically diagnosed
with IGE based on seizure history, ambulatory EEG, and
neuroimaging as defined by the Commission on Classification
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and Terminology of the International League Against Epilepsy
(40). IGE is a group of clinical syndromes, including benign
familial neonatal epilepsy, benign infant epilepsy, benign familial
infantile epilepsy, childhood absence epilepsy, juvenile absence
epilepsy, juvenile myoclonic epilepsy, and generalized tonic-
clonic epilepsy, belonging to the hereditary generalized epilepsy.
This cohort included patients with four distinct IGE syndromes,
childhood absence epilepsy, juvenile absence epilepsy, juvenile
myoclonic epilepsy, and generalized tonic-clonic epilepsy. All
patients received 24-h ambulatory EEG monitoring from 2:30
to 2:30 p.m. the next day. During the recording, normal living
rhythm was maintained, including normal sleeping and awaking
cycles. Patients were stratified into abnormal ambulatory EEG
(AB-AEEG) and normal ambulatory EEG (N-AEEG) subgroups
depending on the presence or absence, respectively, of IEDs on
the ambulatory EEG.We recorded the number and total duration
of IEDs in IGE patients with abnormal ambulatory EEG. All
participants were free of color blindness, poor visual acuity,
strabismus, and other visual impairments. All participants were
right-handed and had the same eye dominance. All participants
also demonstrated normal cognitive function, with sufficient oral,
visual, and written language skills to complete the experimental
tasks. Participants did not ingest coffee, tea, cola, or alcohol for at
least 4 h before testing as these beverages may affect BR (41, 42).

Exclusion criteria were (1) history of cerebral infarction,
space-occupying intracranial lesions, infection, or brain trauma;
(2) intracranial disease as evidenced by computed tomography or
magnetic resonance imaging; (3) long-term use of medications
other than antiseizure medicines (ASMs); (4) history of epilepsy
correction surgery; (5) current psychiatric conditions such as
moderately severe anxiety, depression, and history of drug abuse;
or (6) a history of severe chronic physical illness.

During the experiment, all IGE patients were in the interictal
state, and all participants were naive to the purpose of the study.
Finally, 94 patients with IGE were enrolled, 64 with abnormal
ambulatory EEG (AB-AEEG group) as defined by the presence
of interictal discharges and 30 with normal ambulatory EEG (N-
AEEG group). The 64 patients with abnormal AEEG included 23
with no ASM history and 41 who had received ASMs. Twenty-
three patients were new-onset cases with no ASM history, while
all others had demonstrated good ASM adherence with no
seizures for at least 3 months. Detailed information about ASMs
is presented in (Supplementary Table 1). Some IGE patients also
had mild anxiety or depression, but were not receiving anxiolytic
or antidepressant drugs. Written informed consent was obtained
from all participants and the study was approved by the Anhui
Medical University Ethics Committee.

Psychometric Testing
All participants completed the Montreal Cognitive Assessment
(MoCA) to confirm normal cognition as well as the Beck
Depression Inventory (BDI) and Hamilton Anxiety Scale
(HAMA) to assess current depression and anxiety symptoms.
The BR test was performed within 2 h before 24 h ambulatory
EEG monitoring. All assessments were conducted by the same
trained assessor.

BR Task
The BR task was conducted in a dimly lit closed room. Lenovo
laptop (15.6-inch monitor screen, 1,366 × 768 resolution,
60Hz refresh rate) was used to display the visual stimuli.
Stimulus presentation and trial timing were controlled by
Psychtoolbox running in MATLAB (8, 9). Subjects sat about
100 cm from the screen and wore red-green stereoscopic glasses
while viewing overlapping color-filtered images of a green radial
raster presented to the left eye (four cycles/deg) and a red
concentric circular raster to the right eye (eight cycles/deg) to
induce BR. Overall image luminance was 135 cd/m2, sine wave
0.9, background luminance 30 cd/m2, and black frame was 1.6◦

× 1.6◦.
To ensure participants understood the BR task, they received

instructions and a practice session before starting the actual BR
trials. Subjects were instructed to focus on the center of the screen
and press a right response button when the green radial raster
image was perceptually predominant and a left response button
when the red concentric circular raster image was predominant.
Following the practice session, three BR trials were conducted,
each lasting 120 s, with an inter-trial interval of 3 min.

In each test session, subjects also completed three pseudo-
randomly programmed catch trials to ensure accurate
performance of the binocular rivalry task. In the catch trials,
two monocular stimuli were alternately presented separately,
with each stimulus between 0.5 and 5 s, to roughly simulate the
transformation in perception experienced during rivalry. The
response was considered correct only when the subject pressed
the correct button in response to the stimulus within the time
window of 800ms. To verify that the subjects understood and
accurately completed the task, the average correct response rate
of the catch trials was recorded.

Perceptual rivalry rate was counted as the number of rivalry
conversions (right to left button transitions and vice versa)
divided by the total viewing time (in seconds). Participants were
instructed to view all stimuli passively, without attempting to
control their perceptions. The behavioral indicator of binocular
rivalry was the alternation rate (in Hz).

Data Analyses
Numeric variables are presented as mean± standard deviation or
median [25th-75th quartile], and nominal variables as numbers
and percentages. Group means were compared by independent
samples t-tests or one-way ANOVA in the case of two or more
than two groups, respectively. The chi-square test was used
to compare ratios among groups. The non-parametric Mann-
Whitney U test was used to compare the BDI score and HAMA
score between two groups, and non-parametric test (Kruskal-
Wallis H) was used to compare the BDI score and HAMA score
among the three groups, expressed as M (P25, P75). Pearson
and Spearman correlation analyses were used to examine within-
subject reliability for the perceptual alternation rate and the
associations between alternation rate and various demographic
and clinical characteristics. In the correlation analysis, Pearson
or Spearman correlation analysis was selected according to
whether the two related variables followed a normal distribution.
Multivariable linear regression analysis was used to explore the
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effects of demographic and clinical characteristics (such as age,
gender, education level, MoCA score, HAMA score, BDI score,
ambulatory EEG-related variables, and ASM-related variables)
on the alternation rate. The ambulatory EEG-related variables
were the number of IEDs, total duration of IEDs, and presence
or absence of IEDs. The medication-related variable was the
ASM used (namely, valproic acid, lamotrigine, carbamazepine,
oxcarbazepine, levetiracetam, phenytoin, or phenobarbital).

Multivariable linear regression analysis was used, with p >

0.1 as the exit criterion and p < 0.05 as the entry criterion,
to evaluate the factors correlated with the alternation rate. The
dependent variable was the BR alternation rate. The independent
variables included age, gender, education level, MoCA score,
HAMA score, BDI score, ambulatory EEG-related variables, and
ASM-related variables. Receiver operating characteristic (ROC)
curves of the BR alternation rate, MoCA score, and the two
variables combined were analyzed, and the area under the curve
(AUC) was calculated with 95% confidence intervals (95% CIs)
to assess specificity, sensitivity, Youden’s index (YI), and cut-off.
To further evaluate the predictive performance of BR alternation
rate and MoCA, we constructed a multivariable linear regression
model combined with k-fold cross-validation (43). The BR
alternation rate, the MoCA score and the combination of the
two variables were analyzed by using the model. In the model,
the value of k is set to 3. In 3-fold cross-validation, the date set
is split into 3-folds and the method is repeatedly performed 3
times. Each time one of the k folds is used for the test. A model
is trained using k-1 of the folds as training sets (44). The ROC
response of different training sets is obtained from the trained
model. Performance of the prediction model was evaluated as
the average area under the ROC curve (AUC), sensitivity, and
specificity across all k trains are then computed. A p < 0.05
(2 tailed) was considered significant for all tests. All statistical
analyses were conducted using Statistical Package for the Social
Sciences (SPSS) version 26.0 (International Business Machines
Corp., Armonk, NY, USA).

RESULTS

Subject Characterization
The demographic and clinical characteristics of the total IGE
group, the two IED-stratified IGE subgroups (AB-AEEG and N-
AEEG), and the HC group are summarized in Table 1. There
were no significant differences in age, gender, years of education,
and MoCA score. As expected, there were significant differences
in BDI and HAMA scores between the total IGE group and
HC group (Z = −3.773, p < 0.001; Z = −4.109, p < 0.001,
respectively). BDI and MAHA scores also differed significantly
among the HC, AB-AEEG, and N-AEEG groups (χ2

= 16.492, p
< 0.001; χ2

= 21.214, p< 0.001, respectively). Post-hoc pair-wise
comparisons revealed that BDI score was significantly higher in
the AB-AEEG group than the HC group (p < 0.001) but did not
differ between the N-AEEG and HC groups (p = 0.220), or the
N-AEEG and AB-AEEG groups (p = 0.287). The HAMA score
was also significantly higher in the AB-AEEG group than the HC
group (p < 0.001) but did not differ between the N-AEEG and

HC groups (p= 0.090), or the N-AEEG and AB-AEEG groups (p
= 0.312) (Table 1, Figure 1).

Accuracy of the BR Test
Univariate correlation analysis showed that the BR alternation
rate between trial blocks 1 and 3 were well correlated within
groups (IGE: r = 0.781, p < 0.001; AB-AEEG: r = 0.768, p
< 0.001; N-AEEG: r = 0.805 p < 0.001; HC: r = 0.804, p
= p < 0.001), indicating good within-subject consistency. The
alternation rate accuracies in catch trials were above 95% in all
groups (IGE: 98.51 ± 4.17; AB-AEEG: 98.46 ± 4.48; N-AEEG:
98.64 ± 5.06; HC: 98.93 ± 3.78), indicating high task reliability.
No significant differences in catch trial accuracy were found
among the IGE, AB-AEEG, N-AEEG, and HC groups (Table 2).

Mean BR Alternation Rates
The BR alternation rate was significantly lower in the IGE group
compared with the HC group (0.34 ± 0.13 vs. 0.43 ± 0.10, t =
−4.364, p < 0.001) (Table 2). One-way ANOVA also revealed
a significant difference in alternation rate among the HC, AB-
AEEG, and N-AEEG groups (F = 44.962, df = 2, p < 0.001).
Furthermore, the Bonferroni corrected t-test revealed that the BR
alternation rate was significantly slower in the AB-AEEG group
compared with that in the N-AEEG and HC groups (0.28 vs.
0.46Hz, p < 0.001; 0.28 vs. 0.43Hz, p < 0.001) but did not differ
between theN-AEEG andHC groups (0.46± 0.14 vs. 0.43± 0.10,
p= 0.348) (Table 2, Figure 2).

Correlations Between BR Alternation Rate
and Clinicodemographic Characteristics in
IGE
To identify demographic and clinical characteristics influencing
the BR alternation rate, we first conducted univariate analyses
among IGE patients. Both the AB-AEEG and MoCA scores were
significantly correlated with the alternation rate in IGE patients (r
= 0.584, p< 0.001; r= 0.298, p= 0.004, respectively), while there
were no significant correlations between the alternation rate and
age, gender, education level, ASM-related variables, BDI score,
and HAMA score (Tables 3, 4).

Factors Independently Associated With
Binocular Rivalry Alternation Rate in IGE
A stepwise linear regression model (including age, gender,
education level, MoCA score, HAMA score, BDI score,
ambulatory EEG-related variables, and ASM-related variables)
demonstrated AEEG status [β, 0.173; standard error (SE), 0.022;
p < 0.001] and MoCA score (β, 0.013; SE, 0.004; p = 0.003)
as independent factors associated with the BR alternation rate
(Table 5). These models for ambulatory EEG and the MoCA
score explained 41.0% and 8.9% of the variance in alternation
rates, respectively.

Discrimination Power of BR Alternation
Rate and MoCA Score in IGE
Diagnostic efficiency of the BR alternation rate and MoCA score
was evaluated using ROC analysis, which yielded AUC values
of 0.881 (95% CI = 0.801–0.961, p < 0.001) and 0.566 (95%
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TABLE 1 | Demographic and clinical characteristics of the participants.

Item IGE IGE HC

(n = 94) AB-AEEG N-AEEG (n = 62)

(n = 64) (n = 30)

Age (years), mean ± SD 18.81 ± 5.61 18.31 ± 5.61 19.87 ± 5.54 19.19 ± 4.41

(range) (10–37) (10–37) (10–33) (12–30)

Female, n (%) 46 (48.94%)* 33 (51.56%)* 13 (43.33%)* 34 (54.84%)*

Education (years), mean ± SD 8.96 ± 2.81 8.63 ± 2.43 9.68 ± 3.41 9.27 ± 2.21

BDI, M (P25, P75) 5.00 (2.75, 9.00)a 6.00 (3.00, 9.00)b 5.00 (1.00, 6.25) 2.50 (0.00, 5.00)ab

HAMA, M (P25, P75) 4.00 (2.00, 7.00)a 5.00 (2.00, 7.00)b 3.50 (1.00, 5.50) 2.00 (0.00, 3.00)ab

MoCA, mean ± SD 25.39 ± 5.44 25.23 ± 2.42 25.73 ± 2.50 26.06 ± 1.96

*Chi-square test (χ2
= 0.521, p= 0.470; (χ2

= 1.075, p= 0.584). ap< 0.001, bp< 0.001. IGE, idiopathic generalized epilepsy; AB-AEEG, abnormal ambulatory electroencephalogram;

N-AEEG, normal ambulatory electroencephalogram; HC, healthy control; BDI, Beck Depression Inventory; HAMA, Hamilton Anxiety Scale; MoCA, Montreal Cognitive Assessment; SD,

standard deviation; M, median; P25, 25th percentile; P75, 75th percentile.

FIGURE 1 | Differences in BDI and HAMA scores among groups. IGE, idiopathic generalized epilepsy; AB-AEEG, abnormal ambulatory electroencephalogram;

N-AEEG, normal ambulatory electroencephalogram; HC, healthy control; BDI, Beck Depression Inventory; HAMA, Hamilton Anxiety Scale. (A) BDI score was higher in

the IGE group than HC group (Z = −3.773, p < 0.001). (B) BDI scores of the three groups (AB-AEEG, N-AEEG, and HC). BDI score was higher in the AB-AEEG

group than HC group (χ2
= 16.492, p < 0.001). (C) HAMA score was higher in the IGE group than HC group (Z = −4.109, p < 0.001). (D) HAMA scores of the three

groups, The HAMA score was significantly higher in the AB-AEEG group than HC group (χ2
= 21.214, p < 0.001).
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TABLE 2 | BR alternation rates of different IGE groups and subgroups.

Item IGE IGE HC

(n = 94) AB-AEEG N-AEEG (n = 62)

(n = 64) (n = 30)

Catch trial accuracy (%), mean ± SD 98.51 ± 4.71 98.46 ± 4.48 98.64 ± 5.06 98.93 ± 3.78

Trial 1.vs. Trial 3, r 0.781* 0.768* 0.805* 0.804*

Mean rivalry rate (Hz), mean ± SD 0.34 ± 0.13c 0.28 ± 0.07de 0.46 ± 0.14e 0.43 ± 0.10cd

Median rivalry rate (Hz), mean ± SD 0.31 ± 0.01c 0.27 ± 0.01de 0.44 ± 0.03e 0.40 ± 0.01cd

Mode (Hz), mean ± SD 0.15 ± 0.01 0.15 ± 0.01 0.23 ± 0.03 0.24 ± 0.01

Variance (Hz), mean ± SD 0.017 ± 0.01 0.005 ± 0.01 0.027 ± 0.03 0.011 ± 0.01

*Pearson correlation analysis. cp < 0.001, dp < 0.001, ep < 0.001. IGE, idiopathic generalized epilepsy; AB-AEEG, abnormal ambulatory electroencephalogram; N-AEEG, normal

ambulatory electroencephalogram; HC, healthy control; SD, standard deviation.

FIGURE 2 | Scatter diagram of rivalry rates for AB-AEEG, N-AEEG and HC.

AB-AEEG, abnormal ambulatory electroencephalogram; N-AEEG, normal

ambulatory electroencephalogram; HC, healthy control; One-way ANOVA

demonstrated a statistical difference in alternation rate among the HC,

AB-AEEG, and N-AEEG groups (F = 44.962, p = 0.000). BR alternation rate

was significantly slower in the AB-AEEG group compared to the N-AEEG and

HC groups (0.28 vs. 0.46Hz, p < 0.001; 0.28 vs. 0.43Hz, p < 0.001). There

was no difference between N-AEEG and HC groups (p = 0.348). ***p < 0.001.

CI = 0.441–0.691, p = 0.307), respectively. The ROC curve of
the BR alternation rate distinguished AB-EEG from N-AEEG
subjects with 90.00% sensitivity, 76.90% specificity, and YI of
0.681 at a cut-off of 0.391Hz (Figure 3). At this cut-off, the false-
positive rate (N-AEEG identified as AB-AEEG) was 9.68%. The
ROC curve of theMoCA score yielded 43.30% sensitivity, 67.20%
specificity, and a YI of 0.105 at a cut-off score of 26.5. The ROC
curve combining both the BR alternation rate and MoCA score
yielded an AUC value of 0.894 (95% CI= 0.822–0.966, p< 0.001)
(Figure 4). We also evaluated the predictive performance of BR
alternation rate, MoCA score, and the combination of both the
two variables using k-fold cross-validation, which yielded average
AUC values of 0.870, 0.584 and 0.847, average sensitivity values
of 89.36%, 92.73% and 91.28%, and average specificity values of
62.25, 13.42, and 61.78%, respectively (Figures 5–7).

Detection of IEDs From Ambulatory EEG
and the Correlation Between the IEDs
Burden and BR Rate
We also determined the number and total duration of IEDs
in IGE patients with epileptiform discharges to assess the
potential relationship with BR rate. The median of the number
of IEDs was 9.50 [4.00–17.75] and the median of the total
duration of IEDs was 9.80 s [4.90–24.9 s]. To examine if the
IED burden influenced the BR alternation rate, we conducted
Pearson correlation analyses. Indeed, the number of IEDs was
significantly correlated with the alternation rate in IGE patients
(r = 0.296, p = 0.018), while there was no significant correlation
between the alternation rate and total duration of IEDs (r =

0.097, p = 0.445). To examine whether the number of IEDs
is independently associated with the BR rate, we constructed
a forward stepwise linear regression model (including the total
duration of IEDs, age, gender, education level, MoCA score,
HAMA score, and BDI score). The results demonstrated that the
number of IEDs [β, 0.001; standard error (SE), 0.001; p= 0.025] is
an independent factor influencing BR alternation rate in patients
with IEDs (Table 6). This model explained 18.6% of the variance
in BR alternation rates.

DISCUSSION

The clinical significance of bistable perceptual dynamics is well
documented, including numerous studies reporting abnormal
bistable perception among subjects with pathological conditions
compared with healthy subjects (30), Freyberg et al., 2015,
(45–49). In the current study, we demonstrated that patients
with IGE exhibit slower alternation rates than HCs during a
BR task. In other words, bistable perceptual alternation rates
during BR are slower in IGE patients, which may reflect
abnormalities in cortical dynamics. However, this abnormality
was specific to patients with IEDs, as patients without such
discharges on the ambulatory EEG (the N-AEEG subgroup)
exhibited BR alternation rates roughly equivalent to HCs. These
results indicate that IEDs transiently disrupt the neural processes
mediating perceptual switching in the BR task.
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TABLE 3 | Correlations of demographic and clinical characteristics with rivalry alternation rate in the IGE group (n = 94).

Pearson correlation Age Gender Years of education AEEG MoCA BDI HAMA

Rivalry rate (Hz) r 0.009 −0.072 0.133 0.584*** 0.298** −0.127 −0.175

p 0.928 0.487 0.200 0.000 0.004 0.221 0.092

***P < 0.001. **p < 0.01. AEEG, ambulatory electroencephalogram; MoCA, Montreal Cognitive Assessment; BDI, Beck Depression Inventory; HAMA, Hamilton Anxiety Scale.

TABLE 4 | Summary of AEEG status, ASMs use, and correlations with rivalry

alternation rates in IGE patients.

Mean (SD) or r p-value

ASMs treatment −0.143 0.234

Monotherapy (n = 51) 0.380 (0.152)

Polytherapy (n = 20) 0.325 (0.098)

Use of valproic acid 0.755

Yes (n = 26) 0.376 (0.149)

No (n = 45) 0.359 (0.136)

Use of lamotrigine 0.480

Yes (n = 13) 0.384 (0.139)

No (n = 58) 0.362 (0.142)

Use of Levetiracetam 0.727

Yes (n = 2) 0.312 (0.037)

No (n = 69) 0.367 (0.142)

Use of Carbamazepine 0.680

Yes (n = 4) 0.366 (0.189)

No (n = 67) 0.366 (0.137)

Use of Oxcarbazepine 0.181

Yes (n = 4) 0.288 (0.113)

No (n = 67) 0.372 (0.142)

Other ASMs (n = 3)

AEEG 0.584 0.000***

Normal (n = 30) 0.455 (0.142)

Abnormal (n = 64) 0.288 (0.886)

***There was significant correlation between AEEG with rivalry rates, P < 0.001. ASMs,

antiseizure medicines; AEEG, ambulatory electroencephalogram.

We then assessed whether various clinical and demographic
factors influence the BR alternation rate. Spearman correlation
analysis indicated that the use of individual ASMs has no effect,
nor did multiple demographic factors, further underscoring the
importance of IEDs for BR. We also explored this influence
by stepwise linear regression, after adjusting for potential
confounding factors (including age, gender, education level,
MoCA score, HAMA score, BDI score, and ASM-related
variables), which confirmed that IEDs on the ambulatory EEG
is an independent predictor of slower BR alternation rate. ROC
analysis showed that a slow BR alternation rate predicted the
presence of an abnormal ambulatory EEG with an AUC value
of 0.881 and 90.00% sensitivity and 76.90% specificity. We also
evaluated the diagnostic efficiency of the MoCA score using
ROC, which yielded an AUC value of 0.566, and p > 0.05,
indicating that the MoCA score alone has little predictive power.
Further, the ROC curve combining the BR alternation rate and

TABLE 5 | Stepwise linear regression showing factors independently associated

with rivalry rate in patients with IGE.

The alternation rates of binocular rivalry (n = 94)

β SE beta VIF P-value

AEEG 0.173 0.022 0.617 1.009 0.000***

MoCA 0.013 0.004 0.239 1.009 0.003**

***p < 0.001. **p < 0.01. AEEG, ambulatory electroencephalogram; MoCA, Montreal

Cognitive Assessment; β, non-standardized coefficient; SE, standard error; beta,

standardized coefficient; VIF, variance inflation factor.

FIGURE 3 | Receiver operating characteristic (ROC) curve of the BR rivalry

rate. ROC analysis was used to assess the diagnostic efficiency. The area

under the curve (AUC) was 0.881 (95% CI = 0.801–0.961), sensitivity 90.00%,

specificity 76.90%, and YI was 0.681. The ROC curve is shown in green and

the reference line in red.

MoCA score yielded an AUC value only slightly higher than
the BR alternation rate alone (0.894). These results indicate
that BR alternation rate can be used to distinguish IGE cases
complicated with IEDs. Similarly, Pitts et al. (50) demonstrated
that EEG source imaging provides high temporal resolution and
whole-brain spatial coverage for binocular rivalry. Therefore,
BR could be a valuable auxiliary behavioral tool to diagnose
and dynamically monitor disease status in IGE patients. The
mechanisms underlying the influence of IEDs on BR alternation
rate require further investigation.

To examine the relationships between BR alternation rate
and both the number and total duration of IEDs, we conducted
Pearson correlation analyses and found that the number of IEDs
was significantly associated with alternation rate in IGE patients,
while there was no correlation between alternation rate and total
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FIGURE 4 | Receiver operating characteristic (ROC) curve combining both the

BR alternation rate and MoCA score. ROC analysis was used to assess the

diagnostic efficiency. The area under the curve (AUC) was 0.894 (95% CI =

0.882–0.966). The ROC curve is shown in blue and the reference line in red.

FIGURE 5 | Receiver operating characteristic (ROC) curve of BR alternation

rate in k-fold cross-validation. K-fold cross-validation was used to evaluate the

predictive performance of BR alternation rate and MoCA. The average area

under the curve (AUC) was 0.870, sensitivity 89.36%, and specificity 62.25%.

duration of IEDs. Moreover, a forward stepwise linear regression
model adjusting for potential confounding factors (including the
total duration of IEDs, age, gender, education level, MoCA score,
HAMA score, and BDI score) confirmed that the number of IEDs
was an independent factor associated with the BR rate in patients
with IEDs.

There are several possible mechanisms for the slower rate
of binocular rivalry in IGE patients with higher IED frequency.
First, interictal discharges may transiently disrupt perceptual
dynamics, thus slowing the rate of BR. Tong et al. (2) proposed a
hybrid model based on previous research that may account for

FIGURE 6 | Receiver operating characteristic (ROC) curve of MoCA in k-fold

cross-validation. K-fold cross-validation was used to evaluate the predictive

performance of MoCA. The mean area under the curve (AUC) was 0.584,

sensitivity 92.73%, and specificity 13.42%.

FIGURE 7 | Receiver operating characteristic (ROC) curve combining both the

BR alternation rate and MoCA score in k-fold cross-validation. K-fold

cross-validation was used to evaluate the predictive performance. The mean

area under the curve (AUC) was 0.847, sensitivity 91.28%, and specificity

61.78%.

the paradoxical effects of inhibitory and excitatory circuits on
BR and even provides insights into the neural bases of visual
awareness itself. Brain imaging studies have also indicated that
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TABLE 6 | Forward stepwise linear regression showing factors independently

associated with rivalry rate in patients with IEDs.

The alternation rates of binocular rivalry (n = 64)

β SE beta VIF P-value

IEDs number 0.001 0.001 0.361 1.651 0.025*

*P < 0.05. IEDs, interictal epileptiform discharges; β, non-standardized coefficient; SE,

standard error; beta, standardized coefficient; VIF, variance inflation factor.

bistable perception is associated with shifting neural dynamics
within both early visual areas (6) and higher centers such as
the frontal and parietal cortex (7–11). Epileptiform discharges
can cause an imbalance in the cortex (21–24). Our research
confirmed that a greater number of IEDs (but not longer
duration) independently reduces the BR rate, suggesting that the
transient cortical imbalance caused by interictal discharges may
interfere with bistable perception.

Second, IEDs may cause an acute decline in cognitive function
(51–53), which in turn slows the BR rate. The MoCA score
in the AB-AEEG group was slightly lower than in the N-
AEEG and HC groups, suggesting that interictal discharges
impair cognitive functions related to bistable perception.
Moreover, univariate analyses revealed that the MoCA score
was significantly correlated with the BR rate in IGE patients,
and stepwise linear regression revealed that the MoCA score
was an independent predictor of the BR alternation rate after
adjusting for potential confounding factors. However, there is
disagreement about whether cognitive function influences the
BR alternation rate. Zhang et al. (54) posited that attention
may affect alternation rate, but Vierck et al. (55) reported
that the BR alternation rate was independent of cognitive
functions such as memory and attention. Stepwise linear
regression identified also independent influences of AEEG
status and MoCA score on the BR alternation rate. While
MoCA score explained only 8.9% of the variance, AEEG score
explained 41.0%. Furthermore, ROC analysis revealed that the
BR alternation rate can distinguish IGE patients with and
without IEDs, while the MoCA score has little predictive
power. Our results suggest that the influence of cognitive
capacity on the BR alternation rate is statistically significant
but limited.

Third, the ASMs taken by these patients may affect BR
rate indirectly by disrupting cognitive function. ASMs are
known to slow cognitive function, including valproic acid (56),
benzodiazepines, and phenobarbital (57). As patients were on
different medications, the influences of ASM type and dose
cannot be ruled out. The effects of ASMs on binocular rivalry
are complex because of the variety of mechanisms underlying
ASM clinical efficacy (58). Due to the sample size, the influences
of different ASMs on BR rate could not be evaluated. In future
studies, the impact of different drug types and dosages on
binocular rivalry could be explored by increasing the sample
size and stratifying subgroups according to types and dosages
of ASMs.

Fourth, IEDs may disrupt excitatory circuits, inhibitory
circuits, or both required for perceptual switching. Epileptic
seizures arise from an imbalance between glutamatergic
excitation and GABAergic inhibition (21–24). Binocular rivalry
is linked to cortical E/I balance (30–32), Freyberg et al., 2015,
(33, 34). Thus, we speculate that IEDs may disrupt the balance
between glutamatergic excitation and GABAergic inhibition
in the cortex, thereby affecting the BR rate of IGE patients.
However, the mechanism of cortical E/I imbalance in epileptic
seizures is based on animal models and has not been verified
in humans with IGE. Further, different epilepsy syndromes,
may arise through distinct pathogenic mechanisms. Thus, the
effects of interictal discharge frequency on BR in IGE may be
highly patient-specific. A possible alternative mechanism is that
interictal discharges may transiently disrupt perceptual dynamics
or cognition, thus slowing the rate of BR, and different epilepsy
syndromes may have different mechanisms.

Anxiety and depression are common psychiatric
comorbidities in epilepsy, with incidence rates far exceeding
those of the general population (59–62). According to
epidemiological estimates, as many as 25% of epilepsy patients
suffer from anxiety (59). In our study, IGE patients obtained
higher HAMA scores than HCs, and the AB-AEEG group
obtained higher HAMA scores than the N-AEEG and HC
groups. A systematic review and meta-analysis also found
active depression in 23.1% of epilepsy patients, about 4–5 times
higher than in the general population (63). We also found
higher depression (BDI) scores among IGE patients, and higher
scores among the AB-AEEG group than the N-AEEG and HC
groups. Thus, IEDs may be associated with greater prevalence of
depression and anxiety.

Previous studies have suggested that BR alternation rate may
be influenced by participant mood. For instance, Bajwa et al.
(64) reported slower alternation rates in participants with major
depression. However, we found no correlation between BDI or
HAMA scores and alternation rate, in accord with Vierck et al.
(55) that depressed mood and anxiety have little influence on BR.
Thus, the presence of IEDs appears to be the predominant factor
influencing BR alternation rate among IGE patients.

While this study clearly demonstrates that IEDs interfere with
BR alternation and that the BR alternation rate can predict the
presence of IEDs, there are several limitations. First, the IED
frequency detected by a single 24-h AEEG trial may not be truly
representative as IED rates can fluctuate substantially over weeks
or months (65). However, in domestic hospitals and clinics,
24 h is the longest duration of EEG recording widely available.
This recording interval is also widely used for the prediction of
epilepsy recurrence after drug withdrawal. Dynamic monitoring
of electrical activity for a week or even a month is a better choice,
but it is more difficult to achieve in practical clinical research.
Second, there are many types of ASMs, and their mechanisms
of action are complex. Also, the ASM load affects epileptic
discharges. Therefore, the effects of individual ASM treatment
protocols on binocular rivalry are likely heterogeneous. This
study could not evaluate the impact of different ASMs on the BR
rate due to limited sample size. If possible, future studies should
explore the impact of drug type and dosage on BR in a larger
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cohort. Third, IGE is a group of clinical syndromes, including
many subtypes, with distinct etiologies. Therefore, mechanism
for the slower BR rate in IGE patients may be strongly patient
specificity. Again, due to the insufficient sample size, this study
could not evaluate the effects of different epilepsy subtypes on BR
rate. Fourth, we did not conduct extensive measures of cognitive
function, such as attention and executive function. In future
research, the impacts of different cognitive domains on the BR
rate will be assessed.

CONCLUSION

We demonstrate that an abnormally slow BR alternation rate
is strongly associated with the presence of interictal discharges
among IGE patients. The number of IEDs is an independent
factor influencing the BR rate. These results suggest that interictal
activity disrupts perceptual awareness, and that the BR may be
a valuable auxiliary behavioral task to diagnose and dynamically
monitor IGE patients with IEDs.
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