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Parkinson’s disease is the second most common neurodegenerative disease worldwide

reducing cognitive and motoric abilities of affected persons. Freezing of Gait (FoG) is

one of the severe symptoms that is observed in the late stages of the disease and

considerably impairs the mobility of the person and raises the risk of falls. Due to

the pathology and heterogeneity of the Parkinsonian gait cycle, especially in the case

of freezing episodes, the detection of the gait phases with wearables is challenging

in Parkinson’s disease. This is addressed by introducing a state-automaton-based

algorithm for the detection of the foot’s motion phases using a shoe-placed inertial

sensor. Machine-learning-based methods are investigated to classify the actual motion

phase as normal or FoG-affected and to predict the outcome for the next motion

phase. For this purpose, spatio-temporal gait and signal parameters are determined

from the segmented movement phases. In this context, inertial sensor fusion is applied

to the foot’s 3D acceleration and rate of turn. Support Vector Machine (SVM) and

AdaBoost classifiers have been trained on the data of 16 Parkinson’s patients who

had shown FoG episodes during a clinical freezing-provoking assessment course. Two

clinical experts rated the video-recorded trials and marked episodes with festination,

shank trembling, shuffling, or akinesia. Motion phases inside such episodes were

labeled as FoG-affected. The classifiers were evaluated using leave-one-patient-out

cross-validation. No statistically significant differences could be observed between the

different classifiers for FoG detection (p >0.05). An SVM model with 10 features of the

actual and two preceding motion phases achieved the highest average performance

with 88.5 ± 5.8% sensitivity, 83.3 ± 17.1% specificity, and 92.8 ± 5.9% Area Under

the Curve (AUC). The performance of predicting the behavior of the next motion phase

was significantly lower compared to the detection classifiers. No statistically significant

differences were found between all prediction models. An SVM-predictor with features

from the two preceding motion phases had with 81.6 ± 7.7% sensitivity, 70.3 ±
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18.4% specificity, and 82.8 ± 7.1% AUC the best average performance. The developed

methods enable motion-phase-based FoG detection and prediction and can be utilized

for closed-loop systems that provide on-demand gait-phase-synchronous cueing to

mitigate FoG symptoms and to prevent complete motoric blockades.

Keywords: Parkinson, freezing of gait, wearables, inertial measurement unit, machine learning,

neurorehabilitation, on-demand cueing, automation

1. INTRODUCTION

Parkinson’s disease (PD) is the second most common age-related
neurodegenerative disease and the most common movement
disorder (1). It is characterized by four cardinal and motor
disabling symptoms, bradykinesia, rigidity, tremor, and postural
instability. Deuschl et al. (2) reported that the prevalence of PD
worldwide is 8.5 million in 2017. The global incidence ranges
between 0.85 and 1.2 million. PD represents a major challenge
for society, manifested by an increasing strain on the health
care structures and the economy (3, 4). The progression of
the disease affects the patients heavily. The quality of life and
participation in social life are restricted due to the impairment
in mobility. No cure is available at the moment for PD.
The most common treatment is dopaminergic medication. The
effects of dopaminergic medications diminish over time and
become less beneficial with the development of the disease.
Higher doses of dopaminergic medication can result in induced
dyskinesia (involuntary movements), which can limit the dose
of the medication (5). Gait and posture impairments are often
resistant to the pharmacological treatment, and worsen as the
disease progresses.

One of the most disabling symptoms of PD is Freezing of
Gait (FoG), which typically arises in the late stages of the disease.
FoG appears in episodes during which a severe impairment of
mobility or a motoric blockade occurs despite the intention to
move. FoG episodes are described by patients as “as if the feet
were glued to the floor” (6). Ge et al. (7) reported that the
average prevalence of FoG in PD is 39.9% and that with disease
progression and duration an increasing prevalence is associated.
The highest prevalence of FoG at 70.8% was observed in patients
who were affected for 10 or more than 10 years by PD. FoG
episodes are brief episodes in the range of only a few seconds.
Longer episodes that extend an interval of 30 s are considered
rare (8). Due to FoG, patients are exposed to a higher risk of
falls, which can lead to physical injuries, fractures, disabilities,
and even death (9). The causes of FoG are still debated and
remain to be revealed (10), although some scenarios are reported
to trigger FoG episodes, such as gait initiation, turning, arriving
at a destination, walking through narrow spaces such as doors,
and frames, and avoiding obstacles. These scenarios are used
in various clinical trials to provoke FoG episodes such as in
the test proposed by Ziegler et al. (11). Different subtypes of
FoG symptoms can be identified and categorized into akinesia
(lack of movement), festination (characterized by small, high
frequent steps), shank trembling (inability to move followed by
tremor in the affected lower limb), and shuffling (inadequate

lifting of the feet off the ground during steps). Shuffling and
festination often occur together. Shank trembling, festination,
and shuffling are the most common types. Akinesia is rarely
observed and its presence is mostly observed in severe cases of
PD (8).

A non-invasive treatment for gait disorders and FoG is
the application of external stimuli also referred to as cueing.
The use of external stimuli in different modalities (acoustic,
visual, somatosensory, etc.) can counter FoG symptoms and
re-initiate movement as well as improve gait parameters such
as step length or cadence [see, e.g., (12–14)]. Cueing can be
deployed by using fixed cueing patterns or synchronized to
gait events/phases. In some publications, e.g., in Mancini et al.
(12), this is named “open loop” and “closed loop,” respectively.
Another important classification is whether cueing is applied
consistently, i.e., regardless of the presence of FoG symptoms,
or adaptively (on-demand), when FoG symptoms occur or have
been predicted. Also here, the terms “open loop” and “closed
loop” are sometimes used to distinguish these two modes (14).
The benefits of consistent cueing may be limited, since cues
are provided irrespective of how well a person follows them.
Adaptive cueing provides feedback in real-time to the user about
performance which may help to improve movement patterns
(14). In addition, for usage in daily life, consistent cueing might
be distracting and a habituationmight mitigate positive effects on
the gait.

Recent clinical studies indicate that consistent gait-phase-
synchronous electrical or tactile stimulation can successfully
improve spatio-temporal gait parameters and consequently
reduce FoG systems in PD (12, 15–18). Such closed-loop
systems require sensors, like simple foot switches or inertial
measurement units, to detect gait events and phases. The
stimulation intensity can be at a somatosensory level or at a
higher level causing functional muscle contractions. For the
latter, drop foot stimulation, i.e. the induction of foot lift by
electrical stimulation of the N. peroneus during the swing phase
of gait, is one example.

None of the reported studies on gait-phase-synchronous
stimulation applied on-demand cueing. Taylor et al. (18) used
a commercially available drop foot stimulator which is usually
prescribed as a technical aid to stroke patients for permanent
use. For daily use in PD, an adaptive form of cueing is highly
recommended as gait patterns and deficits fluctuate over the day
depending on the current effect of medication and on/off states.
The adaptive initiation of cueing by the early detection or even
prediction of festination, shuffling, shank trembling might help
to reduce or even stop these symptoms and to prevent akinesia.
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The on-demand approach requires real-time capable sensor
systems andmethods for FoG detection or even prediction. In the
last years, there have been many reports on developed methods,
ranging from simple threshold-based methods to deep learning
models [see (19) for an overview]. To motivate our own research,
we will shortly review methods solely based on inertial sensors
placed at the hip or lower limbs as such a setup enables also
a real-time detection of gait events and phases for closed-loop
cueing. Inertial sensors are becoming increasingly widespread as
they capture movement in 3D, are wireless, low cost, lightweight,
and easy to wear on the body. A review of methods for gait phase
detection can be found in (20).

Most existing FoG detection algorithms determine signal
features in the time and frequency domain from a sliding time
window. Moore et al. (21) calculated a parameter called Freezing
Index (FI) by dividing the frequency spectrum of the vertical leg
acceleration of a shank-worn sensor in a normal locomotor band
(0–3Hz) and a freeze band (3–8Hz). The FI was calculated as
the ratio of spectral power of the two bands in a window of 6 s.
The threshold for FI was set individually for each patient. Bächlin
et al. (22) extended this method by another threshold parameter
to detect standing and walking. They also reduced the window
size to 4 s to lower the latency. They reported FoG detection
achieved 73% sensitivity and 81% specificity. To improve the
FoG detection in window-based approaches many researchers
tried using various machine learning techniques. Mazilu et al.
(23) extracted various features from the inertial data at different
body positions in order to find the best position for detecting FoG
episodes. They achieved 66% sensitivity and 95% specificity using
patient-independent Random Forest and AdaBoost classifiers.
In Naghavi et al. (24), two accelerometers were placed at the
ankles and several patient-independent classifiers were trained
on the data of seven patients. The classifiers used frequency
and time-domain features from a sliding windows of 2 s. A K-
Nearest-Neighbors (KNN) model showed the best sensitivity
of 90% with a specificity of 82%. Reches et al. (25) trained a
Support Vector Machine (SVM) classifier with various time and
frequency-domain features extracted from inertial sensors at the
ankle and lower back. The reported results were 80% sensitivity
and 82.5% specificity. Camps et al. (26) used a Convolutional
Neural Network (CNN) model trained on the inertial data of
the left waist. The model achieved an accuracy of 89%. Sigcha
et al. (27) used the same data set as Camps et al. (26) to train
a combined CNN and Recurrent Neural Network (RNN) model.
They reported an accuracy of 85%. All window-based approaches
suffer from a relatively high latency caused by the window size.
This fact limits the use in closed-loop cueing systems where
gait phases are usually much shorter than the latency of FoG
detection. Therefore, it is inevitable that some gait phases affected
by FoG will remain without the supporting stimuli. Furthermore,
it is challenging to implement CNNs on a standard low-power
microcontroller with limited memory in a wearable device. In
addition, deep learning approaches, like CNN, require abundant
data sets that are difficult to obtain from clinical trials only. Data
collected during activities of daily living are more suitable but
often suffer from missing labels.

The following two approaches do not use sliding windows for
feature extraction. Borzì et al. (28) equipped patients with two
inertial sensors placed on each shin and performed a step-to-
step segmentation of the angular velocity signals and subsequent
feature extraction in both time and frequency domain. The
presented FoG detection algorithm has a reduced latency. As
for pre-FoG detection, the implemented classification algorithm
achieved 84.1% (85.5%) sensitivity, 85.9% (86.3%) specificity,
and 85.5% (86.1%) accuracy in patients on (off) therapy. Suppa
et al. (29) used two inertial sensors at both shins and an
algorithm based on a time-domain analysis of the fused sensor
signals. For a patient-individual manual tuning of the model
thresholds, a sensitivity of 93.41% and specificity of 98.51% have
been reported.

Only a few studies used spatio-temporal gait parameters from
inertial sensor fusion for real-time FoG detection. Azevedo Coste
et al. (30) proposed a new real-valued parameter called FoG
Criterion based on the estimated step length and observed
cadence. FoG is then detected based on a simple threshold
condition. In Dvorani et al. (31), also a threshold-based approach
is introduced with a real-valued parameter, named GaitScore,
to judge a motion phase of the foot as normal or FoG-affected.
The GaitScore uses the observed extrema of the pitch angle
during the foot’s motion phases. In Ginis et al. (32), estimated
spatio-temporal parameters have been employed to provide an
on-demand auditory cueing or feedback to PD patients when the
parameter left predefined healthy ranges. Djurić-Jovičić et al. (33)
developed a rule-based system with estimated spatio-temporal
gait parameters as inputs derived from two inertial sensors placed
laterally along the shank segment of each leg linked with an
automatic gait segmentation. Subtypes of FoG have been detected
with sensitivities above 78% and specificities above 94%. By now,
the tuning of the thresholds/ranges of the listed approaches with
spatio-temporal gait parameters is cumbersome and a patient
individual tuning is recommended for optimal results. The
derived scores in Dvorani et al. (31) and Azevedo Coste et al.
(30) combine several estimated parameters by using gait-expert-
motivated equations. The optimality of such equations is not
guaranteed. The latency of approaches with spatio-temporal gait
parameters is not fixed and depends on the gait phase duration.
This should be in general shorter than the latency of window-
based approaches.

In this contribution, we investigate for the first time the
use of spatio-temporal gait parameters for machine learning to
classify a completed foot motion phase into normal or FoG-
affected. We believe that such a procedure will exploit the
given features in the best possible manner for FoG-detection
and that the resulting classifier will be useful for on-demand
gait-phase-synchronous cueing. The used spatio-temporal gait
features are calculated from the actual motion phase after its
completion and from optional older motion phases. In addition,
we aim to predict whether the next motion phase will show FoG
symptoms by using features of previous phases. The gait phase
detection introduced by Dvorani et al. (31) will be deployed
as the basis to segment the motion phases. Finally, the derived
classifiers for FoG detection and prediction will be discussed with
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respect to their implementation effort on wearable closed-loop
stimulation systems.

In the following Chapter 2, the underlying gait-phase-
detection algorithm and the machine-learning-based
detection/prediction of FoG motion phases are described.
After that, the data set and the evaluation methods are presented.
The results are reported in Chapter 3 followed by a discussion
and conclusions.

2. METHODS

2.1. Gait Phase Detection
The gait-phase-detection algorithm (GPD), initially proposed
in Dvorani et al. (31), detects the gait phases based on the
kinematic data of the foot recorded with an inertial sensor
positioned on the foot’s instep. The orientation of the sensor is
fixed with the z-axis perpendicular to the foot pointing upwards
and the y-axis pointing in the negative walking direction. The
position and orientation of the inertial sensor are shown in
Figure 1. Inputs to the algorithm are the linear acceleration
vector a(t) ∈ R3 and angular velocity vector ω(t) ∈ R3

X

Y

Z

FIGURE 1 | Inertial sensor position and orientation.

of the foot at a sample rate of 200Hz. The algorithm detects
three phases of the Parkinsonian gait, namely rest phase, during
which no foot activities are recorded, unrest, and motion
phase. The latter represents a sub-phase of the unrest phase
and indicates an effective displacement or orientation change.
During the unrest phase, foot activities are detected. Assuming
a healthy gait cycle, the motion phase would correspond to
the swing phase, with the beginning and end of the motion
phase corresponding to toe-off and initial contact, respectively.
In the case of the Parkinsonian gait cycle, also shuffling steps
or lifting of heel caused by shank trembling without forward
movement are counted as motion phases. We introduce a
control state Z, which controls the online search for a new
motion phase within a single detected unrest phase. This occurs
in case of a festination or non-alternating step sequences. In
Figure 2, the gait-phase-detection algorithm is represented as a
state machine.

The first phase of the algorithm estimates the foot orientation
continuously from the recorded linear acceleration and angular
rates a(t),ω(t) ∈ R3 and extracts the Euler angles φ(t) ∈ R3. As
no magnetometer readings are used, slow drift in the heading is
taking place. The orientation estimation algorithm is described in
Seel and Ruppin (34). Using the foot orientation quaternion, the
linear acceleration and angular velocity vectors are transformed
from the intrinsic measurement frame of the inertial sensor in the
global coordinate system. The transformed vectors are denoted as
ag(t),ωg(t) ∈ R3, respectively.

Next, the offsets in the aforementioned vectors are estimated
during the rest phase using a moving average window of size
nd = 10 and subtracted from the vectors. The detrended
vectors are denoted as ad,g(t),ωd,g(t) ∈ R3. From the
extracted Euler angle, the initial angles are estimated during
the rest phase using the previous moving average filter method.
These angles are then subtracted from the Euler angles φ(t).
The resulting angle vector is denoted as φd(t) ∈ R3. The
pitch angle φd, pitch is defined as positive when the heel
is above the toes and negative when the heel is below
the toes.

FIGURE 2 | GPD state machine.
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2.1.1. Detecting Rest and Unrest Phase
The transition between rest and unrest phases is detected
using a threshold-based approach. If the Euclidean
norm of the linear acceleration and angular velocities
(

‖ad,g(t)‖2 < arest
)

∧
(

‖ωd,g(t)‖2 < ωrest

)

lie below the defined
upper bounds arest,ωrest ∈ R>0 for at least nr ∈ N>0 consecutive
samples, then the algorithm will transition to a rest phase.
Analogously, the unrest phase will be detected if the previous
defined norms exceed the predefined thresholds (conditionA).

2.1.2. Detecting the Start of a Motion Phase
The motion phase is characterized by changes in foot orientation
or displacement relative to the last rest phase. The algorithm
exploits the pitch and roll angles of the foot to detect the start of
a motion phase. During forward movement of the foot, starting
from heel-off an increase in the foot pitch angle is observed. The
pitch angle reaches a local maximum before the swing phase on
toe-off (assuming a healthy gait cycle). Detecting a maximum in
the pitch angle of the foot φd,pitch > φp, that is greater than a
defined lower bound φp ∈ R, is the first condition B for detecting
the start of the motion phase.

The alternative condition B is based on the roll angle φd,roll ∈

R and the acceleration vector. If a correlation in the maxima
of roll angle and filtered acceleration norm is detected (both
maxima are at most 0.25s time-displaced), then a motion phase is
detected. The acceleration norm is filtered by means of a moving
average filter of window size na of seven samples to discard less
prominent local maxima caused by noise.

2.1.3. Detecting the End of the Motion Phase
The end of the motion phase is characterized by an abrupt change
of the acceleration as the cause of the initial contact of the foot
with the ground. This is indicated by a large norm in the jerk
signal j(t) ∈ R. However, a large jerk can also be observed at the
start of the motion phase. Therefore, the initial contact can only
be detected, after a defined time tmot ∈ R>0 since the start of the
motion phase has elapsed.

The jerk norm j(t) =

∣

∣

∣

∣

∣

∣

∣

∣

d(ad,g(t))

dt

∣

∣

∣

∣

∣

∣

∣

∣

2

is monitored from the

beginning of the motion phase t0 ∈ R>0. The algorithm detects
the end of the motion phase, if a large jerk norm exceeds the
maximal registered jerk norm by a factor α ∈ R>0 during the
gait cycle and if the horizontal velocity components are a factor
β ∈ R>0 less than the registered maxima during the motion
phase. These sub-conditions exploit that the velocity in the x-
y transverse plane (forward and sideward movement) reaches
a maximum velocity during the mid-motion phase and then
decreases until the end of the motion phase. The parameter β ∈

R>0 is a factor that determines the threshold as a function of the
maximum velocity during the motion phase. The velocity v(t) ∈
R3 is calculated using strap-down integration of the acceleration
vector ad,g during the motion phase.

D1 : j(t) > α · max
τ=[t0 ,t]

{

j(τ )
}

D2 : |vx(t)| < β · max
τ=[t0 ,t]

{

|vx(τ )|
}

∧ |vy(t)| < β · max
τ=[t0 ,t]

{

|vy(τ )|
}

,

for t > t0 + tmot

Furthermore, the end of the motion phase is also characterized
by a minimum in the pitch angle. At the start of the motion
phase, the pitch angle reaches a local maximum.During the swing
phase, the foot rotates in the opposite direction with the pitch
angle decreasing until initial contact. Alternative to the previous
condition, if a minimum in the pitch angle is found during the
motion phase, assuming the roll angle is below a defined bound
|φroll| < φr and |φpitch(t)| < κφpitch,max, then the end of the
motion phase is detected. The parameter κ ∈ R determines
the upper bound of the local minimum of the pitch angle for
detecting the end of the motion phase (condition E). The two
sub-conditions should prevent the algorithm from getting stuck
in a local minimum before the initial contact. Figure 3 displays
examples of normal and Parkinsonian gait cycles, respectively.

2.1.4. Reactivation of State Z

As already mentioned above, the state Z controls the start of
the search for the next motion phase. Initially, the state Z is
active when entering the unrest phase. It deactivates at the end
of each motion phase. In case that no rest phase is detected after
a completed motion phase within the interval tx ∈ R>0, then the
following conditions are validated:

F :φpitch(t)| < p1 ∧ |φroll(t)| < p1

G : var(||a(t)||2) < p2

If any of the above conditions is valid for at least nr ∈ N>0

consecutive samples or if the local maximum in the pitch angle
is larger than a threshold φthres ∈ R (condition H), then the
state Z is reactivated. The same fixed parameters are used for
the gait-phase-detection algorithm for all patients and are listed
in Table 1.

2.2. Feature Extraction
For detecting FoG-affected motion phases, we employ machine
learning methods. As inputs for the classification, spatio-
temporal gait and signal features are extracted from the recently
completed motion phase. Ten features are considered that
capture the dynamics, range, and kind of foot motion:

• Maximum of the foot acceleration norm,
• Maximum of the pitch angle,
• Minimum of the pitch angle,
• Stride length,
• Maximum gait velocity,
• Turning angle,
• Turned flag {0, 1},
• Maximum turn rate,
• Average turn rate, and
• Step duration.

The stride length and gait velocity are calculated using strap-
down integration. At the end of each motion phase, a
correction of the estimated velocities is carried out, based on
the constraint that the velocities at the end of the motion
phase are zero. The offset from the zero line is compensated
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FIGURE 3 | Examples of normal (A) and pathological (B) gait cycles and the corresponding acceleration norm, roll, and pitch angles. In (B), a shank trembling

episode during turning is displayed. During this episode, no rest phases are detected between motion phases. Furthermore, the changes in the pitch angle are smaller

and more frequent than during normal walking.

from the velocity vector and the integrated part of the
offset in the x-y plane is removed from the stride length.
The angles are obtained from the orientation estimation that
has been introduced in section 2.1. In addition, a turning
detection method was developed based on the jaw (heading)

angle of the foot. A monotonous increase or decrease of
this angle without zero crossings during a motion phase
indicates a turning action (turned flag set to one). The
turning angle corresponds to the yaw angle at the end of the
motion phase.
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TABLE 1 | Parameter values used in the gait-phase-detection algorithm.

Parameter Value Parameter Value

arest 0.5m/s2 α 1.2

wrest 0.11 rad s−1 β 0.6

1 0.25 s κ 0.8

nr 10 p1 0.75 ◦/s

φp 1 ◦ p2 1.5m/s2

φr 5 ◦ φthres 15 ◦

as 2m/s2 tmot 0.075 s

tx 0.1 s nd 10

na 7

In order to investigate the importance of the features, we
employed an univariate feature ranking based on the chi-square
test. The negative logarithm of the p-values of the chi-square test
is used as the importance value. Importance values above 1.3
indicate a p-value below 0.05 so that the feature is relevant for
machine learning.

2.3. Classification
In order to differentiate between FoG-affected and normal
motion phases, three different classifiers are trained, a SVM
classifier using all features with p < 0.05 of the chi-square test,
another SVM classifier using the five most important features
with p < 0.05, and an AdaBoost classifier using all features
with p < 0.05. For the hyperparameter tuning, a Bayesian
optimisation was carried out.

First, classifiers were trained on the features of the actual
motion phase (classifiersC0). To investigate whether information
from previous gait cycles can improve the detection of FoG-
affected motion phases, new classifiers were trained with
additional information from the two preceding motion phases
(classifiers C−2,−1,0). Furthermore, we investigated whether a
prediction of the next motion phase type (FoG or not) could
be made solely based on the features from the two preceding
motion phases (classifiers C−2,−1). For the classification training
and validation, we used the free softwaremachine learning library
scikit-learn (version 0.24.2) for Python (version 3.8.2).

2.4. Data Set
The data set used for training the model was recorded at
the Department of Neurology, Charité—Universitätsmedizin
Berlin. Idiopathic Parkinson’s patients, who showed Freezing
of Gait episodes, were recruited for the study. The performed
trials were reviewed and approved by the ethics committee of
the Charité–Universitätsmedizin Berlin. Written consent was
obtained from all subjects. The age range of the 16 recruited
patients was between 50 and 82 years (68 ± 9.2 years). The
recruited population consisted of 13 male and three female
patients, out of the population seven patients had a DBS implant.
Patients were recorded in individual conditions which revealed
FoG (medication on/off; DBS patients: stimulation on/off). The
scores of the Unified Parkinson’s Disease Rating Scale Part III
(UPDRS-III) were collected and ranged between 18 and 64,

including patients with mild and moderate motor impairments
(32.9±14.1).

Each patient performed two trials of the freezing assessment
course proposed by Ziegler et al. (11). This clinical test consists
of several scenarios, which can potentially trigger FoG episodes.
The patients start from a sitting position, stand up and walk
1 m, followed by two 360◦ turns in both directions within a
marked square (40 × 40 cm). Afterwards, the patient walks to
the door, opens the door, and leaves the room. The last part
of the test, after leaving the room, consists of reentering the
room and returning to the sitting position. Two synchronized
inertial sensors (MUSCLELABTM, Ergotest Innovation AS, Oslo,
Norway) were used to record 3D acceleration and rates of turn at
200 Hz. The sensors were positioned at the back of the foot using
straps (cf. Figure 1). Each trial was video-recorded from two
perspectives. A custom-built, battery-powered portable device
was used to enable synchronization of the inertial-sensor data
and the videos. Synchronous vibration, light, and sound signals
are generated at a push of a button. The device is held up to one
of the inertial sensors at the beginning and end of each trial and
the button is pressed. The vibrations, visible in the inertial sensor,
and the sounds and light flashes, present in the video, are used for
the synchronization.

The trials were subsequently evaluated by two clinical experts
based on the recorded video data. The start, end, and duration
of each FoG episode were annotated. Annotated FoG episodes
were associated with the occurrence of festination, shuffling,
shank trembling, and akinesia. The gait phase detection and the
extraction of the features were done offline in post-processing
using MATLAB/SIMULINK 2021a (The Mathworks Inc., USA).

In total, 2,621 foot motion phases during gait were recorded
from which 1,750 were marked as FoG. The correlation between
the annotations of the experts was higher than 80% for all patients
and on average 93.7%±7.7%. The correlation is based on the
detected motion phases. Therefore, the AND-combination and
an OR-combination of the two labels were calculated. The ratio
of AND FoG motion phases to OR FoG motion phases then
served as a measure of the correlation between the two experts’
annotations. The annotated FoG episodes are not foot side but
gait specific. For this reason, the classifiers were trained using the
features and derived labels from both feet.

2.5. Validation Method
The classification problem consists of classifying the motion
phases in FoG-affected and normal motion phases. As ground
truth, we took the OR-combination of the labels provided by the
two experts. A motion phase was labeled as a normal motion
phase in case none of the experts annotated a FoG episode at
the end time of the motion phase, otherwise the label was set
to FoG. The models were evaluated using leave-one-patient-out
cross-validation, to validate the performance of the models in
generalizing on unseen patient’s data. During cross-validation,
the classifiers were validated in a single patient for both feet
independently, while they were trained using motion phases
from all other patients and both feet. The classifier performance
measures considered for the evaluation are sensitivity, specificity,
accuracy, and Area Under the Curve (AUC). The significance of
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TABLE 2 | Feature ranking based on the chi-square test.

Features –log(p-value)

Maximum gait velocity 527.8

Step duration 501.8

Stride length 485.8

Maximum of the pitch angle 394.2

Minimum of the pitch angle 206.6

Average turn rate 71.4

Turned flag {0, 1} 43.7

Maximum of the foot acceleration norm 31.3

Turning angle 29.3

Maximum turn rate 17.5

the performance differences between the classifier models was
investigated by comparing the mean and the standard deviation
of AUC based on the statistical t-test. We used a significance level
of p < 0.05.

3. RESULTS

Table 2 displays the features sorted by their importance. All
selected features displayed a p-value smaller than 0.05 for the
chi-square test. The optimized hyperparameters are listed in the
Tables 3, 4. In Table 5, the results of the leave-one-patient-out
cross-validation for all trained classifiers are summarized.

In case of the classifiers C0 trained on the actual motion
phase, the trained SVM model with all 10 features (SVM_10)
performed on average over all patients with 80.2, 85.8, 84.6, and
90.2% for specificity, sensitivity, accuracy, and AUC, respectively.
The trained SVM model with the five most important features
(SVM_5) performed on average with 76.5, 85.4, 83.5, and
86.1% for specificity, sensitivity, accuracy and AUC, respectively.
Finally, the AdaBoost model achieved performance values
of 78.8, 85.5, 84.0, and 87.5% on average for specificity,
sensitivity, accuracy, and AUC, respectively. Regarding the
performance values, the model SVM_10 outperformed the other
two classifiers. Despite that, no statistical difference between
the three C0 classifiers could be observed based on the t-test.
In Table 6, the results for each patient and each body side are
displayed for the model SVM_10 with features from the actual
motion phase.

The SVM classifier C−2,−1,0, trained with 10 features of each
of the actual and two preceding motion phases (SVM_10),
outperformed the models C0 only trained with information
from the actual motion phase. Here, 88.5% sensitivity, 83.3%
specificity, 88.6% accuracy, and 92.8% AUC could be achieved.
The other C−2,−1,0 classifiers, SVM_5 and AdaBoost, show
slightly decreased performance values compared to the SVM_10
classifier C−2,−1,0 for which the results of each patient and
foot are shown in Table 7. Again, no statistical difference could
be observed based on the t-test between all C−2,−1,0 and C0

classifiers with respect to the AUC values.
We also trained classifier models C−2,−1 for predicting

whether the next motion phase is normal or FoG-affected based

TABLE 3 | SVM hyperparameters.

Classifiers
Hyperparameters

Kernel C Gamma

C0

(Trained on the actual motion phase)

SVM_10 RBF 5.9 0.005

SVM_5 RBF 0.032 0.33

C−2,−1,0

(Trained on the actual and two

preceding motion phases)

SVM_10 RBF 2.37 0.026

SVM_5 RBF 10 0.006

C−2,−1

(Predicting model)

SVM_10 RBF 10 0.006

SVM_5 RBF 10 0.081

on features from the two preceding motion phases. The best
performance measures were 70.3% specificity, 81.6% sensitivity,
and 82.8% AUC for the SVM_10. The AUC performance of
all C−2,−1 classifiers (FoG prediction models) was significantly
lower in comparison to the C0 and C−2,−1,0 classifiers (FoG
detection models) based on the t-tests (p > 0.05) except for
C0-SVM_5.

We took a closer look at the motion phases where transitions
(beginning or end of FoG episodes) occurred and evaluated them
separately from the other motion phases. The SVMmodel C−2,−1

with all features from the last two preceding motion phases
(SVM_10) could not detect the transitions well in advance.
The results were only 27.4% specificity, 38.9% sensitivity, and
33.1% accuracy.

InTable 8, the results of the classifiersC0,C−2,−1,0, andC−2,−1

(trained on both feet) are listed for the validation at the left and
right foot and a chosen best foot side. The criterion for choosing
the best side was the AUC, i.e., the foot side with the highest AUC
for each patient was chosen as the best side for FoG detection
or prediction. The average AUC performance values increased
for the best foot classifiers compared to the left and right foot
classifiers, but not statistically significant.

4. DISCUSSION

The aim of the adaptive gait-phase-synchronous cueing concept
is to stimulate upon detection of a FoG motion phase for a
defined time interval in order to improve the gait pattern and
to prevent akinesia. Our hypothesis is that akinesia usually
follows other FoG symptoms like shuffling, festination, and shank
trembling. Based on the recorded data, we found that 97% of
motion phases within a 3 s interval before akinesia were marked
as pathological gait of these other subtypes. This indicates that
akinesia rarely occurs suddenly and is mainly preceded by other
FoG symptoms. This requires a reliable FoG detection in real-
time with short latencies. To achieve this, we combined features
from a gait-phase-detection algorithm suitable for Parkinsonian
gait with several machine learning models and evaluated their
performance in 16 PD patients, severely affected by FoG.

The results of our classification performance are not
directly comparable to previous literature, because of several
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TABLE 4 | AdaBoost hyperparameters.

Classifiers
Hyperparameters

Weak learner Criterion
max.

Depth

No.

estimators

Learning

rate

C0

(Trained on

the actual motion phase)

AdaBoost Decision tree Entropy 3 20 0.318

C−2,−1,0

(Trained on the actual and

two preceding motion phases)

AdaBoost Decision tree Gini 2 20 0.447

C−2,−1

(Predicting Model)
AdaBoost Decision tree Entropy 5 20 0.01

TABLE 5 | Overview of the leave-one-patient-out cross- validation results for all classifiers taking both feet into account.

Classifier Spec. Sens. Acc. AUC

C0

(Trained on actual motion phase)

SVM_10
80.2%

±10.4%

85.8%

±8.0%

84.6%

±6.0%

90.2%

±6.8%

SVM_5
76.5%

±11.0%

85.4%

±7.3%

83.5%

±5.1%

86.1%

+7.7%

AdaBoost
78.8%

±11.9%

85.5%

±8.6

84.0%

±7.0%

87.5%

±8.2%

C−2,−1,0

(Trained on actual and two preceding motion phases)

SVM_10
83.3%

±17.1%

88.5%

±5.8%

88.6%

±5.4%

92.8%

±5.9%

SVM_5
82.6%

±17.5%

86.4%

±8.3%

87.1%

±5.2%

92.3%

±5.6%

AdaBoost
80.8%

±15.7%

88.3%

±7.1%

87.2%

±5.7%

90.5%

±6.6%

C−2,−1

(Predicting model)

SVM_10
70.3%

±18.4%

81.6%

±7.7%

80.5%

±5.0%

82.8%

±7.1%

SVM_5
70.3%

±18.7%

80.8%

±9.1%

79.6%

±4.9%

80.9%

±9.1%

AdaBoost
69.2%

±17.2%

80.1%

±10.9%

79.3%

±6.1%

80.3%

±9.7%

methodological differences. Most FoG detection algorithms use
more than one IMU sensor and sensors at the ankle/shank or
waist and not the feet. Another limitation for comparisons is
that not all parameters are usually listed in publications, or
the parameters are manually tuned for each patient (thresholds,
hyperparameters, etc.). Therefore, it is difficult to determine
whether the differences in performance are due to the methods
or the data sets used.

Yet, our algorithm, despite its simple hardware configuration
and low computational demands, matches the quality of previous
research: The reported average classification performance in this
article is comparable with the best results for patient-independent
classifiers reported in the literature using multiple sensors or
deep learning approaches. Naghavi et al. (24) achieved a slightly

higher sensitivity (90.2% compared to our 88.5%) but evaluated
the model only with seven PD patients. Borzì et al. (28) reported
a slightly higher specificity (86.3% compared to our 83.3%)
while our sensitivity was 3.3% higher. Sliding window-based
approaches using IMU data from the waist with deep learning
yielded a comparable performance in terms of accuracy (85–89%)
compared to our approach (89%) but are computationally more
demanding (26, 27). Other classifiers from the literature showed
lower performance values (21–23, 25) or used patient-individual
classifiers (29, 33).

The idea of this article, to rely solely on a single foot sensor for
gait-phase and FoG detection, presents a new technical solution
that could be very practicable. The proposed work provides an
essential contribution toward the everyday use of gait monitoring
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TABLE 6 | Results of the SVM classifier C0 for each patient trained on all 10 features of the actual motion phase (SVM_10).

Left foot Right foot Expert

corr.

More aff.

side

Patient Spec. Sens. AUC
FoG/

Normal
Spec. Sens. AUC

FoG/

Normal

S1 81.3% 86.2% 90.7% 32/29 82.8% 96.2% 96.2% 29/26 93.8% left

S2 54.2% 86.1% 76.7% 24/108 63.6% 76.9% 77.6% 22/78 84.5% x

S3 70.6% 82.0% 79.7% 17/61 73.3% 59.3% 66.4% 15/54 93.4% x

S4 81.8% 95.7% 92.1% 77/23 81.4% 85.7% 95.6% 70/14 88.5% right

S5 80.0% 78.6% 83.4% 25/14 89.7% 62.5% 89.7% 29/16 100% left

S6 84.0% 81.4% 91.9% 25/59 95.0% 86.0% 97.4% 20/57 93.0% left

S7 77.3% 100% 98.3% 22/24 82.6% 89.7% 93.9% 23/29 93.0% left

S8 100% 80.6% 98.9% 26/31 96.0% 88.6% 96.1% 25/35 79.5% left

S9 90.5% 100% 98.1% 21/60 69.2% 95.4% 94.7% 26/65 97.0% left

S10 84.8% 88.6% 94.2% 33/35 90.0% 84.4% 94.4% 30/32 95.5% x

S11 63.6% 93.0% 88.2% 33/128 85.2% 91.2% 90.8% 27/113 97.5% left

S12 95.2% 86.3% 96.7% 21/51 87.0% 89.7% 95.4% 23/29 98.5% left

S13 82.4% 75.0% 89.1% 17/64 66.7% 74.1% 82.6% 21/54 96.2% left

S14 83.3% 92.3% 95.8% 24/39 90.9% 83.8% 91.6% 22/37 100% x

S15 61.5% 95.5% 87.3% 26/176 61.9% 87.4% 86.0% 21/175 85.2% right

S16 90.9% 87.5% 92.9% 22/16 82.6% 83.3% 89.9% 23/18 100% left

Mean 80.1% 88.0% 90.9% 81.1% 83.4% 89.9%

Std. dev. 12.4% 7.5% 6.6% 10.9% 10.5% 8.3%

The bold values correspond to the body side with the better results in AUC. In the column ‘FoG/Normal’ the ratio of marked normal motion phases to annotated FoG motion phases is

listed. The results from the correlation analysis between the two experts and the most affected side (derived from the UPDRS, x stands for unknown) are shown in the last two columns.

TABLE 7 | Result of the SVM classifier C−2,−1,0 for each patient trained with all 10 features of the actual and the two preceding motion phases (SVM_10).

Left foot Right foot Expert

corr.

More aff.

side

Patient Spec. Sens. AUC
FoG/

Normal
Spec. Sens. AUC

FoG/

Normal

S1 89.3% 82.8% 91.7% 32/29 84.0% 96.2% 97.4% 29/26 93.8% left

S2 65.2% 89.7% 85.7% 24/108 66.7% 76.6% 84.4% 22/78 84.5% x

S3 60.0% 82.0% 78.7% 17/61 38.5% 85.2% 80.1% 15/54 93.4% x

S4 87.3% 87.0% 93.6% 77/23 92.3% 84.6% 96.0% 70/14 88.5% right

S5 90.9% 76.9% 94.8% 25/14 92.0% 87.5% 96.5% 29/16 100% left

S6 95.8% 82.8% 95.5% 25/59 84.2% 85.7% 90.4% 20/57 93.0% left

S7 100.0% 87.5% 98.3% 22/24 95.2% 89.7% 98.4% 23/29 93.0% left

S8 100.0% 86.2% 99.1% 26/31 100.0% 79.4% 95.1% 25/35 79.5% left

S9 95.2% 100.0% 100.0% 21/60 88.0% 93.5% 96.9% 26/65 97.0% left

S10 90.3% 87.9% 94.2% 33/35 96.4% 80.0% 94.0% 30/32 95.5% x

S11 63.3% 96.1% 86.6% 33/128 76.0% 96.4% 89.0% 27/113 97.5% left

S12 94.7% 95.9% 98.6% 21/51 95.2% 100.0% 99.6% 23/29 98.5% left

S13 93.3% 81.3% 95.0% 17/64 65.0% 83.0% 83.9% 21/54 96.2% left

S14 95.0% 92.3% 96.0% 24/39 94.4% 83.8% 94.1% 22/37 100% x

S15 42.3% 97.1% 88.2% 26/176 47.6% 91.2% 85.5% 21/175 85.2% right

S16 95.0% 92.9% 98.9% 22/16 95.2% 100.0% 99.1% 23/18 100% left

Mean 84.9% 88.6% 93.4% 81.9% 88.3% 92.5%

Std. dev. 17.2% 6.6% 5.9% 18.4% 7.3% 6.2%

The bold values correspond to the body side with the better results in AUC. In the column ‘FoG/Normal’ the ratio of marked normal motion phases to annotated FoG motion phases is

listed. The results from the correlation analysis between the two experts and the most affected side (derived from the UPDRS, x stands for unknown) are shown in the last two columns.
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TABLE 8 | Overview of the average results for all classifiers (trained on both feet) using the left foot, right foot, or best foot for validation.

Classifiers
Left foot Right foot Best foot

Spec. Sens. AUC Spec. Sens. AUC Spec. Sens. AUC

C0

SVM_10
80.1%

±12.3%

88.0%

±7.5%

90.9%

±6.6%

81.1%

±10.9%

83.4%

±10.5%

89.9%

±8.3%

83.7%

±10.9%

86.4%

±9.8%

92.4%

±6.4%

SVM_5
76.0%

±12.5%

86.6%

±9.6%

85.7%

±8.9%

77.5%

±11.9%

84.2%

±7.1%

86.8%

±7.6%

80.3%

±10.8%

85.6%

±8.6%

88.5%

±8.1%

AdaBoost
80.1%

±11.4%

86.9%

±10.4%

88.8%

±7.4%

77.8%

±14.5%

84.0%

±12.0%

86.6%

±11.9%

82.4%

±11.8%

88.8%

±7.5%

91.6%

±5.9%

C−2,−1,0

SVM_10
84.9%

±17.2%

88.6%

±6.6%

93.4%

±5.9%

81.9%

±18.4%

88.3%

±7.3%

92.5%

±6.2%

84.1%

±19.2%

91.0%

±6.4%

94.4%

±5.7%

SVM_5
85.0%

±17.7%

86.4%

±8.8%

93.6%

±5.4%

80.6%

±19.7%

86.2%

±9.4%

91.3%

±6.2%

84.5%

±17.2%

87.2%

±10.0%

93.9%

±5.5%

AdaBoost
80.2%

±17.6%

89.6%

±6.8%

91.9%

±5.3%

81.9%

±14.8%

86.9%

±8.8%

89.7%

±8.6%

83.6%

±14.6%

89.7%

±6.5%

92.8%

±5.6%

C−2,−1

SVM_10
69.3%

±20.8%

81.5%

±9.6%

82.9%

±7.9%

71.6%

±17.2%

81.5%

±7.3%

82.8%

±6.6%

72.6%

±18.6%

83.2%

±7.6%

84.7%

±6.8%

SVM_5
68.8%

±21.0%

81.2%

±10.5%

81.4%

±9.7%

72.0%

±17.2%

80.4%

±8.8%

80.8%

±9.3%

73.1%

±20.5%

81.4%

±8.9%

83.3%

±9.7%

AdaBoost
67.9%

±18.4%

80.9%

±12.8%

79.6%

±11.7%

70.8%

±17.4%

79.5%

±11.7%

81.5%

±7.8%

71.1%

±17.3%

80.0%

±13.3%

82.9%

±8.2%

The results of the classifiers C0 (trained on the actual motion phase), C−2,−1,0 (trained on the actual and two preceding motion phases), and C−2,−1 (predicting model) for all models

are listed.

technologies. Digital patient care is one central aspect of the
ongoing transformation of medicine and society. A single sensor
in the shoes could seamlessly integrate into the everyday life
of patients.

The quality of the presented FoG detection algorithms, based
solely on a foot sensor, is not shown in the literature. Moore
et al. (21) investigated the usage of a 1D accelerometer at the
foot to determine a freezing index from a sliding window using
the 50Hz sampled acceleration in walking direction. We applied
this method to our data set for comparison and observed an AUC
of about 80% on average for both feet for window sizes ranging
from 2.5 s to 10 s (see Supplementary Material). These values are
below the maximal AUC of 93% resulting from our approach.
In addition, we determined the freezing index for all 3 axes of
the accelerometer and gyroscope separately. Then, a common
threshold was applied to all obtained freezing indexes, and FoG
was robustly detected when the majority of axes indicated FoG.
This approach was in analogy to Moore et al. (21) where the
outcomes of several 1D accelerometer-based detectors at different
body segments were fused to obtain a robust FoG detection.
However, the obtained performance with the 6D approach on
our data set did not differ from the 1D approach. Therefore,
the performance gain with our machine-learning approach is
likely to be explained by the use of gait features from fused
6D data. Another advantage of our sensor location is that
gait phases are captured with high fidelity in severely affected
patients. To allow benchmarking of algorithms by other research
groups using sensors at feet, we include our data in open source

(see Supplementary Material). We aim to compare our single
sensor classification approach with others (including multiple
sensors) using future open-access available data sets of PD gait
with labeled FoG episodes. Currently, there is no such multi-
segmental data set available with raw 6D inertial-sensor data
from the feet.

The observed standard deviations for the performance values
are relatively high and explain why no statistical differences
in our classifier models have been observed except between
some FoG detection and prediction models. A reason for that
is the strict evaluation scheme chosen in this work, where the
classification was evaluated on completely unknown patients.
Another reason could be the distribution of the FoG subtypes
through different patients. As patients had shown different
severity of disease and variation of FoG symptoms, a leave-
one-patient-out cross-validation would exclude a patient which
showed a particular subtype from the training data set leaving
at the worst-case scenario no representative samples for that
subtype. In this case, collecting more data from new patients
would help to solve the problem. Another problem is a
strong misbalance of labels in an evaluated subject making
the calculation of sensitivity or specificity error-prone. S15 is
an example for such a misbalance. Of the few normal steps,
only about half are correctly classified, giving a low value
for specificity.

In this work, the classification was done after a completed
motion phase. This results in a variable latency for the detection
of FoG depending on the duration of the motion phase. From the
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available data set, it was calculated that the average motion phase
duration was 0.7 s and maximal duration was 1.2 s. Therefore,
in the worst-case scenario, the latency in detecting FoG was
1.2 s. FoG-affected motion phases are usually shorter in duration
(average of 0.14 s) than normal motion phases. For this reason,
the typical latency in motion-phase-based FoG detection will
be lower than in sliding-window-based approaches with a fixed
window size.

Comparing the two classifiers C0 and C−2,−1,0, the SVM_10
and AdaBoost models trained with the actual and two preceding
motion phases showed an improvement of approximately 3% in
all three performance measures. However, this is not statistically
significant. Predicting whether the next motion phase is a FoG or
a normal motion phase could be achieved with 70.3% specificity,
81.6% sensitivity, 80.5% accuracy, and 82.8% area under the
curve. Upon further analysis, we found out that transitions from
normal to pathological motion phases and vice versa can only
be detected with a very low accuracy. For this reason, a reliable
prediction of the onset of FoG episodes could not be achieved.

The SVM models with all features of the segmented motion
phases performed on average better than the SVM models with
the reduced feature set and the AdaBoost models. However, no
statistical difference could be found between all models.

The SVM models with all features for the segmented motion
phases performed on average better than the SVM models with
the reduced feature set and the AdaBoost models although
this was not statistically significant. For implementation on
embedded systems, the AdaBoost classifiers are presumably
better suitable as the number of parameters and consequently the
memory demand are significantly lower: the SVM_10 classifier
C0 with 10 features has 10,925 and the AdaBoost classifierC0 only
180 floating-point parameters.

Finally, the two feet of each subject yielded different FoG
detection results. It seems favorable to search for the more
suitable leg with higher classification performance when using
only a single sensor in an automated cueing system. The
performance boost will be up to about 3% for C0 on average
but can be up to 13% in an individual patient when using a
specific leg (see, e.g., S3 in Table 6). We could not identify a clear
correlation between the results of the classifiers and the most
affected side, which was annotated by the clinical experts using
the UPDRS. Therefore, we recommend testing both feet in an
individual patient to choose the best foot based on the observed
classification performance.

Limitations of the study are the limited number of 16 PD
patients and the sole use of clinical data although the used
test by Ziegler et al. (11) aims at triggering FoG by using
situations relevant in everyday life such as gait initiation, turning,
walking through doors, and terminating gait. Currently, our
algorithm assumes that the person is standing up, standing,
walking, or sitting down. Further developments should detect
these conditions automatically to avoid false detections during
other activities like sitting.

Starting hesitation and akinesia often show no foot motion
phases at all and therefore cannot be detected as FoG symptoms
with our motion phase-centered approach. This is a limitation of
the presented method. To assist the patient in unfreezing from

such motor blockades, we suggest to offer rhythmic cueing which
can be triggered by the patient.

At the moment, we implement some of the presented
classifier models in an on-demand cueing system for gait-phase-
synchronous electrical stimulation (35). The algorithms will be
distributed onto the hardware: Gait phase detection and feature
extraction are running on the foot sensor and the classifier on the
electrical stimulator. We plan to evaluate the real-time detection
system and the adaptive cueing concept in a clinical trial.

5. CONCLUSIONS

We propose new methods for real-time detection of gait phases
and FoG in Parkinsonian gait using a wearable sensor at the
shoe. The novel Parkinsonian gait-phase-detection algorithm
differentiates three phases, namely rest, unrest, and motion of
the foot, and does not fail during FoG gait patterns such as
shuffling, festination, and shank trembling. Thereupon, machine-
learning-based methods for detecting FoG motion phases were
developed. For the first time, spatio-temporal gait and signal
features have been used as inputs to the classifier models. An
SVM model, trained only with 10 features from the actual
motion phase, already yielded 85.8% sensitivity, 80.2% specificity,
84.6% accuracy, and 90.2% AUC. By using in total 30 features
from the actual and two preceding motion phases, we could
improve the above results by approximately 3% on average, but
not statistically significant. The observed prediction performance
remains behind the observed detection performance. Our work
paves the way for on-demand, gait-synchronous cueing in PD
patients suffering from freezing.
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