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Epileptic seizure forecasting, combined with the delivery of preventative therapies, holds

the potential to greatly improve the quality of life for epilepsy patients and their caregivers.

Forecasting seizures could prevent some potentially catastrophic consequences such

as injury and death in addition to several potential clinical benefits it may provide for

patient care in hospitals. The challenge of seizure forecasting lies within the seemingly

unpredictable transitions of brain dynamics into the ictal state. The main body of

computational research on determining seizure risk has been focused solely on prediction

algorithms, which involves a challenging issue of balancing sensitivity and false alarms.

There have been some studies on identifying potential biomarkers for seizure forecasting;

however, the questions of “What are the true biomarkers for seizure prediction” or even “Is

there a valid biomarker for seizure prediction?” are yet to be fully answered. In this paper,

we introduce a tool to facilitate the exploration of the potential biomarkers. We confirm

using our tool that interictal slowing activities are a promising biomarker for epileptic

seizure susceptibility prediction.

Keywords: epileptic seizure forecasting, probabilistic programming, Bayesian, variational inference, uncertainty

level

1. INTRODUCTION

There has been great interest recently in identifying biomarkers for seizure susceptibility by
looking into critical transitions in brain dynamics in order to enhance the precision of seizure
forecasting in a cohort of patients with focal epilepsy (1–3). These studies often require a
very long recording that is not available and, in fact, are critically lacking. Chronic and often
intracranial electroencephalogram (EEG) recordings demonstrated some limited evidence of
circadian, multidien, and circannual cycles in epileptic brain dynamics (4–6). In determining
seizure-risk, we believe that understanding what features or biomarkers in the EEG signals lead
to such seizure-risk level.

The availability of a seizure forecasting system that can notify patients or their carers about
forthcoming seizure-risk can drastically improve patients’ quality of life and the chance to develop
innovative interventions and preventative therapies. Many studies have been on forecasting
seizures; most of them used the signal-modal approach based on electroencephalogram (EEG)
signals. These studies can be grouped into two categories: (1) finding discriminative features
with various signal processing and transformation techniques and (2) leveraging deep learning’s
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capability of extracting high-level features. In the first group, the
most common approach is to use spatio-temporal correlation
features, auto-regressive modeling predictive error, Hjorth
parameters, spectral power, energy wavelet coefficients, and other
statistics (7, 8). Other discriminative features include phase
and amplitude lock values (9), common spatial pattern (10),
permutation entropy (11), bispectrum features (12). In the
second group, the convolutional neural network (CNN) and
recurrent neural network (RNN) have shown their capability
to extract high-level features that can be used for forecasting
seizures. Particularly, CNN was used on the EEG signal
spectrogram (13), raw EEG, and fast Fourier transform (FFT) of
raw EEG (14), local mean decomposition of raw EEG (15), and
the common spatial pattern of multi-channel EEG signals (16).
CNN was also used in unsupervised learning as effective
feature extraction for seizure prediction (17). To further extract
the temporal characteristics over time-series data, Wei et al.
(18) applied CNN with long short-term memory recurrent
network on the spectrogram of EEG signals. The combination
of convolutional and recurrent neural networks is also effective
when using multi-timescale of raw time-series EEG signals (19).

In this work, we propose a framework (see Figure 1) to
minimize the risk of sudden unexpected death in epilepsy
(SUDEP), especially for patients with uncontrolled epilepsy. We

A B

C

FIGURE 1 | Reducing SUDEP (sudden unexpected death in epilepsy) risk with seizure forecasting based on reliable long-term EEG monitoring. (A) Simplified pathway

for patients with epilepsy. (B) The fact that most SUDEP cases were unattended (20, 21) emerges the need for reliable 24/7 and long-term EEG monitoring. (C)

Seizure susceptibility prediction tool to suggest alternative treatments [e.g., vagus nerve stimulation (VNS)] for patients with uncontrolled epilepsy.

also introduce a tool to facilitate the exploration of biomarkers
for epileptic seizure forecasting. Specifically, we use probabilistic
programming and propose a framework to incorporate other
relevant information into an EEG-based seizure forecasting
system. As an advantage of using probabilistic programming, our
system not only can forecast impending seizures but also quantify
the uncertainty level of its decision-making.

2. DATASET

EPILEPSIAE is the largest epilepsy database that contains EEG
data from 275 patients (22). However, up to the time of this
writing, only 30 surface EEG and 30 invasive EEG datasets are
made available (23). We believe the use of surface EEG is more
beneficial because it is non-invasive so it can be applied to a
broader group of patients. In this study, we analyze scalp-EEG of
30 patients with 261 leading seizures and 2881.4 interictal hours
in total in this work. The time-series EEG signals were recorded at
a sampling rate of 256 Hz and from 19 electrodes. Seizure onset
information obtained by two methods, namely EEG based and
video analysis, is provided. In our study, we use seizure onset
information using an EEG based technique, where the onsets
were determined by visual inspection of EEG signals performed
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by an experienced clinician (22). Table 1 provides a summary of
the dataset being studied in this work.

3. METHOD

3.1. Pre-processing
We split EEG signals into 30-s segments with 50% overlap. We
perform a short-time Fourier transform (STFT) with a cosine
window of 1-s length and 50% overlap on each 30-s segment
and get data with a dimension of (n × 59 × 129), where n
is the number of EEG channels. We remove the first and last
two elements along the second axis, which corresponds to time,
to eliminate any potential disruption of signal near the signal
window’s edges. We also remove the dc component of the STFT,
which is the first element along the last axis. The final dimension
of pre-processed data is (n × 56 × 128).

TABLE 1 | The EPILEPSIAE scalp-EEG dataset.

Patient Gender Age No. of

seizures

No. of leading

seizures*
Interictal

hours

Pat1 Male 36 11 11 68.9

Pat2 Female 46 8 8 114.9

Pat3 Male 41 8 8 96.3

Pat4 Female 67 5 5 126

Pat5 Female 52 8 8 204.1

Pat6 Male 65 8 7 92.2

Pat7 Male 36 5 5 75.7

Pat8 Male 26 22 11 65.6

Pat9 Male 47 6 6 51.1

Pat10 Male 44 11 11 60.7

Pat11 Male 48 14 14 57.8

Pat12 Male 28 9 9 94.1

Pat13 Male 46 8 8 101.3

Pat14 Female 62 6 6 115.7

Pat15 Female 41 5 5 82.8

Pat16 Female 15 6 6 51.1

Pat17 Female 17 9 9 82.4

Pat18 Male 47 7 6 133

Pat19 Male 32 22 21 75.4

Pat20 Male 47 7 7 115.3

Pat21 Female 31 8 8 106.6

Pat22 Male 38 7 7 88.2

Pat23 Male 50 9 9 179.6

Pat24 Female 54 10 10 36.2

Pat25 Male 42 8 8 109.8

Pat26 Male 13 9 9 97.1

Pat27 Male 58 9 8 99.9

Pat28 Female 35 9 9 95.2

Pat29 Male 50 10 10 111.9

Pat30 Female 16 12 12 92.5

*We are considering leading seizures only. Seizures that are <30 min away from the

previous one are considered as one seizure only, and the onset of a leading seizure is

used as the onset of the combined seizure.

3.2. Bayesian Convolutional Neural
Network
In this paper, we will use variational inference to approximate
posterior densities for Bayesian models (24). Consider x =

x1 : n as a set of observed variables and z = z1 :m as a set
of hidden variables, with joint density p(z, x). The inference
problem calculates the conditional density of the hidden variables
given the observed variables, p(z|x).

p(z|x) =
p(z, x)

p(x)
, (1)

where p(x) is intractable in many models (24).
Variational inference overcomes this by specifying a

variational family Q over the hidden variables (24). The
inference problem becomes finding the best candidate q(z) ∈ Q

that is closest in Kullback-Leibler (KL) divergence to p(z|x).
The optimization subsequently can be achieved by maximizing
a function called the evidence lower bound (ELBO) which is
equivalent to minimizing the KL divergence between q(z) and
p(z|x). ELBO is expressed as follows (24):

ELBO(q) = E
[

log p(z, x)
]

− E
[

log q(z)
]

= E
[

log p(x|z)
]

+ E
[

log p(z)
]

− E
[

log q(z)
]

= E
[

log p(x|z)
]

− KL
(

q(z)‖p(z)
)

(2)

The stochastic variational inference was proposed by Hoffman
et al. (25) to help Bayesian neural networks scale efficiently to
large datasets. Particularly, this method generates noisy estimates
of the natural gradient of the ELBO by repeatedly sub-sampling
(mini-batch) the dataset. The loss function can be defined as
the negative of ELBO, i.e., minimizing the loss is equivalent to
maximizing the ELBO.

loss = −ELBO(q) = −E
[

log p(x|z)
]

+ KL
(

q(z)‖p(z)
)

(3)

In an EEG-based seizure prediction system, x is the EEG
signals, and z is a variable indicating a seizure to occur in
the time window T = [SPH : SPH + SOP]. SPH stands for
seizure prediction horizon that is defined as the period where
seizure should not occur after an alarm rises. SOP stands for
seizure occurrence period that is defined as the interval where
seizure onset is expected to occur (26).

3.3. Probabilistic Convolutional Neural
Network With Data Fusion
In this section, we will incorporate signals other than EEG signals
into the Bayesian CNN. We want to estimate the probability of
having a seizure given EEG signals, p(z|x), which is the Bayesian
CNN’s output. Besides EEG signals, we have other relevant data
and want to combine all the seizure forecasting information.
Circadian information or time of the day has been used to
improve the performance of a seizure prediction system (27). For
another instance, electrocardiogram that could change around
and even before seizure onsets has been shown helpful in
predicting epileptic seizures (28, 29). Other physiological signals
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that have been observed to change prior to seizure onset, such as
blood oxygenation, metabolism, can be used as auxiliary data for
seizure prediction (30, 31).

Let us start with EEG signals and one extra signal called d.
Using Bayes theorem, the posterior probability of having a seizure
in the time-window T can be expressed as:

p(z|x, d) =
p(d|z, x)p(z|x)

p(d|x)
(4)

Assume x and d are independent, (e.g., EEG signals are
independent with the time of the day and can be considered
independent with blood oxygenation), we can rewrite (4) as
follows.

p(z|x, d) =
p(d|z)p(z|x)

p(d)
(5)

Similarly, for two extra signals, d1 and d2 with an assumption
that x, d1, and d2 are independent of each other (e.g., time of the
day and blood oxygenation), the posterior probability of having
seizure in the time window T can be expressed as:

p(z|x, d1, d2) =
p(d1|z, d2)p(z|x, d2)

p(d1|d2)

=
p(d1|z)p(z|x, d2)

p(d1)

(6)

By substituting Equation (5) (with d replaced by d2) to
Equation (6), we have:

p(z|x, d1, d2) =
p(d1|z)p(d2|z)p(z|x)

p(d1)p(d2)
(7)

To estimate p(d1|z) and p(d2|z), we applied a kernel density
estimation using Gaussian kernels on a histogram containing
time of the day (ToD) of seizure occurrences (see Figure 2) (32).
Regarding the kernel density estimation parameters, we used
Scott’s rule for bandwidth selection and assumed all data points
are equally weighted. Note that here we approximate p(d1|z) ≈

FIGURE 2 | Distribution of time-of-day of seizure occurrences in the

EPILEPSIAE scalp-EEG dataset.

p(d1|z
′) and p(d2|z) ≈ p(d2|z

′), where z′ is the variable indicating
an occurrence of seizure. The approximation is reasonable
because we choose the time window T = [5 : 35 min] which is
<1 h.

To incorporate Equation (7) into the training of the Bayesian
CNN, we modify the output of the last fully-connected layer (see
Fig. 3), before softmax activation (33) as follows.

new-outputl =
p(d1|z

′)p(d2|z
′)× outputl

p(d1)p(d2)
, (8)

where p(d1|z
′) and p(d2|z

′) can be derived from the kernel density
estimation. For example of time of the day, p(d1) = 1/24
because the probability of having the auxiliary signal at a given
hour is 1/24); p(d1|z

′) can be inferred from Figure 2. Note that
Equations (7) and (8) can be extended with more extra signals d
given that they are independent on each other.

The Bayesian convolutional neural network (BCNN) with
Bayesian modulator as data fusion is depicted in Figure 3.
Unlike a conventional CNN, where each weight is a single
value, each weight of a BCNN is a distribution estimated during
the training phase. In this work, we model each weight as a
Gaussian distribution with mean and standard deviation values
are trainable parameters. Input to the BCNN is the STFT of 30-
second windows with size of (n × 56 × 128) (see Session 3.1 for
details). The network starts with a convolutional layer consisted
of 16 3-dimensional kernels of size (n × 5 × 5), valid padding,
and a stride of (1 × 2 × 2). A max-pooling layer follows the
first convolutional layer with a pooling size of (1 × 2 × 2).
The network continues with two blocks of convolutional-pooling
combinations, each consists of one convolutional layer with a
kernel size of (3 × 3), valid padding and stride of (1 × 1), and
one max-pooling layer with a pooling size of (2×2). The number
of convolutional kernels in the two blocks is 64 and 128. The next
two layers are fully-connected layers with output sizes of 256 and
2, respectively. The output of the last fully-connected layer is fed
to the Bayesian modulator where we apply Equation 8 for data
fusion, then is applied softmax activation to get the final output
of the network.

4. RESULTS

This section tests the Bayesian convolutional neural network
(BCNN) with the EPILEPSIAE scalp EEG dataset with and
without auxiliary signal: time-of-day (ToD). Following Truong
et al. (13), we use SPH of 5 min and SOP of 30 for calculating the
performance. We also compare a seizure prediction system using
a convolutional neural network (CNN) proposed by Truong et al.
(13) as a baseline. Figure 4A shows the overall performance of
the BCNN with and without auxiliary signal and the baseline
CNN. Compared to the CNN that has an average AUC of 71.65%,
BCNN achieves an AUC of 68.69% that is around 3% lower
than that of CNN. By using the time-of-day information, the
overall performance of BCNN-ToD is slightly improved by 0.3–
69.03%. There is strong agreement between the methods that
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FIGURE 3 | Architecture of Bayesian convolutional neural network (BCNN) with embedded Bayesian modulator. n is the number of EEG channels, which is 19 for all

30 patients in this study. Unlike a conventional convolutional neural network where each weight is a single value, each weight of a BCNN is a distribution. In our work,

we model each weight as a normal distribution with mean value (µ) and standard deviation (σ ) are trainable parameters. The BCNN network has three convolutional

layers, each is followed by a max-pooling layer (not shown). Extracted features by the convolutional layers are fed to two fully-connected layers. The Bayesian

modulator incorporates other relevant data for seizure forecasting into the last fully-connected layer of the network by using Equation (8).

is reflected via scatter plots of AUC between each pair of them
(see Figure 4B). We did a one-tailed Wilcoxon signed-rank test
and a one-tailed t-test between BCNN-ToD and CNN and found
that the two methods’ performance is not significantly different
at the confidence level of 0.05 with p-values of 0.063 and 0.243,
respectively. However, the BCNN-ToD provides more insights
into how the prediction works. Particularly, because each weight
of the BCNN or BCNN-ToD is a distribution, we sample those
distributions to calculate the output for each forward pass of an
input. By running multiple forward passes of the same input, we
can estimate the distribution of the corresponding output. The
output’s distribution can then be used to quantify the uncertainty
of the model’s decision-making that will be explored in section 5.

5. DISCUSSION

Bayes convolutional neural network (BCNN) can generate the
distribution of its output for each input. We sampled the output
of the BCNN by feeding forward the same input through
the BCNN 500 times. We quantify the uncertainty level of
the BCNN’s decision making with Equation (9) below. The
numerator takes into account the variability of the output with
the standard deviation (std). The denominator considers the case
where the output has a uniform-like distribution. Uncertainty

levels of different types of prediction distributions are illustrated
in Figure 5.

Uncertainty level =
stdinference values

∣

∣meaninference values − 0.5
∣

∣

(9)

We trained the BCNN with two types of EEG signals: preictal—
35 to 5 min before seizure onset, and interictal—at least 4 h away
from any seizures, we are interested in how the BCNN performs
with continuous EEG recording. We ran inference over 13 h
of continuous EEG recording for one of the best performers,
Patient 4, consisting of two seizures. In Figure 6, we plot both
the prediction scores (from 0 to 1, where higher values indicate
a higher probability of having a seizure) and the corresponding
uncertainty levels of the BCNN. In general, the prediction scores
get higher values when it is closer to the first seizure onset.
Interestingly, at around time 40 and 80 min (around 200 and 160
min before the first seizure onset), there are two predictions with
high scores. However, the uncertainty levels were also high, which
means that the BCNN “thinks” that there might be a seizure

incoming, but it has very low confidence about its decision.

From about 1 h before seizure to seizure onset, we can see
prediction scores were mostly high, but there were also many low

prediction scores with high uncertainty levels. We suggest that

the “patterns” or bio-markers related to seizure prediction only
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FIGURE 4 | (A) Seizure prediction performance using Bayesian convolutional neural network (BCNN). CNN, Convolutional neural network, average AUC is 71.64%;

BCNN, BCNN using EEG signals only, average AUC is 68.69%; BCNN-ToD, BCNN using EEG signals and time-of-day (ToD), average AUC is 69.03%. (B) Scatter

plots between each pair of the three methods showing concordance between them.

occur at certain particular points in time rather than consistently

throughout the whole preictal duration.
Furthermore, we were able to use the trained BCNN as

a tool to extract potential bio-markers from EEG signals.
We fed 30-s EEG segments to the trained BCNN to sample
the output, i.e., run multiple inferences with the same
input; in this work, we ran 100 times. Uncertainty level
and mean prediction score were extracted from the output
samples. For every 30-s segment that has an uncertainty
level below 0.1 and means prediction score above 0.9, we
extract the attention map over time by accumulating over
time the positive values of the feature map of the first
convolutional layer. An example is illustrated in Figure 7.
We observed that, from patients with high performance
and with focal seizures, the BCNN focuses on slow EEG
activity when performing seizure forecasting. Slow EEG activity
has been shown as an important biomarker for studying
epilepsy (34).

To verify the possibility of seizure forecasting, we ran the
inference over the three patients’ EEG recordings with the
best seizure prediction performance in the EPILEPSIAE dataset,
namely Pat-3, Pat-4, and Pat-12. We used different trained
BCNN models at different periods separated by ictal segments
to ensure that the trained BCNN being used did not see the
current period’s preictal segment during training. By doing that,
we can have a retrospective risk of having a seizure over time,
as shown in Figure 8. Generally, the risks are higher when
it is closer to the seizure onset, indicating successful seizure
forecasting. However, there are cases that we consider as false
positive alarms if the risk is assessed as high, but it is too
far from the seizure onset, e.g., the day before. For instance,
Pat-3 receives a high-risk alarm almost 16 h before the first
seizure onset.

Finally, we introduced the Bayesian modulator as a data
fusion technique to incorporate relevant auxiliary signals for
improving seizure prediction performance. In this work, we
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A

B

C

FIGURE 5 | Inference values by sampling the output of Bayesian convolutional neural network 500 times. (A) Correct predictions. Left: ground truth is 0 (interictal),

most of the model’s output samples are close to 0, indicating a correct prediction with high confidence. Right: ground truth is 1 (preictal), most of the model’s output

samples are close to 1, indicating a correct prediction with high confidence. (B) Wrong predictions. Most of the model’s output samples are close to the wrong value

with high confidence. This is an undesirable case. (C) Low-confident predictions with high uncertainty levels. The model’s output samples spread randomly between 0

and 1, indicating the high uncertainty of the model.

FIGURE 6 | Prediction score and uncertainty level produced by Bayesian convolution neural network in seizure forecasting task over 13 h of continuous EEG

recording. For the sake of visualization, for all uncertainty levels higher than 10, we set them to 10.
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have only used one extra signal, which is the time of the day,
and the performance was not increased significantly. However,
we argue that with the Bayesian modulator’s capability to
embed multiple auxiliary signals, we can achieve a boost in
performance which is our aim in future works. Other relevant
signals that can be used for data fusion include heart rate
variability, blood oxygenation, metabolism. Some signals that
have been shown related to seizure onsets, such as electrodermal
activity, near-infrared spectroscopy, skin temperature, and
respiratory monitor (35), can be used for data fusion as
experimental exploration. For example, to use heart rate
variability (HRV) for data fusion, one can plot a distribution
of HRV during preictal periods (i.e., 35 to 5 min prior to
seizure onset), and then apply the kernel density estimation.
Lastly, we relied on the assumption that the auxiliary signals
are independent of each other and independent of the main
signal, i.e., EEG, to derive Equation 7. We are aware that
this assumption may not always be entirely met. However,
we argue that machine learning models may still work even
if the assumptions are weakly met or violated; e.g., in the
field of reinforcement learning, Markov property usually is not
satisfied, but many models have shown working effectively in
practice (36).

6. CONCLUSION

Epileptic seizure forecasting is still a substantially challenging
task, but it has a consequential impact on patients’ quality of life
and their caregivers. While some patient-specific demonstrated
excellent performance in a subset of patients, generalized
predictions on non-invasive EEG recordings can work well on

most patients, which has been a great challenge. This work
presented an innovative approach to incorporate uncertainty
and auxiliary signals information in seizure-risk forecasting.
These informative warning signals will be invaluable for
decision-making in employing any risk-mitigation intervention
or therapies. We built our method based on the Bayesian
convolutional neural network to provide an insight into the
uncertainty level of seizure-risk prediction.

FIGURE 8 | Risk level of having seizures for top three good performance

patients, from top to bottom: Pat-3, Pat-4, Pat-12. All decisions with an

uncertainty level higher than 1 are discarded and not shown. Moving average

of 50 steps backwards is applied to the probability score (risk level). Orange

arrows indicate the seizure onsets.

FIGURE 7 | Slow EEG activity as potential bio-marker detected by Bayesian convolutional neural network (BCNN) for epileptic seizure forecasting. Red channels (on

the right) were labeled as origin of seizure in the EPILEPSIAE dataset.
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