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Background: Using machine learning to combine wrist accelerometer (ACM) and

electrodermal activity (EDA) has been shown effective to detect primarily and secondarily

generalized tonic-clonic seizures, here termed as convulsive seizures (CS). A prospective

study was conducted for the FDA clearance of an ACM and EDA-based CS-detection

device based on a predefined machine learning algorithm. Here we present its

performance on pediatric and adult patients in epilepsy monitoring units (EMUs).

Methods: Patients diagnosed with epilepsy participated in a prospective multi-center

clinical study. Three board-certified neurologists independently labeled CS from

video-EEG. The Detection Algorithm was evaluated in terms of Sensitivity and false alarm

rate per 24 h-worn (FAR) on all the data and on only periods of rest. Performance were

analyzed also applying the Detection Algorithm offline, with a less sensitive but more

specific parameters configuration (“Active mode”).

Results: Data from 152 patients (429 days) were used for performance evaluation

(85 pediatric aged 6–20 years, and 67 adult aged 21–63 years). Thirty-six patients

(18 pediatric) experienced a total of 66 CS (35 pediatric). The Sensitivity (corrected for

clustered data) was 0.92, with a 95% confidence interval (CI) of [0.85-1.00] for the

pediatric population, not significantly different (p > 0.05) from the adult population’s

Sensitivity (0.94, CI: [0.89–1.00]). The FAR on the pediatric population was 1.26

(CI: [0.87–1.73]), higher (p < 0.001) than in the adult population (0.57, CI: [0.36–0.81]).

Using the Active mode, the FAR decreased by 68% while reducing Sensitivity to 0.95

across the population. During rest periods, the FAR’s were 0 for all patients, lower than

during activity periods (p < 0.001).
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Conclusions: Performance complies with FDA’s requirements of a lower bound of CI for

Sensitivity higher than 0.7 and of a FAR lower than 2, for both age groups. The pediatric

FAR was higher than the adult FAR, likely due to higher pediatric activity. The high

Sensitivity and precision (having no false alarms) during sleep might help mitigate SUDEP

risk by summoning caregiver intervention. The Active mode may be advantageous for

some patients, reducing the impact of the FAR on daily life. Future work will examine the

performance and usability outside of EMUs.

Keywords: epilepsy, seizure detection, wearable sensors, machine learning, clinical validation

INTRODUCTION

Generalized tonic-clonic seizures and focal-to-bilateral tonic-
clonic seizures are the most dangerous types of seizures and
represent major risk factors for sudden unexpected death in
epilepsy (SUDEP), especially when patients are left unattended,
e.g., nighttime (1–4). Beyond the risk of serious or life-
threatening injuries (5), the lives of patients and their caregivers
are heavily influenced by the unpredictability of seizures, which
results in decreased quality of life and contributes to social
isolation, especially in adolescents (6, 7).

Over the past decade, wearable devices equipped with
automated seizure detection algorithms have been suggested
to complement and overcome limitations of the gold standard
video-electroencephalography (v-EEG) performed in the
Epilepsy Monitoring Unit (EMU) (8–12). Such devices target a
continuous, remote, unobtrusive and less expensive monitoring
of patients. They are useful mainly for two reasons: (i) to prompt
caregivers’ intervention during or shortly after a seizure while the
patient is unattended, when the risk of injury and SUDEP is the
highest (13), consequently relieving both patients and caregivers;
(ii) to provide objective and more accurate seizure counts in
outpatient settings, overcoming the limitations of seizure diaries
(14, 15). Several surveys have demonstrated the need for accurate
wearable seizure detection (16–22).

Most of the proposed systems can detect seizures with a
clear motor activity component; however, they can have high
false alarm rates (FAR) (11, 23). Among the non-EEG seizure-
monitoring devices, multimodal systems hold the most promise
for attaining both high sensitivity and a low number of false alerts
(24, 25). Moreover, these systems have the potential to assess
seizure severity by tracking and analyzing multiple bio-signals in
the peri-ictal period (13, 26, 27).

Growing efforts have been made by the scientific and clinical
community to standardize the studies on wearable seizure
detection devices to perform a rigorous validation and to enable
their ubiquitous adoption in outpatient settings (24, 28, 29).
Published guidelines have tried to adapt the STARD criteria
to the specific use case of seizure detection (30). The main
recommendation is to test the performance of seizure detection
devices during prospective “phase III” multi-center EMU studies
and “phase IV” in-field studies, where the detection algorithm is
“fixed-and-frozen” on a set of patients’ data previously recorded
from a dataset completely different from the Test Cohort (28, 29).
A few studies have been published that fulfilled phase III or

IV criteria, using a dedicated device and fixed algorithm (31–
35). Only one of them used multimodal seizure detection (32)
and it was tested only during nighttime and only on a group of
patients that included some of the same people used to develop
the algorithm, two conditions that can inflate the algorithm’s
performance. There is a need for studies examining the 24-
h performance of multimodal devices on independent data
sets, which do not include any patients used when developing
the algorithm.

In this work, we present an evaluation using a prospective,
multi-center study with 24-h data from an independent
group of patients wearing multimodal wrist-worn devices
combining accelerometers (ACM) and electrodermal activity
(EDA) sensors. We evaluate the detection of two seizure types,
i.e., “focal onset to bilateral/unilateral tonic-clonic” (FBTC)
seizures, previously known as secondary generalized tonic-
clonic seizure, and “generalized onset tonic-clonic” (GTC)
seizures, previously defined as primary generalized tonic-clonic
seizures. For brevity, we will use “convulsive seizures” (CS) to
generically refer to the two seizure types included in the study.
The ACM with EDA sensor combination has been shown as
promising to capture signs of ongoing CS (36–38), leading to
the commercialization of a wristband specifically designed to
provide real-time alerts of detected CS (Embrace wristband,
Empatica Inc). A previous multicenter study reported high
sensitivity (52 of 55 CS detected) and low false alarm rate (1
false alarm every 5 days) using a machine learning algorithm
(38) that outperformed the pioneering state-of-the-art ACM
and EDA system (37) in a direct performance comparison,
both using independent 24-h test data. However, the study
qualified for phase II, as it reported a cross-validation analysis,
meaning that the parameters of the algorithm were not the
same for all the analyzed patients (29). Here we report the
performance of a “fixed-and-frozen” algorithm on a Test Cohort
of participants that are non-overlapping with participants used
in the training dataset. Three main sets of analyses are shown in
this study:

1. Performance in detecting CS on the whole (24-h a day, all
ages) dataset and on pediatric and adult populations, separately,
which provides indications on potential implications of age on
the CS detection effectiveness.

2. Performance in detecting CS during low-motion
conditions, i.e., on periods of sedentary behavior, which
tend to be sleep periods associated with greater isolation and
SUDEP risk.
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3. Performance in detecting CS with two operating points, i.e.,
the FDA-cleared1 settings and a less sensitive Active operating
point, to provide indications on the potential of the algorithm to
be adapted according to different populations or individual needs
and expectations.

MATERIALS AND METHODS

Study Design and Endpoints
This is a prospective, non-randomized multi-site EMU clinical
trial undertaken to get the clearance by the US Food and Drug
Administration (FDA) of an investigational monitoring and
alerting system for the identification of specific types of seizures
(i.e., CS) using a device worn on the wrist. The device embeds
a Detection Algorithm that processes 3-axis ACM and EDA
sensor data to detect CS events. As per the requirements by
the FDA on medical software, the Detection Algorithm must
be “fixed-and-frozen.”

The population intended for the usage of the device included
children age 6 (included) to 20 (included) and adults age 21
(included) and up.

The performance of the fixed-and-frozen Detection
Algorithm on the Test Cohort has been evaluated in terms
of sensitivity (or percent positive agreement) as the primary
endpoint, and false alarm rate per 24 h-worn (FAR) as the
secondary endpoint. The primary endpoint for the clinical
validation of the wearable medical device was to reach a
lower bound of the 95% confidence interval of the sensitivity
higher than 0.7, for pediatric and adult groups, separately. The
secondary endpoint required that the Detection Algorithm
reached a FAR lower than 2 false alarms per day, for pediatric
and adult groups, separately.

Data Development Plan
Clinical Sites

The clinical sites involved in the study are members of the
National Association of Epilepsy Centers (NAEC) certified as
level IV in the USA, or members of LICE (Italian League against
Epilepsy) and advanced epilepsy center2 in Italy. From 2014
to 2018, a series of IRB approved research studies using ACM
and EDA wrist-worn devices were carried on in several Level
IV NAEC members in the US, including Boston Children’s
Hospital (CHB), New York Langone Medical Center (NYU),
Emory Healthcare (EMORY), Children’s Hospital of Atlanta
(CHOA), and Rhode Island Hospital (RIH). The studies were
conducted following US government research regulations, and
applicable international standards of Good Clinical Practice,
and institutional research policies and procedures. Additionally,
from 2017 to August 2018, a Pivotal study was conducted in a
Level IV center in the US, namely New York Langone Medical
Center (NYUP3) and in an advanced epilepsy center in Rome,

1Note that the FDA does not declare a wearable device to be “approved”; the

language they use after validating a wearable medical device and accepting its

claims to allow it to be marketed is that the device is “cleared”.
2Advanced epilepsy center is equivalent to a Level IV center in US.
3The abbreviation “NYUP” (i.e., NYU Pivotal) differentiates data recorded for the

pivotal study from data previously recorded at the same medical center. Different

Italy, Ospedale Pediatrico BambinGesú (OPBGP)4. The collected
labeled data have been used to test the Detection Algorithm. The
timeline of data collection at each clinical center is reported in the
Supplementary Figure 1.

Sample Size Estimation

The estimation of a minimum required sample size was based
on the Sensitivity requirements of the primary endpoint, i.e.,
meaning that we computed the minimum required number
of patients experiencing at least one convulsive seizure during
admission. The sample size was computed taking into account
the possible presence of multiple events for the same subject
(clustered data) and the need for a high value of sensitivity (39).
For an expected sensitivity of 0.95 (37, 38) with a confidence
interval width of 0.1, and assuming an intra-cluster correlation
based on the Test Cohort of the study for the previous clearance
(40), we estimated a minimum sample size of 17 patients having
seizures, for both adult and pediatric patients. No requirement
was set for the number of epilepsy patients not experiencing
seizures, but we included the available data from all patients to
provide the most accurate measure of FAR.

Reference Standard
The identification of seizures was performed by three board-
certified clinical neurologists, who independently examined v-
EEG recordings synchronized with the data recordings of the
wearable device under evaluation. A “2 out of 3” majority
rule inter-rater agreement has been used to mitigate interrater
variability in marking v-EEG data for seizure activity (41).
The reviewers were blinded to other sources of data, including
raw or processed data from the wearable and the algorithm
output. Seizure types were classified according to the most
recent International League Against Epilepsy (ILAE) seizure
classification (42). Two seizure types were targeted in this study:
“focal onset to bilateral/unilateral tonic-clonic” (FBTC) seizures,
previously known as secondary generalized tonic-clonic seizures,
and “generalized onset tonic-clonic” (GTC) seizures, previously
defined as primary generalized tonic-clonic seizures. The video-
EEG review process consisted of the following steps:

1. The EMU technicians reviewed the v-EEG recordings and
filtered out all non-relevant segments. They did not perform
any filtering on the remaining v-EEG data. The result is a
pruned v-EEG dataset.

2. The research assistants removed any notes in the pruned
dataset added by the EMU technician to prevent any potential
bias to the three independent reviewers.

3. The principal investigators conducted a review on the pruned
v-EEG dataset.

4. Second and third reviewers independently conducted reviews
on the pruned v-EEG dataset.

patients have been enrolled in the new data collection with respect to the previous

study. The two studies were performed at different times and using two different

wearable devices (Empatica E4 for NYU and Empatica Embrace for NYUP).
4“Generalized Seizure Detection And Alerting In The EMU With The Empatica

Embrace Watch And Smartphone-Based Alert System” (ClinicalTrials.gov

Identifier: NCT03207685).
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The review process consisted of confirming the onset and offset
times of a seizure and assigning a classification label to the event
based on the most recent ILAE seizure classification (42). At each
site, the following data were documented per patient:

1) v-EEG-based labeled seizure data with clinical observations,
and three independent experts validating the labeled events.

2) Seizure onset and end time (video/clinical read).
3) Seizure onset and end time (EEG read).
4) Post-ictal generalized EEG suppression (PGES) duration

(if present).
5) Seizure type according to the most recent ILAE seizure

classification (42).
6) Clinical presentation.
7) Demographic information (age at enrollment, gender, height,

weight, diagnosis, and autonomic related pathologies or
relevant chart information).

Wearable Devices
Two multimodal wrist-worn devices were used in this study, the
E4 and the Embrace, both manufactured by Empatica Inc. Both
devices received CE medical clearance from the European Union
in 2016 (class IIa). Embrace received clearance by the US FDA in
January 2018 (Class II) for CS monitoring during periods of rest
for adults and in January 2019 for children aged 6 and up.

The E4 wristband embeds a three-axis ACM sensor
(sampling frequency: 32Hz; range; [−2; +2] g), an EDA sensor
(sampling frequency: 4Hz; range; [0.01; 100] µS), a reflective
photoplethysmography (PPG) sensor (sampling frequency:
64Hz), and a temperature sensor (sampling frequency: 4Hz;
range: [−40;+115]◦C). The Embrace wristband embeds a three-
axis ACM sensor (sampling frequency: 32Hz; range; [−16; +16]
g), a three-axis gyroscope sensor (sampling frequency: 32Hz;
range; [-500; +500] ◦/s), an EDA sensor (sampling frequency:
4Hz; range; [0.01; 85] µS) and a temperature sensor (sampling
frequency: 1Hz; range: [−20;+70]◦C). The automated detection
of CS relies solely on ACM and EDA data. Therefore, only
recorded ACM and EDA data acquired by the two devices were
used as inputs to the Detection Algorithm. The two devices have
been shown to be equivalent in terms of their ACM and EDA
sensor data (see details in the Supplementary Material) and
therefore were used interchangeably in this study.

Experimental Protocol
Patients with a known history of epilepsy were admitted for long-
term v-EEG monitoring at the EMU of each clinical site. The
recruitment process was conducted by each site. Only patients (or
their caregivers) who provided their written informed consent
were enrolled. All patients were recorded following the same
protocol in order to provide homogeneous wearable device data
for inclusion in the clinical study.

In all sites, concomitant electrocardiogram (EKG) data were
recorded, which were not used either for the seizure labeling nor
for informing the classification model of the wearable medical
device.

During their time in the EMU, patients wore the E4 or the
Embrace wristband, synchronized with the v-EEG at the start

of each monitoring period. If seizure semiology reported an
asymmetric involvement of arms, the wristband was placed on
the wrist where convulsions appeared earlier and/or were more
evident; otherwise, the device was worn on the non-dominant
arm. When the wearable device used was an Embrace, the
patients were also provided with a paired wireless device to
download the sensor data from the wearable device and upload
them to a dedicated cloud data storage. Following enrollment,
study subjects were seen daily during their inpatient hospital
stay, continuously monitored with v-EEG and given the usual
standard of care.

Development of the Detection Algorithm
Machine learning algorithms use information embedded in
a training dataset, labeled or unlabeled, in order to build a
classification model and a decision rule function able to identify
and/or distinguish one or more events of interest. The tuning of
all the parameters can be performed minimizing a cost function
or maximizing one or more performance metrics on validation
datasets. The selection of the performance metrics to maximize
is usually motivated by the specific application. More specifically,
for clinical applications, the performance metrics need to reflect
the costs and benefits for patients (43), and thus how to evaluate
the performance of a medical device is usually decided at the
clinical level (44). The selected performancemetrics are described
in section Performance Metrics.

Figure 1 represents the workflow of the Detection Algorithm
validated in this study. At a very high level, data from the ACM
and EDA sensors are processed to compute features from a
pre-determined feature set, which are analyzed by a pre-trained
classification model to obtain an estimation of the probability
that a CS pattern is present in the sensor data. The probability
estimates are then evaluated by a decision rule function, to
establish whether to issue an alert or not, thus classifying the
associated event as a CS.

To identify the features that could represent the pattern
of a CS and distinguish it from other types of events, a
feature engineering approach was performed. To distinguish
CS from all other events, features that characterize both types
of events needed to be included in the classification model. A
feature set of 160 ACM- and EDA-based features was firstly
developed, mostly to better represent the frequency and non-
linear characteristics of the sensor data. Due to computational
limitations, a subset of 40 features was selected using a sequential
floating forward feature selection strategy (45), to maximize
the trade-off between performance and computational cost.
Features were extracted on consecutive 10-s windows overlapped
by 75%.

The process to obtain a classification model for the detection
of CS is schematized in Figure 2 and consisted of two main
steps. At first, the training dataset, i.e., a collection of labeled
sensor data, was processed to obtain a set of features on
windowed sensor data. The same procedure was performed on
separate validation datasets. Then, after defining performance
metrics to maximize, the labeled features from the training
dataset were provided to the machine learning algorithm to
obtain a classification model and a decision rule function, whose

Frontiers in Neurology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 724904

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Onorati et al. Multimodal Seizure Detection Device Validation

FIGURE 1 | Scheme of the workflow used to classify epochs of EDA and ACM sensor signals into seizure or non-seizure epochs.

FIGURE 2 | Description of the training phase of the Detection Algorithm.

parameters were tuned by maximizing performance metrics
evaluated on the validation dataset. To train a classification
model able to distinguish CS from non-CS events, it was crucial
to provide labeled samples to the machine learning algorithm
responsible to build the classification model. For this reason, not
only previously recorded clinical data, but also previously logged
data from real-life activities showing patterns potentially similar
to CS (e.g., tooth brushing, hands clapping, hands washing,
gesturing, driving or biking on an uneven surface) were used to
make a training dataset, as this procedure of showing both good
and bad examples showed improved performance on previous
preliminary analyses (46). This process was strictly controlled
and highly selective to preserve the correct representability
and distribution of the data in the training dataset, to avoid
mislabeling of data, and most importantly to prevent overlap
between training, validation, and testing datasets. No patients
whose data were used in the test sets contributed data to the
training or validation processes.

The Test Cohort described in section Test Cohort Allocation
and Demographics represents the testing dataset for the
Detection Algorithm.

Rest Detection Algorithm
A proprietary and validated actigraphy-based rest detection
algorithm was used to evaluate the performance of the Detection
Algorithm during rest conditions (47). Briefly, the magnitude
of the 3-axis ACM channels is band-pass filtered. Then, activity
counts are obtained as the number of crossings of the ACM
magnitude through a specified threshold and accumulated over
30-s epochs. Rest onset and offset are obtained using a rule
applied to the moving average of activity counts from a 30-
min window. Rest periods <2 h apart were merged assuming a
rest interruption between them. The output of the rest detection
typically includes sleep periods, and occasionally long quiescent
periods of wakefulness.

Performance Evaluation
Performance Metrics

Atrue positive occurred when the Detection Algorithm provided
an alarm between the clinical onset and the clinical offset times
of an event that was labeled a CS according to the “2 out of
3” majority rule by three independent board-certified clinical

Frontiers in Neurology | www.frontiersin.org 5 August 2021 | Volume 12 | Article 724904

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Onorati et al. Multimodal Seizure Detection Device Validation

neurologists. Given the count of true positives and the expert-
labeled number of CS, sensitivity was estimated as the number
of true positives divided by the number of expert-labeled CS
(“Sensitivity” in Table 3). This value was corrected (“cSensitivity”
in Table 3) for the presence of clusters in the data, more
specifically for multiple CS from the same patient, by estimating
the intra-cluster-correlation (48) and thus removing the resulting
inflation in the sensitivity (39). Similarly, the 95% confidence
interval of the so-obtained corrected sensitivity was estimated
with the classic Wilson Score method corrected for the cluster
effect (39).

A false positive, or a false alarm, occurred when the algorithm
provided an alarm not corresponding to any labeled CS. FAR,
defined as the number of false alarms per 24 h-worn, a typically
reported performance metric in non-EEG seizure detection
systems (11), was computed as the total number of false alarms
divided by the total recording hours, and normalized for 24 h.
The 95% confidence interval of the FAR was computed with
a non-parametric bootstrapping method. Specifically, 100,000
samplings with replacement were performed at the level of
the patients to incorporate all the sources of within-patient
variability (49–51). The number of iterations was chosen equal
to 100,000 since it is considered to be a reasonably large number
for bootstrapping confidence intervals (49, 52). Since the FAR
distribution did not follow a normal distribution, the 95%
confidence interval was computed as the 2.5th and the 97.5th
percentile (49) of the 100,000 FAR samples.

Two additional statistics were computed to represent a
patient-centric point of view on the performance of the detection
system: (1) the precision, which is the ratio between the total
number of true positives and the total number of alerts, with
its 95% confidence interval, computed using the classical Wilson
score method (53). In the case of no false alarms (e.g., during
rest), to provide a more realistic and conservative estimation for
both the precision and its 95% confidence interval, a correction
due to Laplace, namely the “Rule of succession,” has been applied,
as it has been reported as a good correction for probability equal
to 1 with relatively small sample sizes (54); (2) the mean and
the standard deviation of the seizure detection latency, defined
as the number of seconds between the seizure clinical onset and
the algorithm detection time.

To provide a depiction as complete as possible of the
relationship between the different performance metrics and the
operating points, the receiver operating characteristic (ROC)
curve was obtained, which graphs in a two-dimensional space
the sensitivity and the false positive rate, or equivalently
(1 - specificity), while varying the operating point of the
Detection Algorithm (55). For monitoring devices, computing
the specificity is not a well-defined task, as while it is easy to count
the number of CS events, there are not commensurate “no CS
events” that can be easily counted (56). To be able to compute the
ROC curve, we assumed that the wearable sensor data periods
labeled as non-seizure, could be represented as a sequence of
non-overlapping negative events (56), whose duration is equal to
the mean duration of the CS events. Additionally, the precision-
recall (PR) curve (57) was analyzed, as it is useful when classes are
unbalanced, which is the case in epilepsy as most data are from

the class “no CS.” The PR curve graphs in a two-dimensional
space the recall (an alternative name for the sensitivity) and the
precision, while varying the operating curve. It thus attempts
to estimate the benefit of detecting the event of interest vs. the
burden of providing a false alarm to the patient/caregiver. Finally,
the variation of the sensitivity and the FAR at each operating
point were analyzed, representing the primary and the secondary
endpoints, respectively, for the clinical validation of the detection
system. Along with the point estimates of sensitivity, specificity,
precision, and FAR, the respective 95% confidence intervals were
also computed with theWilson score method for the proportion-
like metrics (sensitivity, specificity and precision) (53), and with
a simple normal approximation for the FAR.

All of the components and parameters of the validated
wearable device, including all parameters of the algorithm,
needed to be “fixed-and-frozen” before the clinical validation.
In the Result section, we focus on two operating points of the
decision rule function: the first one, FDA-cleared, was fixed
under the rationale of maximizing the detection of all the
events during periods of rest or low activity; the second one,
Active mode, was fixed to balance the ability of the Detection
algorithm to identify the majority of the events, while reducing
the burden of false alarms on the patients and their caregivers
during moderate to intense activities. In section Performance
Analysis, the performance metrics are presented for the two
different operating points, with a particular emphasis on the
FDA-cleared mode. The performance analyses are presented
over three groupings of the test data: for all the patients, for
pediatric (6–20), and for adult patients (21+). Finally, we present
the performance of the seizure detection system during rest, as
computed by the automated rest detection algorithm, and show
the results for all three groupings.

Statistical Tests

Specific statistical tests were performed to establish whether
different populations (pediatric vs. adult groups) and behavioral
or environmental conditions (rest vs. active groups) showed
statistically significant differences. The 95% confidence intervals
were computed on each grouping. To test whether there was a
statistical difference for “cSensitivity” in each comparison, we
computed the 95% confidence interval of the difference between
the corrected sensitivities for each group and tested it with a
method for independent binomial proportions for clustered data
(58). The null hypothesis that there was no difference between
the groups can be rejected if the 95% confidence interval does
not contain the 0 value. To examine if there were statistically
significant differences in the FAR since each group had different
exposure times, we performed a normal approximation of a
statistical test based on the null hypothesis that the expected
number of events experienced by each group were equal (58).

RESULTS

Test Cohort Allocation and Demographics
A total of 304 patients’ data was recorded from the 6 clinical
centers. Upon completion of the study, the Indications for Use
(IFU) of the wearable seizure detection device were reviewed by
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TABLE 1 | Summary of reasons for withdrawal of patients from the analysis.

Motivation for exclusion # Patients excluded Description

Out of the IFU 112 Wearable device placement

at the ankle

22 Age below 6

1 Non-epileptic seizures

Lost/corrupted data 10 Issues with the reference

device (v-EEG)

3 Corrupted wearable device

data

1 Wearable device hardware

failure

Compliance 1 Wearable device not worn

2 Early termination upon

request from the patient

the FDA, which resulted in the exclusion of some patients from
the analysis even if the reasons for withdrawal had not been set
as exclusion criteria prior to the start of the study. The FDA
requested to use only one location for the device, so we chose
the wrist. Accordingly, 135 patients were excluded from the study
because they did not wear the sensor on the wrist (112)5, did not
have a prior epilepsy diagnosis (1), or were <6 years old (22), as
already explained in Section 2.1. An additional 14 patients were
excluded due to hardware, software or data issues of the EEG
reference device (10) or the wearable device (4). Only 3 patients
were excluded because of lack of compliance (1) or dropping out
from the study (2). Table 1 summarizes all of the cases excluded
from the study.

Thus, the analyzed dataset consisted of a total of 152 patients
(77 females, age range: 6–63 years, median age: 17 years), of
which 85 were pediatric patients (38 females, age range: 6–
20 years, median age: 12) and 67 were adults (37 females, age
range: 21–63 years, median age: 38 years). The total duration
of the recordings was 10,296 h (429 days), including 3,939 h
(162 days) from pediatric patients and 6,357 h (265 days) from
adult patients. A total of 36 of the 152 patients experienced at
least one of the seizures included in the clinical trial during
the monitoring period, equally distributed among children (9
females) and adults (6 females). A total of 66 CS events
experienced by 36 patients were independently identified by
at least 2 out of 3 board-certified clinical neurologists who
reviewed the v-EEG recordings: Of these, 35 were experienced
by 18 pediatric patients (17 by female pediatric patients),
and 31 by 18 adult patients (10 by female adult patients).
Table 2 shows the distribution of patients and CS across the
different clinical sites, along with the wearable device used by
each patient.

5Some patients, especially with sensory disorders, may become distracted or

stressed by a wrist-worn device. Some patients had wrists that were too small for

the E4 device. To allow both types of patients to contribute data, they could wear

an E4 on the lower calf, just above the ankle. However, FDA later asked us to focus

only on data from one location, so we chose the wrist.

TABLE 2 | Distribution of patients, wearable device type and CS events across

the different clinical sites.

Site Location Patients Device CS

Pediatric Adult E4 Embrace GTC FBTC

BCH US 52 (F: 26) 3 (F: 2) 55 0 5 16

CHOA US 13 (F: 5) 0 13 0 3 2

EMORY US 1 (F: 0) 13 (F: 10) 14 0 3 0

NYU US 0 18 (F: 10) 18 0 0 10

NYUP US 1 (F: 1) 13 (F: 4) 0 14 0 11

OPBGP IT 13 (F: 3) 1 (F: 0) 0 14 0 10

RIH US 5 (F: 4) 19 (F: 12) 24 0 1 5

Total 85 (F: 39) 67 (F: 38) 124 28 12 54

F, female.

Performance Analysis
Figure 3 shows the ROC curve, the PR curve and the sensitivity
and FAR curves while varying the operating point of the
Detection Algorithm. Different portions of the curves are
shown to emphasize the two selected operating points and
their relationship with the different performance metrics. The
specificity spanned a very narrow range of values, very close to
0.99, due to the highly unbalanced class distribution and the
high specificity of the Detection Algorithm. The sensitivity at
the two operating points was 0.95 and 0.98, respectively, with
a higher value for the FDA-cleared operating point (blue circle
in Figure 3). The overall precision across all conditions, rest and
non-rest, was relatively low: for the FDA-cleared operating point
the precision was 0.15, which indicates 1 true detection for every
6 false alerts on average, while for the Active operating point the
precision was 0.35, resulting in 1 true detection for every 2 false
alerts. The FAR of 0.84 implied on average <1 false alarm per full
day of recording at the FDA-cleared high-sensitivity operating
point, and the FAR of 0.27 implied on average about 1 false
alarm every 4 days of continuous wear while operating in the less
sensitive Active mode.

Figure 4 shows the detected CS and the FAR for each patient
in the Test Cohort, grouped according to the operating point
of the Detection Algorithm and the age group. In the Active
mode, most patients experienced no false alarms (72 and 63% for
pediatric and adult patients, respectively, had FAR = 0). In the
FDA-cleared mode, an individual FAR of 0 was experienced by
47 and 46% for pediatric and adult patients, respectively.

Table 3 reports the characteristics of the datasets included
in each performance evaluation (rows “Test cohort”) and the
results for each operating point (rows “FDA-cleared” mode and
“Active” mode), for the whole Test Cohort (columns “Overall”)
and each age group separately (columns “Pediatric” and “Adult,”
respectively). Also, the performance evaluation was conducted
including all the data (columns “All data”), or only the data
recognized as rest by the automated rest detection algorithm
described in paragraph 2.7 (columns “Automatically-Detected
Rest”). Overall, rest periods accounted for ∼38% of the total
recording duration. The median duration of rest periods was
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FIGURE 3 | (A) ROC curve with 95% confidence intervals (dotted lines). (B) Precision-Recall (PR) curve with 95% confidence intervals (dotted lines). (C) Sensitivity

(violet) and FAR (yellow) curves with 95% confidence intervals (dotted lines). All curves were obtained by varying the operating point of the Detection Algorithm. Two

operating points are highlighted in each curve, corresponding to “FDA-cleared” mode (blue circles) and “Active” mode (green circles).

7.1 h and the median number of rest periods per recording day
was 1.2. These statistics lend support to a hypothesis that most
of the rest periods were probably sleep periods. More detailed
statistics are reported in the Supplementary Figure 2.

As expected, the estimated sensitivity was inflated by the
presence of clustered data (i.e., multiple CS per patient), and
therefore we computed its statistical correction “cSensitivity,”
which was lower. Nonetheless, the lower bound of the 95%
confidence interval for cSensitivity was higher than 0.7 for all age
groups and both operating points when considering the whole
dataset in the analysis (columns “All data”). Even though only one
operating point has been clinically validated and FDA-cleared,
the less sensitive operating point (“Active” mode, in Table 3) also
reached a good overall performance in detecting CS.

The requirement expressed in the secondary endpoint
regarding the FAR has been met for all three age groupings
and both operating points. When considering only the data
recognized as rest by the rest detection algorithm, corresponding
to sleep periods and occasional long periods of inactivity, the
number of the false alarms dropped to 0 for all the grouped
analyses and both operating points, leading ideally to a FAR
equal to 0. As a consequence, the precision drastically increased.
Even applying a conservative estimate of precision with a
95% confidence interval adjusted by the “rule of succession”
correction of Laplace, the corrected precision reached a value
of 0.95.

Table 4 shows the results of the statistical analysis of the
main performance metrics, i.e., sensitivity and FAR, between the
age groups and the activity groups. As expected, there was no

difference in the ability of the Detection Algorithm in identifying
CS between the two age groups and between the two contexts in
which the CS occurred, i.e., during rest or during a moderate to
high activity. On the contrary, the difference in the occurrence
of the false alarms was statistically significant, as expected when
comparing rest vs. moderate to high activity, and between the two
age groups.

The detection latency of the system was on the order of 30–
40 s (Table 3). Seizures occurring during the whole recording
period were detected with a median detection latency of 37.46 s
and 40.03 s when using the FDA-cleared or the Active mode,
respectively. Considering only seizures occurring during rest
periods, the latency was 33.05 s and 38.36 s with the two
modalities, respectively.

DISCUSSION

Key Findings and Advances Over Prior
Research
Wearable technologies designed to accurately and automatically
monitor for CS seizures provide advantages of improved
detection and alerting to caregivers of potentially life-threatening
events, enabling attention to seizures, and potentially lowering
the risk of serious injury or death from accidents and SUDEP.
A recent study of 255 SUDEP cases (definite and probable) and
1,148 matched controls showed that 69% of SUDEP cases in
patients with GTC seizures who live alone may be prevented if
patients are attended, or if their GTC seizures are controlled.
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FIGURE 4 | (A) Number of CS (gray) and the number of detected CS for each of the 36 patients experiencing CS, grouped according to the operating point of the

Detection Algorithm and the age group. (B) Distribution of the individual FAR for the “FDA-cleared” mode. (C) Distribution of the individual FAR for the “Active” mode.

Recent practical clinical guidelines recommend using clinically
validated devices for automated detection of CS, the seizure types
included in this study, especially in unsupervised patients, where
alarms can facilitate rapid interventions (28).

To the authors’ knowledge, this is the first prospective
study on a multimodal wearable CS detection system based
on wrist ACM and EDA sensors evaluated on a large patients’
pool (152 patients). Prior work has presented prospective
analyses of non-EEG seizure detection devices (31–35), but
none of them combined ACM and EDA sensors or used
multi-modal methods on continuous 24-h patient data, i.e.,
including activity as well as sleep. While ACM sensors
are intuitively fundamental to capture signs of ongoing
CS, EDA sensors, which convey information on sympathetic
autonomic nervous system activity, improve the specificity of
the detection (37) and provide additional information for seizure
characterization (59, 60). Apart from the unique combination
of sensors to the authors’ knowledge, the presented Detection
Algorithm is the only machine learning algorithm used in
commercialized non-EEG seizure detection systems. Machine

learning algorithms are becoming increasingly recognized as
effective tools for the detection of seizures (61, 62), despite
the challenges they pose for traditional medical regulatory
systems (63).

This work further contributes to the field detailed analyses
examining performance differences between pediatric and adult
patients, between rest and active conditions, and using two
different operating modes of the automated algorithm (both
defined a priori during the previous training phase of the
Detection Algorithm and fixed and frozen before applying them
to the test data here). To the authors’ knowledge, these types
of analyses are novel and provide an expanded understanding
of the capabilities and potential shortcoming of the wearable
multimodal system under investigation.

This study may qualify for the recently proposed label of
a phase III validation study (28, 29): Multiple EMU centers
were involved; the reference standard was v-EEG recordings
interpreted by experts; more than 20 patients (n = 36) with
seizures were included with more than 30 seizures (n = 66);
the data and patients analyzed were disjointed from those
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TABLE 3 | Characteristics of the Test Cohort and performance of the Detection Algorithm for all the patients and the two age groups, for the two different operating points

of the algorithm (“FDA-cleared” mode and “Active” mode, and for all the data (“All data”) vs. only periods of rest (“Automatically-Detected Rest”).

All data Automatically-detected rest

Overall Pediatric Adult Overall Pediatric Adult

Test cohort # Patients (w/ CS) 152 (36) 85 (18) 67 (18) 144 (13) 78 (7) 66 (6)

Total hours 10,296 3,939 6,357 3,995 1,703 2,292

Average hours/pat. 68 46 95 26 20 34

Total CS 66 35 31 20 13 7

Mean duration [sec] (St. Dev.) 84.56 (34.57) 89.37 (39.09) 79.13 (28.27) 78.65 (26.49) 79.61 (24.25) 76.86 (32.26)

“FDA-cleared” mode Detected CS 65 34 31 19 12 7

Mean delay [sec] (St. Dev.) 37.46 (21.09) 37.76 (24.06) 37.13 (17.64) 33.05 (12.09) 32.08 (7.77) 34.71 (17.96)

Sensitivity 0.98 0.97 1.00 0.90 0.92 1.00

cSensitivity [95% CI] 0.96 [0.92, 1.00] 0.92 [0.85, 1.00] 0.94 [0.89, 1.00] 0.83 [0.69, 0.97] 0.82 [0.65, 0.99] 0.82 [0.65, 1.00]

Precision [95% CI] 0.15 [0.12, 0.19] 0.14 [0.10, 0.19] 0.17 [0.12, 0.23] 0.95* [0.76, 0.99] 0.93* [0.66, 0.99] 0.89* [0.52, 0.98]

Total false alarms 357 207 150 0 0 0

FAR [95% CI] 0.83 [0.63, 1.07] 1.26 [0.87, 1.73] 0.57 [0.36, 0.81] 0 0 0

“Active” mode Detected CS 63 32 31 19 12 7

Mean Delay [sec] (St. Dev.) 40.03 (16.25) 37.44 (12.96) 42.71 (18.91) 38.26 (12.43) 36.75 (7.62) 40.86 (18.57)

Sensitivity 0.95 0.91 1.00 0.90 0.92 1.00

cSensitivity [95% CI] 0.91 [0.84, 0.99] 0.85 [0.72, 0.98] 0.94 [0.89, 1.00] 0.83 [0.69, 0.97] 0.82 [0.65, 0.99] 0.82 [0.65, 1.00]

Precision [95% CI] 0.36 [0.29, 0.43] 0.33 [0.24, 0.43] 0.39 [0.29, 0.50] 0.95* [0.76, 0.99] 0.93* [0.66, 0.99] 0.89* [0.52, 0.98]

Total false alarms 113 65 48 0 0 0

FAR [95% CI] 0.27 [0.18, 0.36] 0.40 [0.23, 0.59] 0.18 [0.10, 0.28] 0 0 0

CI, Confidence Interval. *Laplace correction (i.e., the “rule of succession”) was applied to improve the estimation of the precision and its 95% confidence interval.

TABLE 4 | Statistical comparison of “cSensitivity” and FAR between pediatric and adult patients, and between Rest and Active periods, for the two operating points.

Operating point Variable Groups p-value

“FDA-cleared” cSensitivity Children vs. adults 0.177

Rest vs. active 0.496

FAR ratio Children vs. adults << 10−3

Rest vs. active << 10−3

“Active” cSensitivity Children vs. adults 0.478

Rest vs. active 0.227

FAR ratio Children vs. adults < 10−3

Rest vs. active << 10−3

Values in bold indicate a statistically significant difference (p-value < 0.05).

used to develop the Detection Algorithm, removing the risk
of overfitting, and all of the analyses were performed in
a real-time manner fully mimicking the functioning of the
algorithm on-board. Offline analysis of bio-signals may raise
the possibility of overfitting to the recorded data set and can
call the generalizability of results into question (28). However,
given that the Detection Algorithm was trained on separate data
and a fully separate patient group, and that it was “fixed-and-
frozen” before being applied to the test set, and still uses the
same code that runs on-board the Embrace device, we believe
that overfitting is not affecting these results, as also supported by
FDA’s careful evaluation.

The performance of the FDA-cleared Detection Algorithm
complies with and surpasses the performance requirements on

non-EEG seizure monitoring devices, which focus on sensitivity
and FAR. The Detection Algorithm showed an excellent
sensitivity, capturing 65 out of 66 CS occurred in 36 patients, with
a lower bound of the 95% confidence interval substantially higher
than the study endpoint on sensitivity. The system provided
reasonably timely detection of CS, within an average of 37.46 s
from the onset of clinical manifestations as annotated by expert
v-EEG raters. Rapid detection is of utmost importance, given
that timely treatment of seizures can be life-saving, especially
after CS, which bear a higher risk of SUDEP (3, 13). Even if the
observed delay is slightly higher than systems using arm-worn
electromyography patches (33, 35), it is comparable to previous
results using wrist-worn ACM-only sensors (31) and combined
ACM and EDA sensors (38) which seem to be preferred by

Frontiers in Neurology | www.frontiersin.org 10 August 2021 | Volume 12 | Article 724904

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Onorati et al. Multimodal Seizure Detection Device Validation

patients (19). A delay of ∼30–40 s seemingly would be sufficient
warning to allow caregivers to provide interventions (if they are
nearby), e.g., turning patients to minimize postictal respiratory
dysfunction, considering that the minimum duration of CS is
around 30–40 s (64, 65) and that apnea, bradycardia and oxygen
desaturation onset may occur in the postictal phase, ∼50–150 s
after the onset of GTCS (66).

The FAR was well-below the endpoint of <2 false alarms per
day, with almost half of the patients experiencing no false alarms
and only 15% of all the patients experiencing more than 2 false
alarms per day. The precision of the Detection Algorithm was
relatively low (∼0.15) indicating that around 1 out of 7 alerts was
a true seizure; this is an area where continued improvement is
needed. There is a very large variance in the prevalence of CS (67),
resulting in a very large range of individual precision estimates;
thus, the ratio of true alarms to false ones can vary widely (4, 68).
This may be a reason why FDA does not include precision, but
focuses on sensitivity and FAR for evaluating non-EEG seizures
detection systems (29).

The FAR provides a measure of the average frequency of false
alarms independently from the frequency of the CS individually
experienced by the patients, resulting in an estimate of the
potential burden of false alarms in the daily life of the patients
and their caregivers.

When comparing the present results with the previous phase
II multi-center study using the same sensor set (38), the
Sensitivity was slightly higher (0.96 with CI = [0.92, 1.00] in the
current study vs. 0.94 with CI = 0.85–0.98). The FAR observed
in the previous study when pooling data from the 69 patients was
lower (0.2) than the FAR observed in this study (0.83) on all 152
patients. This difference might be ascribed to the much longer
duration of the recordings in the present study (429 days vs.
247 days), likely containing more varied motor patterns during
longer awake time6 and a higher absolute and relative number
of more active, pediatric patients in the present study (85/152
vs. 24/69 patients). The prior phase III validation of another
multimodal seizure detection device based on ACM and PPG
(32) reported a Sensitivity of 0.96 (CI = 0.8–1.00) on 22 tonic-
clonic seizures and a median FAR of 0.25 per night (CI = 0.04–
0.35). However, the system was tested only during nighttime and
only on a group of patients that included some of the same people
used to develop the algorithm, two conditions that can inflate
the algorithm’s performance. The present results, both sensitivity
and FAR, show improvements over the FDA-pivotal study for
a surface-EMG bicep-worn automated seizure detection system
(SPEAC; Brain Sentinel), which originally detected 35 of 46 GTC
seizures (0.76 with CI = 0.61–0.87) with a FAR of 2.52 per 24 h,
and with corrected midline-biceps positioning was improved to
detect 29 of 29 GTC seizures (1.00, CI = 0.88–1.00) with a
mean FAR of 1.44 per 24 h (35). Another phase III study on a
surface-EMG bicep-worn device (EDDI; Ictal Care) reported a

6During longer-duration recording periods it is more likely that the patients are

not always resting, but are getting up and about, engaging inmore diverse activities

that trigger more false alarms; thus, the estimation of the FAR when made over

longer durations may be higher, even though it is always normalized by the

duration.

sensitivity of 0.938 (30 out of 32 GTC seizures were detected, CI
= 0.86–1) with a mean FAR 0.67 per 24 h (33), slightly lower than
the FAR observed here but evaluated on much shorter periods
(155 days from 71 patients). The present results also showed
sensitivity improvements over a previously published phase III
study of a wrist-worn ACM-triggered seizure detector (Epi-Care;
Danish Care Technology, Sorø, Denmark) evaluated in EMU’s
that showed a sensitivity of 0.9 (CI = 0.85–1.00) and a FAR
of 0.2/day for detecting bilateral tonic-clonic seizures (31). The
same device was later evaluated in what was described as a phase
IV field study (34), again reporting a median sensitivity of 90%
but with a lower average FAR of 0.1/day. Of the patients who
completed the latter study (ages 7–72, average = 27), about
half were in an institution, 27% used it only at night, and four
patients discontinued use because of a high FAR. The use only
at night and the removal of participants having a high FAR are
adjustments that we did not make in our study, which make the
two sets of results less comparable as each of these adjustments
generally reduces the FAR. That ambulatory study differs from
our study also in that its seizure logs were based on observation,
without v-EEG confirmation; these factors raise the possibility
that seizures might have been missed both by the device and by
human observers. The prospective nature of the present study as
well as its longer duration of recordings and validated labels (with
both seizure and non-seizure epochs validated separately by three
independent experts using only video and EEG while blinded to
the wearable data) make it more valuable in terms of providing
realistic gold-standard performance estimates.

The comparison between pediatric and adult patients did
not show significant differences regarding Sensitivity. The only
missed CS, when using the FDA-cleared Detection algorithm,
was from a pediatric patient whose convulsions were rather
mild (by inspection of the ACM sensors). Our findings are in
line with the absence of difference between pediatric and adult
seizures reported in the literature. The seizure types used in
this work are independent of patient characteristics such as age
and gender. In the 11 classifications of epileptic seizures and
epilepsy syndromes and revisions by the ILAE, starting in 1964
and ending in 2017 (69), no distinction has been made for tonic-
clonic seizures in patients of different gender or age. Very few
studies have been published about the differences by age or
gender in the EEG or clinical features of CS, and in none of
the seizure types we examined has age or gender been identified
as a significant factor of differentiation (70–72). Moreover, in
the non-EEG-based seizure detection literature, a pivotal trial
that was used to clear a motion-based CS detection device for
medical use in Europe presented no distinctions in age or gender
of patients (31). Differently from the sensitivity, a significant
difference for the FAR between the two age groups was observed,
even if the performance was in line with the recommended limits
(FAR<2) for both subgroups. This may be ascribed to the fact
that children are more likely than adults to engage in repetitive,
activating motions (like excitedly shaking a dice, dancing, or
playing video games, etc.) while in the inpatient EMU, which
resulted in a higher number of false alerts. It is worth noticing the
high variability of the individual FAR perceived by the patients
during their admission in the EMU. Counterintuitively, pediatric
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patients more frequently experienced no false alerts than adults,
but at the same time pediatric patients experienced overall more
false alerts than adults. Specifically, pediatric patients with FAR
higher than 2 outnumbered adult patients. In other words, a few
pediatric patients had a very high FAR, which raised the group
average FAR.

The comparison between periods of rest and periods of
activity showed that the FAR was significantly higher during
periods of activity, for both age groups. This was not surprising,
as non- seizure motor patterns resembling convulsions (e.g.,
periodic movements with relatively high frequency) are more
likely to happen during periods of activity. During sleep, the
number of false alarms was 0, while all seizures except one were
correctly recognized. Issuing an alert for real seizures during
sleep is fundamental to mitigate the risk of SUDEP (73). Having a
precision of 100% during sleep is important to reduce the burden
on both caregivers and patients.

To provide a detailed overview on the capability of the
Detection Algorithm, results were presented at two different
operating points: Active mode, designed to be less sensitive but
more specific than FDA-cleared mode, is characterized by a
FAR 68% lower than the FDA-cleared one, while keeping the
sensitivity slightly lower than the FDA-cleared mode, and most
importantly still above the requirement. At a first glance, the
advantage of FDA-cleared mode vs. Active mode (i.e., a higher
sensitivity) doesn’t seem to counterbalance the cost of an increase
in the FAR. However, it’s worth considering that for applications
developed for saving lives, or to prevent serious consequences,
as the case of the Detection Algorithm presented here, the cost
of type II errors (missed events) is higher than the cost of
type I errors (false positives). For the most dangerous context—
sleep—the FAR is equivalent (FAR=0 for both operating points),
so identifying more CS events becomes the key discriminating
factor for the selection of the operating point. Finally, the
decrease in the detection time, mostly during sleep, is another
important factor that suggests operating the Detection Algorithm
at its more sensitive configuration: a timely intervention in the
case of a near-SUDEP can dramatically increase the chances to
save the patient’s life (74). The Embrace system currently allows
the user to switch between the FDA-cleared mode and the Active
mode, which is suggested during situations in which a lower FAR
is desirable. For example, the patient may switch to Active mode
when engaging in daytime activities likely to cause false alerts and
when they can be sure that their chances of a CS are relatively
low, as some patients have certain times of the day or certain
phases of a hormonal or other multidien cycles (75) with very
low seizure probability.

Limitations
One of the significant strengths of this study is also its most
significant limitation: the system has been tested in EMU
environments. Its validation for outpatient environments still
needs to be fully documented via an appropriately large “phase
IV” study, following the recommendations of the scientific
community (28, 29). To those recommendations, we have also
suggested to add additional criteria that we think are important
such as making sure no participants in the test set were used
to develop or tune the algorithm, and making sure that there

is a high-quality process in place to validate both the presence
and absence of any seizures in the field, as there is typically
no video or EEG when seizures happen in daily-life outpatient
settings. Outpatient settings typically involve increased patient
movement, which as we saw in the EMU was correlated with
higher FAR. In an outpatient setting, if a seizure happens when a
patient is alone and a device (with poor sensitivity) does not alert
anybody to come, then the seizure may not be noted in a diary
and it may not be properly counted as a “missed event.” Patients
are well-known to underreport CS and thus if the patient is not
continuously observed, this can result in a reported sensitivity
that is significantly inflated, as the number of undetected CS
will be under-reported (14). Preliminary studies, where reliable
observers accompanied outpatients continuously to label their
data, have shown that the performance of a previous version
of the ACM and EDA Detection Algorithm, when evaluated in
outpatient settings, has been comparable to the performance in
inpatient settings in both short-term and explorative longitudinal
analysis (36).

Future Research Directions
Future research goals include further reducing the FAR without
reducing the sensitivity of the Detection Algorithm. Future
goals also include adding additional modalities to the ACM
and EDA to discriminate between epileptic and non-epileptic
events (76) and to detect other types of motor epileptic
seizures, such as myoclonic seizures [for which a preliminary
analysis showed promising results (77)]. The recognition of non-
convulsive seizures, e.g., focal seizures, is also a target of growing
interest. At present, a clear evidence gap has still to be filled
before introducing the automated ambulatory detection of non-
convulsive seizures into clinical practice (28, 78, 79). However,
promising results using the E4 wristband indicated that this
may be possible with a wrist-worn device (80–82). Additionally,
advanced post-processing analytics on the peri-ictal periods may
provide seizure semiology information, thereby expanding the
quality of available patient data. The characterization of the
post-ictal phase may also be useful to determine the risk of
SUDEP (83); the wearable sensor studied here continuously
monitored activity vs. inactivity, sleep/wake, respiration during
rest, and sympathetic nervous system function at the time of
a recorded “probable SUDEP” where an alert was sent but
nobody arrived, and a large surge in EDA occurred (27). Several
biomarkers of interest in SUDEP, in seizure-prevention, and
other neurological studies can be monitored continuously by a
smart watch, particularly if it also measures EDA (59, 60, 84). The
development of automated methods for objective risk assessment
of the recorded seizuresmay lead ultimately to a paradigm shift of
patient monitoring and outcome assessment in the field of mobile
seizure detection (22).
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