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Background and Purpose: Prediction models for functional outcomes after ischemic

stroke are useful for statistical analyses in clinical trials and guiding patient expectations.

While there are models predicting dichotomous functional outcomes after ischemic

stroke, there are no models that predict ordinal mRS outcomes. We aimed to create a

model that predicts, at the time of hospital discharge, a patient’s modified Rankin Scale

(mRS) score on day 90 after ischemic stroke.

Methods: We used data from three multi-center prospective studies: CRISP, DEFUSE 2,

and DEFUSE 3 to derive and validate an ordinal logistic regressionmodel that predicts the

90-daymRS score based on variables available during the stroke hospitalization. Forward

selection was used to retain independent significant variables in the multivariable model.

Results: The prediction model was derived using data on 297 stroke patients from

the CRISP and DEFUSE 2 studies. National Institutes of Health Stroke Scale (NIHSS) at

discharge and age were retained as significant (p < 0.001) independent predictors of the

90-day mRS score. When applied to the external validation set (DEFUSE 3, n = 160),

the model accurately predicted the 90-day mRS score within one point for 78% of the

patients in the validation cohort.

Conclusions: A simple model using age and NIHSS score at time of discharge can

predict 90-day mRS scores in patients with ischemic stroke. This model can be useful

for prognostication in routine clinical care and to impute missing data in clinical trials.

Keywords: modified rankin scale, neurology, ischemic stroke, outcome, ordinal regression

INTRODUCTION

Prediction models of functional outcome after ischemic stroke can aid clinical decision making for
providers, patients, and families by guiding rehabilitation goals, discharge planning, and patient
expectations (1–3). They can also be useful for imputingmissing data in clinical trials. Thesemodels
stroke have generally focused on predicting a dichotomization of the modified Rankin Scale (mRS)
such as functional independence (mRS 0–2) vs. functional dependency or death (mRS 3–6), or
alive (mRS 0–5) vs. dead (mRS 6) (4–6). While these dichotomizations are meaningful, a model
that could predict outcome across the entire spectrum of the mRS would be more informative.
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For example, for patients who have less severe strokes, a model
predicting mortality may be less useful than a model that predicts
the exact score on the mRS (7). Such a model could also be used
to impute missing data in clinical trials when patients are lost to
follow-up or when outcome data is not yet available.

Aims
To address this need, we aimed to develop an ordinal logistic
regression model that predicts the 90-day mRS score based on
variables available at the time of hospital discharge.

METHODS

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Study Patients
This study used de-identified patient data from three prior
studies: CRISP, DEFUSE 2, and DEFUSE 3 (8–10). CRISP and
DEFUSE 2 were multi-center prospective cohort studies and
DEFUSE 3 was a prospective randomized open-label multicenter
trial of endovascular therapy. Patients were older than 18, and
only DEFUSE3 had an upper age limit of 90 years. Other
inclusion criteria included diagnosis of ischemic stroke, eligibility
for endovascular therapy, baseline NIHSS ≥ 5 (CRISP, DEFUSE
2) or ≥6 (DEFUSE 3). All studies received approval from
local institutional review boards, and patients or their proxies
provided written informed consent.

Variables
The dependent variable was the mRS score obtained 90 days after
the index event. For patients with missing 90-day mRS scores,
30-day mRS scores were carried forward. Patients missing both
outcome measures were excluded from the study. Patients who
died during the initial hospitalization were also excluded.

Predictor variables included baseline characteristics [sex,
age, history of atrial fibrillation, history of diabetes, history
of hypertension, history of stroke or transient ischemic stroke
(TIA)], imaging measures (24-h follow-up infarct volume,
hemorrhagic transformation per the European Cooperative
Acute Stroke Study criteria), and clinical measures (NIHSS
score at discharge or day 5 of hospitalization, whichever
occurred earlier).

Model Derivation
The CRISP and DEFUSE 2 datasets were used as the derivation
set. The ordinal outcome measure was the mRS score at 90
days. We used a proportional odds model, which estimates
intercepts for each level, but assumes a common coefficient
across ordered response categories. Validity of the proportional
odds assumption was verified by trending univariate odds ratios
for each cutoff and plotting partial residuals. The derivation
dataset was “upsampled” to account for the relatively small
number of participants with an mRS score of five at day
90. The upsampling method augments the minority class by
sampling random observations from this class with replacement
(i.e., bootstrapping). We implemented upsampling using the

upsample function in the package R-splitters. After upsampling,
variables that were associated with outcome at a p < 0.2 in
univariate analysis were entered in a multivariable model and
were retained if they reduced the AIC by seven or more points.

Model Validation
The model was internally and externally validated to assess
model performance on unseen data, thereby mitigating possible
overfitting of the model. The model was internally validated
within the derivation set using five-fold cross-validation.
Univariate screening and forward selection were repeated to
derive a model for each fold. The model was externally validated
using the DEFUSE 3 dataset.

Measures used to evaluate for model performance included R2

(coefficient of determination), mean absolute error (MAE), and
the percentage of predicted outcomes that fell within one point
of the observed outcomes. As an additional measure of model
performance, we ran the primary efficacy analysis of the DEFUSE
3 trial based on imputed 90-day mRS scores and compared it to
the same analysis using observed 90-day mRS scores.

Statistical Analyses
Proportions were compared using Fisher’s exact test, and
distributions of continuous and ordinal variables were compared
using the t-test or Wilcoxon rank-sum test. We report two-
sided results and used a p < 0.05 as a threshold for
statistical significance.

All statistical analyses were performed using R software
(version 3.6.2) and SAS software (version 9.4).

RESULTS

There were 201 patients enrolled in the CRISP study, 130
in DEFUSE 2, and 182 in DEFUSE 3. In the derivation
set (CRISP and DEFUSE 2), we excluded two patients with
missing 30 and 90-day mRS outcome data, and 32 patients who
died during their initial hospitalization. In the validation set
(DEFUSE 3), we excluded 22 patients who died during their
initial hospitalization. (Supplementary Figure I). The patient
characteristics are presented in Table 1. Age (65.6 vs. 68.9,
p = 0.02), prevalence of hypertension (66.7 vs. 78.8%, p = 0.01),
hemorrhagic transformation score (p = 0.01), NIHSS score at
discharge (6 vs. 8, p= 0.03), and infarct volume at early follow up
(26.2 vs. 37.7ml, p< 0.001) were different between the derivation
and validation groups.

In the derivation set, predictors that were associated (p < 0.2)
with the 90-day mRS score in univariate analyses, included age
(p < 0.001), hypertension (p < 0.001), diabetes mellitus
(p < 0.001), history of stroke (p = 0.12), hemorrhagic
transformation (p < 0.001), NIHSS score at discharge
(p < 0.001), infarct volume at early follow-up (p < 0.001).
After forward selection, age and the NIHSS score at discharge
remained as independent predictors of the 90-day mRS score in
the multivariable ordinal regression model (p < 0.001 for each,
Table 2).

With five-fold internal cross-validation, age and NIHSS were
retained in each model and no other variable was retained in a
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TABLE 1 | Characteristics of patients included in the derivation and validation set.

Derivation set (n = 297) Validation set (n = 160)

Age,† mean (SD) 65.6 (15.3) 68.9 (13.2)

Sex (female), n (%) 143 (48.1%) 82 (51.2%)

Hypertension,‡ n (%) 198 (66.7%) 126 (78.8%)

Diabetes mellitus, n (%) 64 (21.5%) 43 (26.9%)

History of stroke or TIA, § n (%) 43 (14.5%) 20 (12.5%)

History of atrial fibrillation, n (%) 97 (32.7%) 53 (33.1%)

Hemorrhagic transformation||

None, n (%) 121 (40.7%) 83 (51.9%)

Hemorrhage infarction type 1 (HI1), n (%) 58 (19.5%) 34 (21.2%)

Hemorrhage infarction type 2 (HI2), n (%) 51 (17.2%) 27 (16.9%)

Parenchymal hematoma type 1 (PH1), n (%) 43 (14.5%) 8 (5.0%)

Parenchymal hematoma type 2 (PH2), n (%) 23 (7.7%) 8 (5.0%)

NIHSS score at discharge, ¶ median (IQR) 6 (2–14) 8 (3–16)

Infarct volume at early follow up, ** median (IQR) 26.2 (10.6–67.5) 37.7 (22.5–89.9)

Premorbid mRS, median (IQR) 0 (0–0) 0 (0–0)

†p = 0.02; ‡p = 0.01; §missing value: derivation set (n = 1); ||p = 0.01, graded per European cooperative acute stroke study criteria, missing value: derivation set (n = 1); ¶p = 0.03;

**missing values: derivation set (n = 44), p < 0.001.

Wilcoxon rank-sum test for age; Fisher’s exact test for sex, hypertension, history of stroke or TIA, history of smoking, and history of atrial fibrillation.

TABLE 2 | Ordinal logistic regression predicting 90-day mRS derived from the full

derivation set (n = 297).

Coefficient 95% Confidence interval

mRS 0|1 2.94 2.10–3.78

mRS 1|2 4.35 3.47–5.23

mRS 2|3 5.62 4.70–6.54

mRS 3|4 7.06 6.04–8.08

mRS 4|5 8.55 7.43–9.67

mRS 5|6 10.14 8.77–11.51

Age 0.05 0.04–0.06

NIHSS score at discharge 0.31 0.27–0.34

majority of models. The mean R2 of the five validation models
was 0.60, the average mean absolute error was 0.88 (95% CI 0.82–
0.94), and a mean of 80% of predictions were within one of the
observed value. Additional results of the five-fold internal cross-
validation are shown in Table 3 and Supplementary Figure II.
In external validation, using the DEFUSE 3 dataset, the model
had an R2 of 0.60, and a mean absolute error of 0.94 (95%
CI 0.80–1.07). The model predicted 34% of the 90-day mRS
scores correctly, 78% of the scores within one point of the
observed value, 96% within two points of the observed value,
and 99% within three points of the observed value. Additional
performance metrics of the model in external validation are
presented in Table 3 and illustrated in Figure 1. There was
no significant difference in the model’s performance when
validated on the subset of DEFUSE 3 patients who were treated
with endovascular therapy and those who were treated with
medical management alone (MAE 0.85 vs. 1.04, p = 0.15,
Supplementary Figure III). We also compared the model in the

subset of DEFUSE 3 patients with more severe disability at
discharge or day 5 (75% quantile: NIHSS ≥ 16), and there was
no significant difference in the models’ performance (MAE 0.90
vs. 0.95, p= 0.75, Supplementary Figure IV).

The primary analysis of the DEFUSE 3 trial, a comparison of
the distribution of 90-day mRS scores between patients in the
endovascular treatment and control groups, was rerun with 90-
day mRS scores predicted by the final model. The odds ratio for
benefit from endovascular therapy using predicted mRS scores
was 5.01 (95% CI 2.77–9.05), which is similar to the results of the
same analysis performed using observed mRS scores (OR 3.45,
95% 1.94–6.13).

DISCUSSION

A prediction model based on two easily obtainable clinical
variables, age and NIHSS score assessed at the time of hospital
discharge, hadmoderately high accuracy for predicting a patient’s
90-day modified Rankin Scale score. It accurately predicted
the 90-day mRS within one point in ∼ 80% of patients. The
model’s independent variables — age and NIHSS score — are
corroborated by prior studies that have demonstrated that these
factors are correlated with functional outcome after ischemic
stroke (11–14). This model can be used for prognostication in
clinical practice and for imputation of 90-day outcome data in
clinical trials.

Several prior studies have focused on predicting survival or
other dichotomized functional outcomes after ischemic stroke
(5, 6). A recent meta-analysis by Fahey et al. identified over 60
models for outcomes following ischemic stroke (4). Variables
such as sex, age, disease characteristics, and comorbidities were
the best predictors for mortality and functional outcomes after
ischemic stroke. The meta-analysis noted that a limitation of
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TABLE 3 | Performance metrics of the 90-day mRS prediction model in internal and external validation.

R2 MAE (95% CI) % correct % correct within 1 point % correct within 2 points % correct within 3 points

Internal cross-validation† 0.60 0.88 (0.82–0.94) 37 80 96 99

External validation (DEFUSE 3 trial data)

Combined control and EVT arms 0.60 0.94 (0.80–1.07) 34 78 96 99

Control arm only 0.50 1.04 (0.84–1.24) 29 74 95 99

EVT arm only 0.62 0.85 (0.67–1.02) 38 81 96 100

R2, correlation coefficient.

MAE, mean absolute error.

EVT, endovascular therapy.
†values represent means and 95% confidence interval of the values from the five cross-validation iterations.

FIGURE 1 | Accuracy of the 90-day mRS prediction model in external validation. The graphs show cross-tabulations between the observed and predicted values of

the 90-day mRS for the 160 patients in the external validation group. Values in graph (A) show proportions, where the columns represent the distribution of observed

outcomes for a given predicted outcome. For example, of the 16 patients with a predicted mRS score of 0, the observed 90-day mRS score was 0 in 50%, one in

25%, two in 12.5%, and three in 12.5%. Values in graph (B) show counts of the observed and predicted mRS scores at 90 days.

current models is that few models are externally validated (4).
In addition, because the current models were derived with
dichotomous outcome data, none predict a patient’s exact score
on the mRS at long-term follow-up. In contrast, our externally
validated ordinal logistic regression model predicts a patient’s
90-day mRS score with moderately high accuracy.

One of the relative advantages of an ordinal regression is
that there is less information loss as compared to dichotomous
outcome models. Multiple studies have shown that ordinal
analyses increase statistical power and efficiency, and suggest that
further clinical research could benefit from increased utilization

of ordinal analyses where relevant (15–17). Because of this,
most recent acute stroke studies use an ordinal model for
their primary outcome analysis. Unlike dichotomous prediction
models, our model could be used to impute missing outcomes
if 30- and 90-day mRS data are missing. Moreover, an ordinal
prognostic model could help optimize future randomized trials
of stroke rehabilitation interventions, by excluding patients
who are likely to be non-responders because they have either
a high chance of spontaneous recovery or a high chance of
mortality (18). In addition, our prediction model could be used
in clinical practice as a tool to assist with the assessment of a
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patient’s prognosis. This could improve stroke rehabilitation by
personalizing rehabilitation plans, reducing variation in therapy,
and increasing equity of services. A recent review of prediction
tools for stroke rehabilitation found that models were most
helpful if they were available at the time of rehabilitation
or discharge planning and predicted functional status beyond
binary outcomes. The authors were concerned that a general
prognosis of good or poor is not sufficiently detailed to
be useful (6). Thus, 90-day ordinal predictions could be a
helpful reference in discussions with the patient and family
and provide additional context when discussing rehabilitation
and future residence destination (19). Even though our model
is only able to predict well within one point, we believe this
presents an advantage over dichotomous models which predict
a range without identifying the most likely outcome within
that range.

Some researchers have cited concern about the use of ordinal
regression models and the need to test for proportionality
of the odds. To address this, we confirmed proportionality
by visual inspection of the univariate odds ratios and
partial residuals. In addition, we empirically demonstrated
the model’s performance by validating its accuracy in an
external dataset.

There are limitations to our study. First, our dataset is
limited to patients from three endovascular stroke therapy
studies and is therefore not representative of all patients with
ischemic strokes. Specifically, the model may not apply to
patients with mild strokes or strokes in the posterior circulation
who were not eligible for the trials. The model may also
not apply well to patients with pre-existing severe disability
who were excluded from the studies. The model did perform
similarly in patients who underwent endovascular therapy and
those who did not, likely because the effect of endovascular
therapy is captured in the NIHSS score at discharge, which
is one of the prediction variables in the model (20, 21)
Future studies validating this model in a larger cohort could
provide additional information about the generalizability of
this model. Second, while the simplicity of our model, which
only includes two predictor variables, is a relative strength,
a model derived from an even larger dataset could identify
additional independent variables that might further improve the
model’s performance.

CONCLUSIONS

In summary, our internally and externally validated model
predicts the ordinal mRS score at 90 days after ischemic
stroke with moderately good accuracy and could be used for

prognostication in clinical practice and to impute missing data
in clinical trials.
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