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Purpose: To determine and characterize the radiomics features from structural MRI
(MPRAGE) and Diffusion Tensor Imaging (DTI) associated with the presence of mild
traumatic brain injuries on student athletes with post-concussive syndrome (PCS).

Material and Methods: 122 student athletes (65M, 57 F), median (IQR) age 18.8
(15-20) years, with a mixed level of play and sports activities, with a known history of
concussion and clinical PCS, and 27 (15M, 12F), median (IQR) age 20 (19, 21) years,
concussion free athlete subjects were MRI imaged in a clinical MR machine. MPRAGE
and DTI-FA and DTI-ADC images were used to extract radiomic features from white
and gray matter regions within the entire brain (2 ROI) and the eight main lobes of
the brain (16 ROI) for a total of 18 analyzed regions. Radiomic features were divided
into five different data sets used to train and cross-validate five different filter-based
Support Vector Machines. The top selected features of the top model were described.
Furthermore, the test predictions of the top four models were ensembled into a single
average prediction. The average prediction was evaluated for the association to the
number of concussions and time from injury.

Results: Ninety-one PCS subjects passed inclusion criteria (91 Cases, 27 controls). The
average prediction of the top four models had a sensitivity of 0.80, 95% CI: [0.71, 0.88]
and specificity of 0.74 95%ClI [0.54, 0.89] for distinguishing subjects from controls. The
white matter features were strongly associated with mTBI, while the whole-brain analysis
of gray matter showed the worst association. The predictive index was significantly
associated with the number of concussions (p < 0.0001) and associated with the time
from injury (o < 0.01).

Conclusion: MRI Radiomic features are associated with a history of mTBI and they were
successfully used to build a predictive machine learning model for mTBI for subjects with
PCS associated with a history of one or more concussions.
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INTRODUCTION

Mild traumatic brain injuries (mTBI) or “Concussion” with
Glascow Coma Scale scores of 13 or greater result in
transient alterations in brain function with or without loss
of consciousness (1). It has been estimated that sports and
other recreational activities result in between 1.6 and 3.8
million concussions annually in the U.S. (2). Moreover, 15%
of mTBI patients suffer from post-concussion syndrome (PCS)
characterized by delayed recovery after 3—-4 weeks with physical,
cognitive, and emotional complaints including headaches, poor
sleep, poor concentration, dizziness, and irritability (3, 4).
Furthermore, it has been reported that concussed subjects are
at three times higher risk of depression even decades after the
injury (5) with characteristic imaging patterns of white matter
tracts (6). On the other hand, the recovery time of sports-related
concussion (SRC) for adolescents takes 3-4 weeks, longer than
the commonly reported 7-14 days for adults (7, 8).

Routine clinical MRI studies do not show abnormalities
in most SRC and PCS patients, however, diffusion-weighted
(DWI) and diffusion tensor imaging (DTI) have shown variable
localized, diffuse, and widespread changes after mild injury (9,
10). Prior concussions lengthened the normalization of changes
and made the athletes more vulnerable to recurrent concussions
(11). Further, the degree and extent of the acute post-injury
changes were associated with clinical outcomes and delayed
recovery. Results from longitudinal studies have shown that the
diffusivity changes lasted (“past symptom resolution”) beyond
the point when athletes were asymptomatic and were medically
cleared to return to play, with abnormal diffusion parameters
lasting several months to over a year after the injury (10).

At present, many research programs are trying to use Al
including deep and machine learning, which have been applied
to medical image data in other neurological diseases, to develop
validated clinical image-based tools to identify post-concussive
changes, to correlate them to clinical symptoms, and to predict
recovery time and clinical outcomes (12, 13). Several studies used
ML to identify parameters from multi-parametric diffusion and
structural MR image data to best discriminate and characterize
mTBI subjects (13). Although their results were promising, so
far there is no clinical tool or method which would indicate if
PCS patients sustained a structural brain injury or determine its
location or extent based on MRI images. Tissue texture analysis
which evaluates the 3D signal intensity behavior of medical
images was applied on brain MRI in other brain diseases (14).
A few reports have used 3D structural and diffusivity texture
features to evaluate changes in SRC and subsequent PCS (10).

Here we evaluated whether radiomics and ML can be used to
differentiate patients that suffered mTBI with subsequent post-
concussion syndrome from concussion-free athletes. To achieve
the aim of this study, a small set of student athletes with
SRC-related post-concussion syndrome were recruited, as well

Abbreviations: Al, artificial intelligence; ML, machine learning; mTBI, mild
traumatic brain injury; SRC, sports related concussion; PCS, post-concussion
syndrome; DTI, diffusion weighted imaging; FA, fractional anisotropy mapping
from DTI sequences; ADC, apparent diffusion coefficient from DTI sequences.

as a small set of concussion-free student athletes as controls.
The data population was studied with state-of-the-art clinical
MRI pulse sequences, quantitative image analysis, descriptive
statistical procedures, and machine learning (ML) models that
enabled the detection of PCS in affected subjects. Finally, we
examined the longitudinal behavior of the predictive index and
its association with the number of concussions.

MATERIALS AND METHODS

Participants

This retrospective analysis was approved by the Research Subjects
Review Board of the University of Rochester. The study consisted
of 122 subjects with a mixed level of play and sports activities.
The concussed subjects were 65 males and 57 females, with a
history of concussion who were High School or College Athletes
with a history of one or more concussions and post-concussive
symptoms who were diagnosed and evaluated by Sports Medicine
Physicians; Physical Medicine, and Rehabilitation Physicians, or
Neurologists. These patients were referred for MRI because of
persistent clinical symptoms after mTBI from 2016 to 2019. The
median (IQR) age for both male and female athletes was 17 (15—
20) years. All case subjects in our study were referred to the
University outpatient imaging center and imaged on the same
3T MRI scanner due to incomplete resolution of symptoms after
concussion. Inclusion criteria included a history of concussion
and PCS, while exclusion criteria included dental braces, prior
brain surgery, ventricular shunt, skull fractures, or standard
contraindications for MR imaging. Diagnosis of concussion was
made by ED physicians initially and PCS was determined by
neurologists, physical medicine and rehabilitation physicians,
and/or sports medicine physicians. The number of previous
concussions, loss of consciousness (LOC) at the most recent
concussion, and time between injury and MRI were extracted
by a clinician from electronic medical records. All evaluations
included the Acute Concussion Evaluation (ACE) (15) as well
as Post-concussion Symptom Scores (PSS) (16). The control
group consisted of 27 normal student athletes, 15 males and 12
females with no history of head trauma and a median (IQR)
age of 20 (19-21). In addition to the number of concussions,
and PSS, each patient was characterized by gender, age, weight,
height, and the number of days elapsed from injury to the MRI
examination. The case to control ratio was large in MRI subjects
(Ratio = 4.5). Hence, we mitigated this ratio by selecting cases
closer to the control group. All older college students (Age >
29) were removed, as well as all subjects with abnormal imaging
findings evident on the conventional MRI pulse sequences.
Figure 1 shows the specific inclusion-exclusion chart of the
analyzed subjects.

Image Acquisition

All MRI Exams for the concussed patients and control volunteers
were performed between February 17, 2016, and May 14, 2019,
on the same 3T Siemens Skyra MRI Scanner using a 20 channel
Head/Neck Coil using the following imaging protocol: T1-
MPRAGE (208 slices; 1x1x1 mm, TR = 1,200 ms, TE = 2.29 ms,
TI = 600ms), FOV = 250mm, Flip angle = 8 degrees, 3D
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FIGURE 1 | Inclusion criteria for post-concussive syndrome radiomics
association study.

AXIAL SWI (88 slices/1.5 mm slice thickness (interleaved)/FOV
220 mm, TR 27 ms, TE 29 ms, 1 average), DOUBLE IR (FLAIR)-
Fat-sat FLAIR 120 slices, 1.4 mm slice thickness, FOV 260 mm,
TR 7,500 ms, TE 321 ms, TI 1: 3,000 ms; TT 2: 450 ms, 1 average,
Acceleration factor 2, ref lines 24, Turbo Factor 256.

DTI acquisition parameters were AXIAL DTI/ TA:
10:14 min,70 slices, FOV 256, 2 mm slice thickness, TR 9,000 ms,
TE 88 ms, Flip Angle 15°, 1 average, Acceleration Factor 2/ref
lines 24, Diffusion directions 64, b-value 1: 0 s/mm?; b-value 2:
1,000 s/mm? GRE Field Mapping for geometric and eddy current
corrections 86 slices, FOV 256 mm, 2 mm slice thickness, TR
838 ms, TE1: 4.92 sec, TE2: 7.38 ms, Flip angle: 60°. All image
sets used in this study were anonymized.

Image Analysis

Image Preprocessing and Segmentation

Figure 2 shows an overview of the image processing pipeline
used for this study. The 64 gradients of the DTI acquisition
were processed to estimate the Fractional Anisotropy Map (DTI-
FA) and the Apparent Diffusion Coeflicient (DTI-ADC). After

that, the MPRAGE, DTI-FA, and DTI-ADC were preprocessed
to extract the local fractal dimension (LFD) map and 3 levels
wavelet decomposition (WD) of each volume data. The LFD
algorithm estimates an index of the image texture complexity and
it is done by analyzing the relative change in signal surface area
at three different resolutions using the triangular prism surface
area methods (17, 18). The three-dimensional (3D) WD was used
to extract texture patterns from the imaging volume. At each
decomposition level, the one-dimensional wavelet transform is
applied sequentially on each one of the three spatial dimensions.
This results in seven directional decompositions: High-High-
High (HHH), High-High-Low (HHL), High-Low-High (HLH),
High-Low-Low (HLL), Low-High-High (LHH), Low-High-Low
(LHL), and Low-Low-High (LLH), and a scaled Low-Low-Low
(LLL) decomposition. The wavelet process is repeated on each
one of the LLL decompositions. In this study, we used Haar
wavelets and we only extracted the first three levels of the
WD (19). To reduce the by-voxel dimensions we computed the
magnitude of the directional wavelets:

|[WDJ;

= \/ (HHH;)* + (HHL;)* + (HLH;)? + (HLL;)* + (LHH;)* + (LHL)* + (LLH;)* (1)

At each one of i = {1,2,3} decomposition levels. The
LFD and the three |WD|; were fused into a single 5-
Dimensional MRI set for MPRAGE, DTI-FA, and DTI-ADC,
hence creating a 3D volume where each voxel was described
by 15 signal/textural features; i.e., signal dimensions. Once
preprocessed, we proceeded to do the image segmentation. The
segmentation process consisted of using the ICBM 152 Linear
atlas and main lobe labels as a reference (20). The atlas defines
the gray matter, white matter, and CSF tissues and it is divided
by the volume of interest (VOI). In this study, we used only
four lobes of the brain: Frontal, Parietal, Occipital, and Temporal
for the left and right brain hemispheres, as seen in Figure 3.
Furthermore, we only kept the definition of gray matter and
white matter tissues. The modified 152¢ brain atlas, along with
the T1 weighted MRI scans were used to segment each one of the
MPRAGE MRI scans of the patients. This process created 8 VOIs
and each VOI contained two tissues: gray and white matter. In
other words, each brain was described by 16 different regions of
interest (ROI) plus the entire white and gray matter for a total of
18 ROI per subject.

Once we segmented each MPRAGE image, we proceed to
fuse all the data sets into a labeled 15-dimensional data set,
that was fed into the quantification engine. Figure 3 shows a
representation of the preprocessing and segmentation steps. All
preprocessing and segmentation steps were carried out using
CiPAS software (Qmetrics Technologies Rochester-NY).

Image Quantification

We computed radiomic features for each one of the dimensions
of the 15-dimensional volume. The radiomic features consisted
of four first-order features and GLCM features (21). The
first other features were extracted from the histogram of
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FIGURE 2 | Flowchart for the analysis of the procedure used for the association analysis.
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FIGURE 3 | MRI data and Image processing steps carried out for the gqMRI to PCS association. (A) Three MRI pulse sequences were fused and processed for the
extraction of the local fractal dimension and the wavelets transforms. (B) The fused data sets were segmented into gray and white matter and subdivided in 8 volumes
of interest. The two tissue types in each VOI plus the entire white and white matter created 18 regions of interest (ROI).

Frontiers in Neurology | www.frontiersin.org 4 January 2022 | Volume 12 | Article 734329


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Tamez-Pefa et al.

Post-concussive mTBI in Student Athletes

TABLE 1 | The five sets of features.

Set Name Involved tissues Volume of interest Feature set Number of explored
features

1 Mean white/gray matter White and gray Entire brain Textural features 300

2 Max ROI Gray Matter Gray Eight VOI Mean textural features, maximum of the eight 300

3 Max ROI white matter White Eight VOI Mean textural features, maximum of the eight 300

4 Max ROI white/gray White and gray Eight VOI Maximum textural features for white and gray 300

5 Mean plus max ROl white/gray White and gray Eight VOI Mean textural features for both gray and white 600

plus the maximum value

the signal at each ROI: Mean, Standard Deviation, Skewness,
and Entropy. The second-order features were extracted from
the Gray Level Co-occurrence Matrix (GLCM): Contrast,
Energy, Correlation, Homogeneity, Entropy Dissimilarity, and
Mutual Information. We computed the GLCM using the
four main directions and isotropic 2.0 x 2.0 x 2.0 mm?
voxels (21).

Quality Control Procedures

After the quantitation pipeline, each one of the MRI
scans was reviewed by an experienced neuroradiologist
(SM) for any artifacts that might affect the quality of the
study, as well as for the presence of recent or remote
intracranial hemorrhage, signal abnormalities in the brain,
hydrocephalus, congenital or developmental anomalies.
Furthermore, each one of them automatically segmented
brain VOIs, and tissues were visually inspected to discard
subjects with segmentation errors. Subjects with unknown
concussions or injury time were also removed from
this study.

Machine Learning

The 10 image features extracted from the 18 ROI and 15 signal
dimensions created a 2,700 (10 x 18 x 15) feature vector
to be analyzed at the Machine Learning stage. A knowledge-
based feature reduction strategy was used to decrease the
dimensionality of the quantitative set. Studies have shown that
mTBI mainly affects white matter tissue (22). Furthermore, it
was assumed that the location of the concussion may have
different effects on different areas of the brain, in other
words, brain abnormalities associated with the concussion
most probably are focal and only affect some of the 8
VOIs. The location of the concussion is unknown for this
set of patients; hence, we hypothesized that the location
of the injured tissue was associated with a large deviation
from normal tissue behavior. Based on this hypothesis we
computed the maximum deviation (Max-deviation) from the
eight ROI means for each one of the 10 quantified signal
features. To mitigate biases due to the presence of a single
ROI abnormality, we used the trimmed mean as the estimator
of the mean (FW@). The Max deviation was computed
as follows:

. . —
Max — deviation = max;cyor |Feature; — Feature|, (2)

where

—

Feature

1
= g([ Z Feature;] — max (Feature;) — min(Feature;))(3)
ieVoI

To explore the origin of the signal associated with mTBI, we
divided the entire feature set into five different feature sets.
Table 1 shows the five-set used in this study. Furthermore,
to mitigate training biases, we aimed to train models
with an age-matched control to the case training set.
Hence only case subjects within the age distribution of
the control subjects were part of the training set. All
case subjects not in the training set were part of the
testing set.

Each one of the five feature sets was modeled by a support
vector machine (SVM) using the radial basis kernel function
(23), with default initial hyper-parameters [y = 1/(300 or 600),
coef0 = 0, cost = 1, and v = 0.5], and no hyper-parameters
optimization. The features used by the SVM were selected by a
feature selection process that ensembled the results of FDR (24)
adjusted KS test, Wilcox text, t-student test, and the Minimum
Redundancy Maximum Relevance (mRMR) (25). The training
sets used for cross-validation were randomly selected by a two-
hold out strategy that was repeated 1,000 times. At each stage
of the cross-validation, one case sample and one control sample
were a holdout sample and added to the testing set. The subjects
that were not included in the training set were predicted at each
one of the cross-validation steps. All the machine learning steps
were done in R 4.0.3 using the FRESA.CAD 3.3.0 R package and
the SVM function from the e1071 1.7-6 R package.

Statistical Analysis Procedures

Due to the associations of brain structures with development age,
body height, and weight (26), we adjusted the extracted features
for age, weight, and height associations. The adjustments were
estimated using subjects from a reference group and computed
on all study subjects. Our study lacked a healthy reference group,
hence we built a reference group using the imaged patients. Our
reference group consisted of all control subjects plus a selected
set of case subjects with only one concussion and more than 90
days from injury time. The rationale for the 90-day threshold
was based on the reported length of symptoms resolution of 4
weeks (27) hence we hypothesized that in most subjects, the brain
anatomy, without a second concussion, should be back to its
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TABLE 2 | Patient characteristics.

Demographics Injury
Age Height (cm) Weight (kg) Days from injury PSS
Cases Males (n = 51) 17 (3.8) 174 (11.9) 76 (20.8) 91 (119.0)* 36 (28)
Females (n = 40) 18 (4.0) 164 (7.9) 65 (14.2) 136 (168.1) 26 (22)
Control Males (n = 15) 22 (2.8) 181 (9.4) 80 (11.6) NA NA
Females (n = 12) 20 (1.3) 165 (6.3) 63 (7.0) NA NA
*p < 0.05 for statistical differences between males and females.
TABLE 3 | Concussion history and sport/injury activity of last concussion.
History of concussions Sport activity
1 2 3 4 >5 Football Soccer Hockey ice/field Lacrosse Basketball Not reported
Males (n = 51) 10 10 1 16 4 14 4 4 17
Females (n = 40) 12 8 8 10 2 0 3 3 18

normal stage after 90 days. Statistically significant associations
(p-value < 0.01) between gender-age-height and each feature
were mitigated by the residual method: fitting linear regression
models of the reference group, and subtracting the estimated
association to each feature (28). Once associations were modeled,
the difference between the gender-age-height predicted value and
the feature was used. Once each feature was adjusted for gender
age and height, we proceeded to standardize each feature. The
standardization procedure consisted of computing the median,
and the IQR range of the reference group. The standardized
value consisted of subtracting the median and dividing it by the
IQR. After that, we proceed to compute the univariate association
to the concussion status. This association was computed using
the Mann-Whitney U-test and reported for all mean and max
features. The test results of the ML steps were analyzed estimating
the sensitivity, specificity, and diagnostic odds ratio from the
resulting confusion matrices. The predicted probability of the ML
engine was analyzed using ROC analysis and the Area under the
curve (AUC). The test results of sets 2, 3, 4, and 5 were ensembled
to get an estimation of a PCS index:

PCS_index = log ( p(PCS) ) ,

1 — p(PCS)

where p(PCS) is the ensembled probability of a subject affected
by PCS.

The index was analyzed for associations to the number of
subject concussions and the days from injury on subjects with <4
concussions. We used the spearman regression test to compute
the p-values of trends between concussion index and the number
of concussions and days from injury. We explored gender
differences by running the analysis on both males and females.

TABLE 4 | Training set used to generate all predictive models.

Control Training cases
(n=27) (n =29)
Males Females Males Females
(n =15) (n=12) (n =16) (n=13)
Age 22 (2.8) 20 (1.3) 18 (3.2) 19 (4.2)
Height (cm) 181 (9.4) 165 (6.3) 181 (4.1) 166 (5.5)
Weight (kg) 80 (11.6) 63 (7.0) 83(9.7) 71(17.9)
Days from Injury 79 (78.0) 110 (68.1)
1 Concussion 3 5
2 Concussions 8 4
3 Concussions 5 4
RESULTS
Study Subjects

Four subjects had to be removed for lack of complete clinical
data. Twenty MRI data sets had severe artifacts due to the use
of a defective head-neck coil where the neck receiver induced
artifacts, and 11 subjects were older than 29 years, hence we
removed them from the set. None of the subjects had signal
abnormalities in the brain including sites of hemorrhage using
the standard conventional (non-DTI) MR imaging sequences.
Table 2 shows the characteristics of the 118 included in this
study separated by the control and concussed subjects. Among
the concussed, the PSS severity scores were similar between
males and females, but the days between injury and MRI scan
were larger in females than males (p < 0.05). Table 3 shows the
distribution of the history of concussions as well as the activity
involved in the last mTBI event. The main source of injuries
for males was football, while soccer was the most common
activity in female athletes. The concussed group was statistically
significantly younger than control subjects: 15.86 (3.9) vs. 21
(2.0) (p < 0.001). The characteristics of the selected training
cases are described in Table 4. There was no statistical difference
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based on only gray matter features poorly predicted PCS (AUC = 0.59). On the other hand, the white matter model showed superior performance (AUC = 0.77).
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TABLE 5 | Performance of analyzed PCS models.

Entire brain Max ROI Max ROl/entire brain Prediction
ensemble
Gray and Gray matter White matter MAX gray All features Max-based
white and white models

AUC 0.63 0.59 0.77 0.78 0.84 0.81
(0.51-0.75) (0.46-0.71) (0.66-0.88) (0.68-0.89) (0.74-0.94) (0.71-0.92)

Sensitivity 0.63 0.75 0.74 0.78 0.84 0.80
(0.52-0.73) (0.65-0.83) (0.63-0.82) (0.68-0.86) (0.74-0.91) (0.71-0.88)

Specificity 0.63 0.37 0.74 0.59 0.74 0.74
(0.42-0.81) (0.19-0.58) (0.54-0.89) (0.39-0.78) (0.54-0.89) (0.54-0.89)

between training cases and controls for gender, height, and
weight. However, age was still statistically different between
training cases and controls (p = 0.002).

Machine Learning

Figure 4 shows the ROC plots of the five ML modeling
experiments and ensemble predictions. Table5 shows the
performance of the five-set as well the ensembled predictions,
and Table 6 shows the confusion matrix and the performance
of the ensembled predictions. The top predictive model was
based on feature set 5 (ROC AUC = 0.84), while models based
on feature set 2 were at the bottom (ROC AUC = 0.59). The
ensembled prediction had a ROC ACU of 0.81 (95% CI 0.71-
0.92), a mean testing sensitivity of 0.81 (95% CI 0.71-0.92) with
a diagnostic odds ratio of 11.6 (95% CI 4.25-31.6). The bottom
plot of Figure 5 shows a color-coded boxplot per subject of the
1,000 ensembled predicted probabilities of a subject affected by
PCS, where the color indicates the history of concussion for
each subject.

Table 7 shows the descriptive characteristics and univariate
analysis of the top significant features of the top model based on
Max Gray/White and global Gray/White features (Set 5), while
Figure 5 shows the heat map of the top selected features. The
top feature associated with a concussion was observed as the
maximum white matter homogeneity of the second level wavelet
decomposition of the MPRAGE image (AUC = 0.79). Features
from other image transformations and DT maps were also highly
associated with the presence of concussions. Univariate AUC
ranged from 0.70 to 0.79 for the top selected features.

Statistical Analysis of the PCS Index

Figure 6 shows violin plots of the subjects stratified by the
number of concussions. The trend for the association to the
number of concussions was very strong (p < 0.001). Figure 7
shows the strength of the index over time. There was a significant
reduction of the probability of detecting PCS on the subjects as
the time from injury increases (p < 0.009). Figure 8 shows the
trend analysis stratified by Gender. It is worth noting that males
and females behave differently. Females showed a clear trending
association with the number of previous concussions (p < 0.001),
while males did not (p = 0.25). Regarding time from injury, the
PCS gender stratified index was not statistically associated with
days from injury for females (p = 0.22) nor males (p = 0.09).

TABLE 6 | Ensemble performance of ML-based PCS diagnostic model.

Ensemble prediction

Cases Control Total
Test+ 73 7 80
Test- 18 20 38
Total 91 27 118

Mean 95% confidence intervals

2.5% 97.5%

Sensitivity 0.80 0.71 0.88
Specificity 0.74 0.54 0.89
Accuracy 0.79 0.70 0.86
Diag. OR 11.6 4.25 31.6
DISCUSSION

This proof of principle study showcased the potential of
radiomics/ML in the understanding and diagnosis of PCS from
MRI series, supporting the findings of DTI and DWI studies
that indicate disruption of tract integrity and conductivity on
PCS patients (12, 13, 29). Our main motivation was to test
the hypothesis that an MRI-based index can be used to predict
the presence of residual trauma days after a mTBI event on
subjects affected by PCS. Furthermore, we aimed to use standard
MRI pulse sequences and well-accepted off-the-shelf machine
learning procedures. The machine learning stage developed an
MRI-radiomic-based PCS index for high school and collegiate
athletes who were affected by an mTBI. The index was based
on signal intensity and textural features from structural and
diffusivity MRI image series extracted from the white/gray matter
regions of the whole brain and the main eight brain lobes.
The final mTBI index ensembled predictions from four different
concussion models and was able to identify subjects with a history
of concussions from healthy normal subjects without concussion
history with a sensitivity of 0.81, and specificity of 0.74, whose
95%CI were [0.71, 0.88] and [0.54, 0.89], respectively.

We followed a radiomics approach similar to the efforts in
developing predictive and diagnostic tools for brain cancers
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(30) and degenerative brain diseases (31). Here we explored
features from structural imaging (MPRAGE) and DTI diffusivity
maps (DTI-FA and DTI-ADC). Although we did not use
state-of-the-art DTI post-processing, and image segmentation
software, we demonstrated that the three 3D images provided
useful information for the identification of brain (gray and
white) tissue and the association to PCS. The MPRAGE
series was successfully used for the segmentation of gray/white
tissue and the identification of the eight main lobes of the
brain. But, unlike other approaches that focused on single
tissue properties in their feature selection process (12, 13,
29, 32), or have used only structural MPRAGE features
on mTBI patients (33), we reported the comprehensive
exploration of features from DTI-FA, DTI-ADC as well as
MPRAGE and their derived local fractal dimensions map, and
wavelet transforms.

The feature selection process identified top-performing
radiomic features from the structural MPRAGE series
as well as from DTI-FA and DTI-ADC images. This

finding indicates that in addition to the detectable signal
intensity and the texture changes in diffusivity maps, the
signal intensity behavior has also changed in MPRAGE
structural images, even if unable to be visually detected.
That MPRAGE finding supported previous studies
showcasing the potential of signal and textural information
of structural imaging in the study of other brain conditions
(31, 34).

The 1,000 hold-out random test results showed consistent
behavior of all the trained models. The white-matter model was
superior to the gray-matter model, confirming previous findings
indicating that white matter is the primary tissue affected by
mTBI (10, 22, 29). Furthermore, the models based on brain lobes
were far superior to models based on global brain features; this
is a strong indication that the brain trauma is localized, and not
globally distributed (35).

Although this material does not include follow-up imaging
studies, the findings showing that subjects who were imaged
weeks, months, or even over a year post-injury had abnormal
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TABLE 7 | Top features associated with PCS.

Tissue VOI MRI Processing Feature Case mean (Sd) Control mean (Sd) Selection Freqz ROC AUC  Wilcox p-value
White Lobe Max MPRAGE  Wavelet (2) Homogeneity 0.884 (0.257) 0.611 (0.249) 200% 0.792 6.41E-05
Gray Entire DTI-ADC ~ Wavelet (3) Texture Entropy —0.599 (0.688) 0.117 (0.823) 200% 0.769 2.67E-04
White Lobe Max MPRAGE  Fractal Entropy 1.427 (0.483) 1.035 (0.490) 200% 0.764 7.65E-04
White Lobe Max  MPRAGE  None Entropy 1.027 (0.547) 0.618 (0.414) 200% 0.761 3.83E-04
Gray Lobe Max  DTI-ADC None Texture Entropy 1.004 (0.371) 0.689 (0.251) 200% 0.748 5.44E-04
Gray Lobe Max MPRAGE  Fractal Texture Entropy 1.165 (0.378) 0.818 (0.377) 197% 0.745 7.23E-04
Gray Lobe Max  MPRAGE  Wavelet (1) Mean 0.787 (0.317) 0.537 (0.244) 172% 0.745 1.07E-03
Gray Entire DTI-ADC ~ Wavelet (3) Skewness 0.410 (0.727) —0.195 (0.605) 145% 0.743 1.01E-03
White Entire DTI-FA Fractal Contrast 0.868 (1.426) —0.246 (1.089) 200% 0.742 6.10E-04
White Lobe Max  DTI-FA Wavelet (3) Skewness 1.762 (0.741) 1.199 (0.395) 200% 0.741 6.83E-04
Gray Entire DTI-FA None Correlation 1.022 (1.589) —0.150 (1.173) 121% 0.724 1.55E-03
Gray Entire DTI-FA Fractal Mean 0.917 (1.460) —0.152 (0.921) 127% 0.722 1.68E-03
Gray Entire DTI-FA Wavelet (1) Skewness 0.773 (1.622) —0.335(0.872) 114% 0.705 2.41E-08
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o -
x
)
°
=
z ° 7
=
\T -
n=27
N
! I I I I I
Control 1 2 3 >=4
Number of Concussions
FIGURE 6 | Violin plot showing the distribution of the concussion index stratified by the number of previous concussions. The plot suggests that the accumulated
brain trauma plateaus after more than two concussions.

findings in FA, ADC, and structural images are consistent
with findings from previous studies where follow-up analysis
showed long-lasting FA and ADC changes in the brain
(10, 11). These findings suggest that PCS may need to be taken
more seriously and that indications for return to play might
need to incorporate more than patient-reported symptom
resolution (36). Finally, subjects with multiple prior concussions
demonstrated a clear trend toward more severe mTBI index
findings. Those findings agree with reports from previous
longitudinal and postmortem studies from competitive
athletes indicating that an increasing number of prior
concussions is associated with increased and prolonged injury
burden (10, 37).

The reported findings should be contrasted with alternative
PCS diagnostic tests. Premorbid health conditions have
been associated with severity of symptoms (38-40) as
well as blood biomarkers (41-43). Premorbid conditions
have been shown to be associated with severity of PCS;
where PCS is higher in those with a personal history
of mood disorders (38). On the other hand, blood
biomarkers have been modestly associated with mTBI
(41) and used to predict long-lasting PCS (44). Hence,
premorbid conditions, blood biomarkers, and imaging
findings could be combined in a multimodal test to
improve the assessment of severity and length of PCS using
machine-learning approaches.
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Regarding limitations, all subjects and controls were imaged  limitations: First, the sample size is relatively small, and we did
with the same MRI scanner using the same imaging protocols  not have a large reference control group. Second, the age of the
which provided data harmonization but limits the assessments  controls was slightly different from that of the study subjects;
of clinical validity in a multicenter study. Furthermore, the study ~ hence, the discovered PCS models may be still affected by the
did not aim to address the hypothesis of imaging findings and  imperfect age match and not ready for any clinical use. Third,
their association to ongoing neural repair; hence we lack evidence  this study lacked longitudinal observations and was not designed
that current imaging findings are associated with premorbid  to test longitudinal associations. Therefore, the observed time
conditions or other neural factors. Furthermore, the reported  associations of the PCS index may be a modeling artifact, thus
performance is still far from being applicable in a clinical  we can’t reach strong conclusions regarding the potential of MRI
care setting that usually requires 90% accuracy; henceforth the  signatures to monitor PCS resolution. Henceforth, these study
provided method may be used to ease patient concerns and near  results should be reproduced and validated in a large independent
future estimations of symptom resolution. This study has other ~ cohort with longitudinal and serial MRI observations of subjects
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strata (days from injury).

with and without persistent symptoms. Future work must
include direct comparisons to blood biomarkers and premorbid
Behavioral Health conditions and their combination in a
multimodal setting.

CONCLUSION

This proof of principle study showed that MRI radiomic features
from both diffusion and MPRAGE images were different in
PCS subjects from trauma-free controls. Following an ML
strategy, we modeled a classifier that was able to predict the
presence of concussion on 81% of the concussed subjects with
a specificity of 74%. The findings suggest that the concussion-
induced abnormalities on PCS subjects are not uniformly
distributed among the entire brain tissue. Furthermore, this
study indicated that a signal build from these MR features
accumulates with the history of previous concussions. This
proof of principle but tightly controlled study has shown
that PCS subjects may have localized brain abnormalities,
which may be invisible to conventional radiologic observation,
but are present and able to be detected with radiomic
feature analysis.
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