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Skeletal muscle contractile proteins require a constant supply of energy to produce force

needed for movement. Energy (ATP) is primarily produced by mitochondrial organelles,

located within and around muscle fibers, by oxidative phosphorylation that couples

electron flux through the electron transport chain to create a proton gradient across the

inner mitochondrial membrane that is in turn used by the ATP synthase. Mitochondrial

networks increase in size by biogenesis to increase mitochondrial abundance and

activity in response to endurance exercise, while their function and content reduce

with constant inactivity, such as during muscle atrophy. During healthy aging, there is

an overall decline in mitochondrial activity and abundance, increase in mitochondrial

DNA mutations, potential increase in oxidative stress, and reduction in overall muscular

capacity. Many of these alterations can be attenuated by consistent endurance exercise.

Children with cerebral palsy (CP) have significantly increased energetics of movement,

reduced endurance capacity, and increased perceived effort. Recent work in leg muscles

in ambulatory children with CP show a marked reduction in mitochondrial function. Arm

muscles show that mitochondrial protein content and mitochondria DNA copy number

are lower, suggesting a reduction in mitochondrial abundance, along with a reduction

in markers for mitochondrial biogenesis. Gene expression networks are reduced for

glycolytic and mitochondrial pathways and share similarities with gene networks with

aging and chronic inactivity. Given the importance of mitochondria for energy production

and changes with aging, future work needs to assess changes in mitochondria across

the lifespan in people with CP and the effect of exercise on promoting metabolic health.
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INTRODUCTION

Skeletal muscles are highly organized structures composed of bundles of multinucleated muscle
cells, myofibers, made up of sarcomeres along the length and girth of fibers (1). Sarcomeres are
the contractile proteins, made up of actin and myosin, whose interaction via the cross-bridge
cycle is responsible for muscle force generation. This force generation is highly energetic and
requires the constant replenishment of ATP for the cross-bridge cycle. Evolutionarily conserved
metabolic pathways are utilized to break down carbohydrates, fats, and proteins systemically (2).
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The substrates from this then enter cells such as muscles,
where glucose and fatty acids are oxidized to create
metabolites for majority of energy production within
mitochondria (3). Human skeletal muscle fibers have three
primary fiber types, namely, type I, type IIA, and type IIX
(slowest to fastest/oxidative to more glycolytic), associated
with different isoforms of myosin heavy chain, which
demonstrates differing metabolic properties (4), with majority
of energy production being dependent on mitochondria
(Figure 1).

SKELETAL MUSCLE MITOCHONDRIA,
AGING, AND CEREBRAL PALSY

Mitochondrial Physiology
Mitochondria are subcellular organelle networks located
around and within muscle fibers (5). Two key processes of
energy production in muscles and other tissues under aerobic
conditions occur within the mitochondria: the trichloroacetic
acid (TCA) cycle (for breaking down food substrates) and the
electron transport chain (ETC)-ATP synthase (for creating
ATP) (Figure 2). Carbohydrates and fatty acids are partly
broken down outside the mitochondria and then broken
further down within the mitochondria using the TCA cycle
to nicotinamide adenine dinucleotide hydride (NADH), and
succinate. For example, (anaerobic) glycolysis occurs within
the cells, outside of the mitochondria, and yields a small
fraction of ATP and pyruvate. Pyruvate, in the presence of
oxygen, is then broken down to acetyl Co-A that enters the
mitochondrial TCA cycle and generates some ATP, NADH,
and succinate that then feed into the ETC-ATP synthase
to generate the majority of ATP by oxidative phosphorylation
(Figure 1). Eachmitochondrial network has numerous ETC-ATP
synthase units that have five complexes: CI (NADH-ubiquinone
oxidoreductase), CII (succinate-ubiquinone oxidoreductase),
CIII (ubiquinol-cytochrome c oxidoreductase), CIV (cytochrome
c oxidase), and the ATP synthase (6), located along the inner
mitochondrial membrane, and intermediaries coenzyme Q
(ubiquinone), cytochrome c. The transport of the electron
passes through CI–CIII–CIV or CII–CIII–CIV with NADH
and succinate being the starting substrates, respectively. The
electron transport flux through the complexes creates a proton
gradient across the inner mitochondrial membrane. The
ETC is indirectly coupled to the ATP synthase such that the
proton difference facilitates energy production at the ATP
synthase to provide energy to the working muscle (7). This
uses oxidative phosphorylation, i.e., ATP phosphorylation
from ADP by the ATP synthase requires oxidation
by the ETC (Figure 2).

Skeletal muscles are remarkably adaptive tissue that respond
positively to activity and exercise over weeks by increasing
their mitochondrial content and function needed to maintain
appropriate energy levels during exercise (5, 8). The primary
processes involved in this increase are improved ETC capacity,
mitochondrial biogenesis (9), and mitochondrial dynamics of

fusion to increase the size of the mitochondrial network (10).
Unlike nuclei of cells that have one copy of nuclear (or
genomic) DNA, each mitochondrion has multiple copies of
their own sparse circular DNA [mitochondrial DNA (mtDNA)]
but, as an evolutionary mechanism, depend on nuclear DNA
for generating 99% of the 1,000+ mitochondrial proteins
(11, 12). Consequently, during biogenesis to create new ETC
and ATP synthase, the 37 genes of mitochondrial DNA can
only encode 13-core protein subunits (13–15). Dual-genetic
coordination and control is required so that nuclear DNA
can encode the remaining 75 subunits of the ETC and ATP
synthase. The only electron transport complex that is not
coded by mtDNA and is entirely coded using nuclear DNA
is complex II, which also does not have a proton pump to
contribute to the ETC gradient. In contrast, mitochondrial
function is dramatically reduced due to prolonged inactivity by
the loss of mitochondrial content and fragmentation (fission)
of the mitochondrial network (16–18). Consequently, a high
level of quality control is required to ensure that functional
subunits are maintained and dysfunctional units are removed
by mitophagy and replaced with newer functional units by
mitochondria biogenesis.

Cerebral Palsy
Cerebral palsy (CP), caused by a non-progressive brain
injury around birth, is the leading cause of movement
disability in children (19). Most children develop spasticity,
have impaired muscle growth, contractures, weakness,
and increased energy cost of movement (20). They have a
continuum of functional abilities broadly classified using
the Gross Motor Function Classification System (GMFCS)
(21), with lower GMFCS levels ambulating independently
and higher GMFCS levels being minimally ambulatory
and requiring wheelchairs. Children show significant
impairments in their energetics of movements and decreased
endurance capacity (22, 23) compared to children with
typical development (TD), associated with increasing GMFCS
levels. Increased energy expenditure has been attributed
to cardiorespiratory factors (24) and to inefficient muscle
activation (22).

Energetics is dependent on muscle metabolic factors such
as oxidative potential and mitochondrial function (8, 25) and
cannot be explained purely due to gait alterations and presence
of spasticity (26, 27). As children approach adulthood, their
capacity for movement can decline particularly during the
transition from adolescence to adulthood (28–31). Consequently,
individuals with CP have a high risk for cardiometabolic
diseases (32–34) and comorbidities (35–39), and, in general,
physical activity induces numerous health benefits (40, 41). It
is essential to understand the interaction and potential benefits
of physical activity on muscle energetics of movement during
childhood into adulthood. Even ambulatory children with CP
have considerably low level of activity compared to kids with
TD (42, 43), and there is a need to promote physical activity for
lifelong well-being.
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FIGURE 1 | Skeletal muscle metabolic pathways for energy. Carbohydrates, fats, and proteins foods are broken down systemically, substrates of which then enter

cells. Production of energy by final breakdown of food occurs primarily within cells by glycolysis and fatty acid oxidation. Anaerobic glycolysis in the cytoplasm can

only create small amounts of energy (ATP) in the short term. Substrates from glycolysis then enter mitochondria and, in the presence of oxygen, go through the

tricarboxylic acid (TCA) cycle, whose substrates then feed into the electron transport chain (ETC), which in turn is indirectly coupled to ATP synthase to create ATP.

Most energy (ATP) production occurs in the presence of oxygen within the mitochondria by breakdown of metabolites via the TCA cycle and oxidative phosphorylation

at the ETC-ATP synthase.

Changes in Skeletal Muscle Mitochondria
With Healthy Aging and Impact of Exercise
Muscle oxidative capacity can be measured non-invasively
for whole muscle kinetics (phosphorus-P31 magnetic
resonance spectroscopy or near-infrared spectroscopy)
(44). Direct measurements of mitochondrial physiology
can only routinely be measured from muscle biopsies for
mitochondrial function (respiration capacity, maximal activity
assays, membrane potential, ATP production) (45) and/or
mitochondrial content (electron microscopy morphology,
protein abundance, mitochondrial DNA) (46). With aging,
mitochondrial function (47) and abundance decline (48),
mitochondrial DNA mutations increase (49), and overall
muscular capacity reduces (50). In sedentary elderly subjects,

muscle oxidative capacity (51) and mitochondrial respiration
and content are lower by 30–50% (52). Mitochondria produce
reactive oxygen species, which, if not cleared, can lead to
increased oxidative stress (53). Mitochondrial quality control
is maintained by mitophagy, such that dysfunctional electron
transport chain components are removed and updated with
newer functional components (49). Within mitochondria,
there is an age-associated increase in oxidative stress and
reactive oxygen species, particularly at complex I and III
proton pumps, leading to mitochondrial dysfunction (53, 54).
Mitochondria are important not just for energy production

but also for a myriad of other sensing functions (55). In
young, healthy individuals, endurance exercise programs

such as cycling or running over the course of 6–8 weeks
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FIGURE 2 | Mitochondria are responsible for energy production via cellular respiration and are dynamically regulated by exercise. Skeletal muscles have numerous

mitochondria for the production of energy required for force production. The TCA cycle within the mitochondria helps break down food to create substrates that feed

into the numerous electron transport system (ETC) units located in the mitochondrial inner membrane. The flux of electrons through the four protein complexes of ETC

uses the substrates coupled with oxygen utilization to create a proton (H+) gradient across the inner mitochondrial membrane, which drives energy generation at the

ATP synthase. Mitochondria respond positively to consistent exercise by creating new mitochondria by mitochondrial biogenesis, while inactivity negatively impacts

their function and morphology.

can stimulate mitochondrial biogenesis (49) to increase
mitochondrial content and function by 40%, measured by
activity assays or electron microscopy (5, 56). Even during

aging, with consistent endurance exercise, muscles can maintain
mitochondrial content and function (57). Importantly, even
in aged sedentary individuals, endurance exercise can improve
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mitochondrial health (57), although it might not restore it
completely (49, 58).

Changes in Skeletal Muscle Metabolism
and Mitochondria in Children With Cerebral
Palsy
Direct measurements of skeletal muscle mitochondrial
physiology in children with CP have only recently been
reported (59, 60). Previously, our understanding of metabolic
capacity in children with CP were primarily based on fiber-type
capacities. Prior to the discovery of individual myosin heavy
chain isoforms, fiber types were classified on the basis of
myofibrillar adenosine triphosphatase (ATPase) activity, which
distinguishes between slow (type I) and fast (type II) contracting
muscle fibers. Lower extremity muscles from children with CP
show a strong preference for one or the other fiber type, with
a shift toward type I muscle fibers (61), whereas TD children
show a greater balance between fiber types (62). Similar changes
in having a predominance of one fiber type, with a shift toward
type 2X, has been observed in upper extremity muscles in young
adults with contractures using classification based on the newer
techniques of myosin heavy chain isoforms (63). However,
there are significant alterations in myofiber size, heterogeneity,
and fiber type distributions in the muscles from children with
CP, and even the newer techniques of purely measuring fiber
type percentages do not capture their metabolic capacity. Our
recent work using simple histochemical succinate dehydrogenase
(SDH-ETC complex 2) staining shows that while the hamstring
muscles in children with CP are significantly smaller than in

TD children, the metabolic activity per unit of both type I and
type IIA muscle fibers are similar between the two groups, i.e.,
greater for type I (64). Gene expression of oxidative metabolic

genes is significantly reduced in both wrist flexor and hamstring
muscles of children with CP (65, 66), suggesting alterations in
mitochondrial capacities. The metabolic machinery within the

muscle also depends on the appropriate delivery of oxygen to the
mitochondria through appropriate development of the capillary

network. Reduced capillary density has been reported in wrist
flexor contractures in young adults compared to control subjects,
suggesting that it may have a role to play in reduced metabolic
capacity (63). Exercise studies have shown that young adults with

cerebral palsy do get exhausted at lower exercise intensities, but
they are able to dynamically increase muscle vascularization in
response to exercise (67). Overall, while some information exists

at the level of fiber types, metabolic capacities by fiber types,
gene expression, vascularization, and response to exercise, these

are not informative of mitochondrial oxidative phosphorylation

capacities, the driver of energy production.
A recent small study (n = 12) directly measured

mitochondrial electron transport capacity using
spectrophotometric assays (68) in gracilis muscle biopsies
obtained during surgery from independently ambulatory
children (CP, n = 6; mean age, 13 years; GMFCS I–II) (59).

Maximal enzyme activity assays were performed for CI, CII,

CIII, and CI + III by using specific substrates with associated
electron acceptors, and reduction/oxidation rates of either

substrate or electron acceptor, depending on the assay, were
measured. Maximal rate of individual electron transport

complexes CI, CII, CIII, and CI + CIII combined were 45–80%
lower in children with CP compared to TD children. Citrate
synthase activity, a mitochondrial matrix enzyme and part of
the TCA cycle, is considered a robust marker of mitochondrial
content, at least in healthy young adults (46). Skeletal muscles
in children with CP had similar citrate synthase rate as that
in TD children. mtDNA: genomic DNA, also referred to as
mtDNA copy number, was increased four-fold in children
with CP, although this was not significant (p = 0.061). These
data suggest that, at least in the hamstring, muscle alterations
in mitochondrial function are not simply due to a reduction
in content but are probably reflective of poorly functioning
electron transport chain, similar to what has been reported with
aging. A more mechanistic study in a larger cohort of children,
where more measures of content are performed, is needed to
understand if and how the mitochondrial physiology is altered
in these children.

In a complementary, comprehensive, and larger study (n
= 29), von Walden et al. (60) measured mitochondrial
electron transport chain and ATP synthase complexes protein
abundance and gene expression of mitochondrial biogenesis
genes, performed secondary analysis of transcriptomics in
CP, and compared it to aging and chronic inactivity using
publicly available gene expression datasets. They obtained biceps
biopsies during surgery from children with CP (n = 19,
mean age of 15 years, 12 GMFCS I–II, 7 GMFCS IV–V),
along with typical developing control samples, obtained post-
mortem. Protein abundance for mitochondrial electron transport
chain complexes CI, CIII, CIV, and ATP synthase was 20–
40% lower in children with CP but not significantly lower for
CII (p = 0.07). Correspondingly, the mtDNA copy number
was ∼25% lower in children with CP, suggesting an overall
reduction in mitochondrial content in these muscles. They then
evaluated for any changes in gene expression of peroxisome-
proliferator-activated receptor gamma coactivator (PGC1) α,
considered a “master regulator” of mitochondrial biogenesis (9),
although, as mentioned previously, mitochondrial biogenesis
is complicated and requires multiple pathways, players from
both mtDNA and genomic DNA, and transporter proteins
into the mitochondria, since mtDNA by themselves are unable
to create the whole of any of the complexes. Interestingly,
they report that the total PGC1α gene expression was ∼25%
lower in children with CP, along with 35–65% reduction in
splice-variants PGC1α1 and PGC1α4. Although this is not a
measurement in response to a single bout or a program of
exercise, this does suggests that capacity for mitochondrial
biogenesis may be reduced in children with CP. A secondary
transcriptomic analysis of publicly available gene expression data
set (66) was performed to evaluate any changes in gene ontology
and pathways in the hamstrings (gracilis and semitendinosis)
muscles between children with TD and CP. Their analyses
revealed that both glycolytic and mitochondrial transcriptomic
networks were significantly altered, and associated gene sets
were downregulated. Their experimental and secondary analysis
results indicate that there is a significant downregulation of
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mitochondrial physiology in children with CP. To further test if
these alterations are metabolically similar to conditions known
to reduce mitochondrial capacity—chronic inactivity or aging—
they compared the transcriptomics across these three conditions,
namely, CP, aging, and bed rest data sets. Downregulated genes
were in common between CP and aging (332 genes), between
CP and inactivity (109 genes), and across all three (28 genes).
Overall, these data show that muscles in children with CP have a
significant reduction in metabolic capacity, which cannot purely
be explained by disuse and might have more in common with
aging, secondary to living with a chronic disability.

DISCUSSION

These two recent papers show that skeletal muscle mitochondrial
physiology is negatively altered in adolescent children with CP.
Mitochondrial function, content, and markers for mitochondrial
biogenesis are reduced. More concerningly, at the level of
gene expression, children with CP appear to have a large
number of genes in common with aged skeletal muscle than

muscles after chronic bedrest or inactivity. Many adolescent
children with CP are at risk for losing their functional

ability to move, and adults with CP have a higher risk of
developing cardiometabolic conditions and comorbidities. Since
mitochondrial alterations are also negatively associated with
aging, it would be important to understand how mitochondrial
physiology changes such as in ETC-ATPase function, abundance,
biogenesis, mtDNA mutations, reactive oxygen species occur
in people with CP across the lifespan from childhood through
adulthood. Importantly, more direct experimental studies are
required to understand if the well-documented positive impact
of exercise on mitochondrial physiology is maintained or
altered in children and adults with CP and if that translates
to maintained or improved capacity for movement across
the lifespan.
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