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Objectives: Determining the volume of brain lesions after trauma is challenging. Manual

delineation is observer-dependent and time-consuming and cannot therefore be used in

routine practice. The study aimed to evaluate the feasibility of an automated atlas-based

quantification procedure (AQP) based on the detection of abnormal mean diffusivity (MD)

values computed from diffusion-weighted MR images.

Methods: The performance of AQP was measured against manual delineation

consensus by independent raters in two series of experiments based on: (i) realistic

trauma phantoms (n = 5) where low and high MD values were assigned to healthy brain

images according to the intensity, form and location of lesion observed in real TBI cases;

(ii) severe TBI patients (n = 12 patients) who underwent MR imaging within 10 days

after injury.

Results: In realistic TBI phantoms, no statistical differences in Dice similarity coefficient,

precision and brain lesion volumes were found between AQP, the rater consensus and

the ground truth lesion delineations. Similar findings were obtained when comparing AQP

and manual annotations for TBI patients. The intra-class correlation coefficient between

AQP and manual delineation was 0.70 in realistic phantoms and 0.92 in TBI patients.

The volume of brain lesions detected in TBI patients was 59ml (19–84ml) (median;

25–75th centiles).

Conclusions: Our results support the feasibility of using an automated quantification

procedure to determine, with similar accuracy to manual delineation, the volume of low

and high MD brain lesions after trauma, and thus allow the determination of the type and

volume of edematous brain lesions. This approach had comparable performance with

manual delineation by a panel of experts. It will be tested in a large cohort of patients

enrolled in the multicenter OxyTC trial (NCT02754063).
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KEY POINTS

- The management of patients with severe (Glasgow coma score
<9) traumatic brain injury is complex, and access to objective
quantitative information regarding lesion volumes can support
clinical decision-making.

- An automated delineation procedure was developed to
determine the low and high MD abnormality brain lesion
volumes post-trauma.

- Automated brain lesion typing and volume quantification
compared favorably with manual delineation by a panel
of experts.

INTRODUCTION

Traumatic brain injury (TBI) remains a leading cause of death
and disability among individuals. Only a small proportion of
patients with severe TBI, as defined by an initial Glasgow Coma
Scale (GCS) score of <9, will have no disabilities (1). Predicting
neurological outcome after severe TBI is challenging due to the
complexity of the traumatic lesion, its evolution over time, and
the number of external factors that may affect the outcome.
Nevertheless, determining the type and volume of brain lesion
have been identified as clinically relevant criteria in estimating
outcome (2).

Data are very limited concerning the use of automated
methods to quantify brain injury post-trauma (3, 4). Skull
deformation, intracranial blood in the brain tissue, the presence
of cerebrospinal fluid (CSF) and the heterogeneity of brain
tissue injury make the segmentation of traumatic brain lesions
challenging. Automated approaches using non-contrast CT
imaging were developed for cranial cavity segmentation (5),
cistern segmentation or detection of intracranial hematomas (6).
More intracranial lesions (e.g., brain swelling or intracranial
hemorrhage) can be detected however by MRI, due to its higher
sensitivity (2).

Diffusion-weighted imaging (DWI) is a sensitive technique for
detecting subtle microstructural changes in white matter tracts,
and is particularly suitable for identifying edema and necrosis
(7, 8). While a reduction of mean diffusivity (MD) is indicative
of cellular (cytotoxic) edema, an increase indicates a vasogenic
edema (3). Both types of brain edema exist at the acute phase
(<15 days after injury) of severe TBI, and are major contributors
to the elevation of intracranial pressure and poor outcome after
TBI (9). A good concordance was shown between DWI and
clinical prognosis scores in TBI patients (4).

Our aim was to develop an automated approach to type
and quantify post-traumatic edematous brain lesion volumes
using MD values from DWI. The test of the feasibility was
performed using both realistic digital TBI phantoms, i.e., DWI
volumes from healthy subjects where realistic low and high
MD values were manually introduced by a neuroradiologist,

Abbreviations: Average Symmetrical Surface Distance (ASSD); AQP: Automated

Quantification Procedure; DWI: DiffusionWeighted Imaging; GT: Ground Truth;

Hausdorff Distance (HD); Intra-class Correlation Coefficient (ICC); MD: Mean

Diffusivity; SM: Supplementary Material; TBI: Traumatic Brain injury.

and MR images of severe TBI patients. Automated delineation
results were compared against those from manual delineations
performed by expert raters.

METHODS

Two sets of experiments were performed based on (Figure 1):
(i) realistic TBI phantoms comprising artificially introduced
lesions with abnormal MD values; and (ii) MR images of TBI
patients included in an ongoingmulticenter clinical trial (OxyTC,
NCT02754063) to validate MRI acquisition. Manual delineation
was performed by a panel of five expert neuroradiologists.

Realistic TBI Phantoms
DWI was performed on five healthy volunteers (Philips Achieva
3.0T TX, Philips Healthcare, Best, Netherlands) at the IRMaGe
MRI facility (Grenoble, France). Low and high MD values,
simulating cellular and vasogenic brain edema, respectively, were
manually inserted in these brain images by a neuroradiologist
(TM) familiar with traumatic lesions. The simulated values were
obtained by the application of a multiplicative coefficient to the
real MD values. The coefficient ranged from 0.41 to 0.91 for low
and from 1.10 to 2.10 for high MD, respectively. A Gaussian
filter (3mm half-width) was applied in accordance with observed
TBI edema appearance. Only the MD maps were modified, the
corresponding anatomical images remaining unmodified.

TBI Patients
One patient (Supplementary Table 1 for inclusion and non-
inclusion criteria) from each of 12 participating sites underwent
an MRI exam (Supplementary Table 3 for details) between
5 and 13 days after trauma. At each site, additional DW
images were acquired from 3 healthy volunteers (controls, see
Supplementary Table 2 for inclusion and non-inclusion criteria)
to compute reference site-dependentMDmaps. The images from
each site were anonymized, uploaded and stored in a dedicated
centralized academic imaging data repository (shanoir.irisa.fr).

Quality Control Procedure
A quality control procedure was implemented to account
for the high dependence of DWI on scanning equipment
and acquisition protocol (13, 14). It was developed and
deployed on the Pixyl (pixyl.ai) research platform (Figure 2).
Automatic procedures analyzed specific Digital Imaging and
Communications in Medicine (DICOM) tags, susceptibility
artifacts, signal-to-noise ratio, motion artifacts, and corrupted
slices. A quality control report was provided and validated byMR
physicists (IT, CM).

Manual Delineation
A panel of five expert neuroradiologists (AKa, AKr, DG, ES,
and SK) manually annotated brain lesion areas from realistic
TBI phantoms. The panel was unaware of the type, form
and location of lesions that had been manually inserted. It
was also blind to the nature of image, real or synthetic.
Three of these experts (AKr, DG, and SK) then manually
annotated brain lesion areas from images of TBI patients.
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FIGURE 1 | Evaluation procedure. Left: five realistic TBI lesion cases were constructed with low (green) and high (red) artificial MD values. The ground truth was

predefined for automated and manual lesion delineation comparison. Right: Twelve TBI patients were included, each with three types of MR image. Manual and

automated delineation results were quantitatively compared for 10 patients. The ground truth was defined as the consensus of expert annotations (“consensual

inter-raters ground truth”), calculated using STAPLE (10).

FIGURE 2 | Image processing pipeline from image acquisition to automated detection of mean diffusivity abnormalities.

They followed an annotation protocol based on DWI and the
ITK-SNAP tool (http://www.itk.org) for annotation, blinded
to each other and the ground truth. Other MRI sequences
could be used for additional cues. To account for the
inherent inter-rater variability in manual delineation (11),
the Simultaneous Truth and Performance Level Estimation
(STAPLE) method was used to provide an estimation of the rater
consensus (10).

Automated Quantification Procedure
Diffusion source images were denoised (15) and corrected
for inter-volume subject motion and geometric distortion
(Figure 2; Supplementary Material: Details of AQP); MD maps
were computed from the trace of the diffusion tensor (see
Supplementary Table 3). Brain was extracted and segmented
using a Bayesian Markov Random Field approach named
PLOCUS (16).
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TABLE 1 | Spatial measurements for the 5 realistic TBI phantoms.

Comparisons Dice HD (mm) ASSD (mm) Precision Sensitivity

Rater 1 vs. GT 0.75 (0.74 0.78) 6.7 (4.6 10.7) 0.5 (0.4 0.5) 0.69 (0.65 0.69) 0.88 (0.80 0.90)

Rater 2 vs. GT 0.74 (0.74 0.80) 8.5 (6.0 10.9) 0.6 (0.4 0.7) 0.74 (0.73 0.78) 0.74 (0.73 0.78)

Rater 3 vs. GT 0.71 (0.68 0.72) 12.4(10.9 18.5) 0.8 (0.6 0.8) 0.68 (0.66 0.70) 0.75 (0.68 0.76)

Rater 4 vs. GT 0.80 (0.76 0.81) 8.8 (7.1 17.8) 0.5 (0.3 0.7) 0.77 (0.74 0.84) 0.84 (0.79 0.85)

Rater 5 vs. GT 0.69 (0.66 0.72) 9.9 (9.2 10.6) 0.8 (0.7 0.8) 0.60 (0.55 0.64) 0.82 (0.78 0.85)

Rater consensus vs. GT 0.75 (0.74 0.80) 5.1 (4.1 10.7) 0.6 (0.4 0.6) 0.66 (0.65 0.72) 0.88 (0.87 0.90)

AQP vs. GT 0.72 (0.63 0.72) 24.6 (24.0 32.6) 1.4 (1.3 1.9) 0.70 (0.65 0.73) 0.75 (0.66 0.81)

AQP vs. rater consensus 0.63 (0.55 0.71) 25.3 (24.7 29.3) 1.8 (1.5 2.1) 0.74 (0.71 0.75) 0.59 (0.48 0.67)

Each rater, rater consensus and automatic quantification procedure (AQP) were compared to the ground truth (GT) as reference. Data are expressed as median and 25–75th percentiles.

Dice and precision obtained from rater consensus and AQP were comparable. HD and ASSD were higher using AQP compared to rater consensus (P < 0.05). HD, Hausdorff Distance;

ASSD, Average Symmetrical Surface Distance.

TABLE 2 | Characteristics of the 12 patients with severe traumatic brain injury.

Patients Gender Age (years) Trauma to MRI delay (days) Initial GCS Type of MR scanner

1 Male 31 5 5 Philips Achieva 3 T

2 Male 20 13 9 Siemens Skyra 3 T

3 Male 46 9 6 Siemens Avanto 1.5 T

4 Male 33 ND ND Siemens Skyra 3 T

5 Female 57 12 7 Siemens Aera 1.5 T

6 Male 30 13 6 Siemens Prisma 3 T

8 Male 21 5 3 Philips Achieva 3 T

9 Female 22 9 4 GE Signa 1.5 T

10 Male 50 13 5 GE 1Optima 0.5 T

13 Male 37 9 3 Siemens Skyra 3 T

16 Male 58 9 6 Siemens Aera 1.5 T

17 Male 71 13 6 Siemens Aera 1.5 T

Median (IQR) 35 (28; 52) 9 (8, 11) 6 (4, 6)

Patients #1 and #10 were excluded from the analysis because one rater delineated brain lesions on FLAIR images. GCS, Glasgow coma score; ND, not determined; IQR,

interquartile range.

An automated atlas-based quantification procedure (AQP)
was developed to partition the brain into defined regions, and
to detect voxels with abnormal MD values, i.e., vasogenic and
cellular edema, within those regions. AQP used six parcellation
atlases to establish normative values and detect abnormal voxels
according to the Potholes and Molehills method (12, 17). A voxel
was considered as abnormal if its values deviated outside the
normal range in ≥4 parcellation atlases. Voxels exhibiting high
and low MD were considered if they formed part of a lesion
of minimum size 0.16 and 0.12ml, respectively. Voxels from
within CSF or ventricles, as defined by segmentation of the T1-
w sequence, were excluded. To deal with partial volume effects,
abnormal high MD voxels at a distance of <3mm from CSF
voxels were also excluded. Lesion volume was expressed in ml
and in brain volume fraction (%), the latter reflecting the ratio
between brain lesion volume and supra-tentorial brain volume.

Quantitative Comparison of the Manual
and Automated Delineation Methods
Five spatial measurements were used to compare delineation
methods: the Dice metric to measure the volume overlap, the

Average Symmetrical Surface Distance (ASSD) to measure the
average Euclidian surface distance, the Hausdorff Distance (HD)
to measure the maximum distance between two surface points,
and Precision and Recall (sensitivity) to assess over- and under-
segmentation, respectively (see http://www.isles-challenge.org/
ISLES2015/ for formulas). For ASSD and HD, expressed in
mm, optimal values tend to 0. For Dice, Precision and
Recall values, expressed within a 0–1 range, optimal values
tend to 1.

Statistical Analysis
Data were expressed as mean ± standard deviation or median
(25–75th centiles). The Intra-class Correlation Coefficient (ICC)
was used to compare the reliability of measurements between the
rater consensus and AQP. The non-parametric Kruskall-Wallis
test was used to compare spatial measurements obtained using
GT, AQP, the rater consensus, and each rater (realistic phantom).
TheMann-Whitney test was used to compare the rater consensus
and AQP (TBI patients). Statistical significance was established
when P < 0.05.
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TABLE 3 | Spatial measurements for the 10 patients with severe traumatic brain injury.

Patients Dice HD (mm) ASSD (mm) Precision Sensitivity AQP: Vol.

edema (ml)

AQP: Vol.

vasogenic

edema (ml)

AQP: Vol.

cellular edema

(ml)

AQP: Vol.

edema (%)

Raters

consensus:

Vol. edema (%)

2 0.49 32.1 3.2 0.42 0.58 55.2 36.7 18.4 3.2 2.1

3 0.61 15.0 2.9 0.62 0.61 13.9 87.0 5.1.9 1.0 1.0

4 0.73 38.4 1.9 0.64 0.86 80.9 67.8 13.1 5.6 4.2

5 0.78 25.3 1.0 0.78 0.78 84.6 79.2 5.3 5.8 5.8

6 0.71 32.9 1.1 0.72 0.70 33.1 28.4 4.7 2.4 2.5

8 0.52 20.1 2.1 0.67 0.43 7.2 57.5 1.5 0.4 0.71

9 0.43 33.7 3.7 0.49 0.39 6.9 30.3 3.9 0.4 0.6

13 0.56 25.6 1.8 0.49 0.64 240.6 72.8 167.7 14.7 11.3

16 0.78 11.8 0.8 0.82 0.74 130.3 121.0 9.2 8.0 8.9

17 0.33 36.8 5.8 0.22 0.64 63.7 45.1 18.4 4.2 1.5

Median 0.58 28.8 2.0 0.63 0.64 59.4 41.0 7.3 3.7 2.4

(IQR) (0.50; 0.72) (21.4; 33.5) (1.3; 3.1) (0.49; 0.70) (0.59; 0.73) (19; 84) (14; 72) (5, 12) (1.3; 5.7) (1.3; 5.7)

The automatic quantification procedure (AQP) is compared to the consensus from 3 raters. HD, Hausdorff Distance; ASSD, Average Symmetrical Surface Distance; IQR,

interquartile range.

RESULTS

Realistic TBI Phantoms
The mean volume of the manually-inserted lesions was 31ml,
i.e., 2.2% of the total brain volume, and corresponded to the
ground truth (GT). Typical examples of agreement between GT,
manual delineation, and AQP are shown in Figure 3. AQP could
detect additional lesions undetected by manual delineation and
present in GT, and could exclude image artifacts. The time taken
to process each case was 30min for manual delineation vs. 10min
using AQP.

Dice and precision showed no significant difference between
manual delineation and AQP (Dice: 0.75 and 0.72; and Precision:
0.66 and 0.70, respectively) (Table 1). The surface distance
measurements of HD and ASSD were significantly higher using
AQP compared to manual delineation (both P < 0.05).

The lesion volumes corresponded to 2–4% of the brain
volume, i.e., 18–40ml. Both raters and AQP overestimated
the lesion volumes in realistic phantoms, compared to GT
(+32% for rater consensus; +13% for AQP) (Figure 4;
Supplementary Table 4). Raters showed greater consistency with
the ground truth, though tending to overestimate, as compared
to AQP that demonstrated some jitter. The reliability between
rater consensus ratings and AQP was moderate (ICC = 0.70)
(Figure 4; Supplementary Table 4 and Bland-Altman plot in
Supplementary Figure 1). Noteworthy is the overestimation of
brain lesion volumes with high MD values by raters and
underestimation of lowMD lesion volumes. However, AQP, rater
consensus and GT showed no significant differences regarding
the determination of brain lesion volumes (P = 0.27).

TBI Patients
The characteristics of the patients are shown in Table 2. There
was no significant difference in age between TBI patients
and healthy volunters populations (P = 0.11). Two patients
(#1 and #10) were excluded from the analysis because one

rater delineated brain lesions visible on FLAIR images only.
Figure 5 shows low and high MD brain lesions depicted by
the rater consensus (middle) and by AQP (right). Additional
brain lesions were found using AQP (cf. S2 and S17 in
Figure 5). Dice, precision and sensitivity were comparable
between AQP and rater consensus (Supplementary Table 5).
HD and ASSD surface distance measurements were slightly
different: median 28.8 and 2.0mm for AQP vs. 19.6 and
1.4mm for raters, respectively, with P < 0.02 for the former,
non-significant for the latter (Supplementary Table 5). The
brain lesion volumes of these patients computed by AQP
ranged from 0.4 to 14.7% of the brain volume, i.e., 59ml
(19–84ml), including 41ml (14–72ml) (median; 25–75th
centiles) and 7ml (5–17ml) for high (vasogenic edema)
and low (cellular edema) MD lesions, respectively. The
reliability between manual and automated procedures was
high (ICC = 0.92) (Figure 6; Supplementary Figure 2).
The determination of brain lesion volumes by rater
consensus and by AQP showed no significant differences
(P = 0.91).

For TBI patients, the ICC was higher between AQP and the
rater consensus for high MD (0.97) than for low MD (0.48).
Similarly, the inter-rater variability was smaller for high (6%)
than for low (17%) MD.

DISCUSSION

Our fully automated procedure (AQP) provided findings in
concordance with manually traced edematous brain lesions post-
trauma. Based on both realistic digital phantoms and TBI patient
MR images, AQP and the expert rater consensus provided
comparable lesion volumes with abnormal MD values.

Even if the involvement of an expert is still necessary to
control image quality and validate automated segmentation, the
proposed approach is promising. Indeed, determining the type
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FIGURE 3 | Typical examples of abnormal mean diffusivity (MD) values introduced in diffusion-weighted images (DWI) of two healthy volunteers (realistic TBI

phantoms). Top: Good agreement between manual and automated segmentation. Bottom: Moderate agreement between manual and automated segmentation. The

artifact (white arrow) was falsely detected as a lesion by one rater. Red, High MD values; Green, Low MD values.

FIGURE 4 | The correspondence analysis in brain lesion volume for the five realistic phantom cases for both the raters’ consensus (circle) and AQP method (triangle)

(y-axis) vs. the ground truth (x-axis). Total lesion volume (low + high MD) in % brain volume of diffusion-weighted images (mean, 95% confidence interval). The dashed

line indicates the identity curve.

and volume of brain edema post-trauma using an accurate and
automated approach could improve the management of severe
TBI patients by directing precision-medicine-based treatment for
optimal cerebral blood flow.

Limited MRI data exist on the type of brain injury in the
acute phase after severe TBI (3, 4, 18). Pasco et al. explored
the type of post-traumatic brain edema in the white matter
using manual delineation of ROIs based on apparent diffusion
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FIGURE 5 | Delineation of brain lesions from diffusion-weighted images (DWI) in 10 TBI patients. The MD map (left), rater consensus (middle) and automated

quantification procedure (right) is shown for each patient. S2–S17 refer to the corresponding TBI subject (see Table 3).

FIGURE 6 | The correspondence analysis in brain lesion volume for the then TBI cases for both the raters’ consensus (y-axis) and AQP method (y-axis). Total lesion

volume (low + high MD) in % of the brain volume of diffusion-weighted images (mean, 95% confidence interval). The dashed line indicates the identity curve.

coefficient (ADC) values (3). In the present study, we confirmed
that both types of brain edema could be found at the early
phase of severe TBI. Their quantitative automated distinction
could be of interest in terms of clinical management: while
a predominance of lesions with cellular edema (low MD),
reflecting brain ischemia, would favor the maintenance of high
levels of cerebral perfusion pressure (CPP; with CPP = mean
arterial blood pressure – intracranial pressure); lower levels
of CPP would be preferable with vasogenic edema lesions
(high MD) where a disruption of the blood-brain barrier
is predominant.

Few studies have explored a fully automated approach to
delineate TBI brain lesions. Segmentation methods such as Siena,
applied to T1-weighted images, misclassified focal TBI lesion in
gray matter (19). Using a deep learning approach, Kamnitsas
et al. found 0.63 and 0.68 for Dice and precision, respectively
(20). Better results were obtained (21) using a modified version
of the Inception architecture (22). Our approach permitted the
quantification of cellular and vasogenic volumes, as reflected
by low and high MD values, and required no training phase
with a large set of manual annotations such as is required for
deep learning approaches. The training phase in our approach is
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solely based on establishing normal MD distributions for healthy
volunteers in each center.

Automated AQP and rater delineation showed interesting
differences. For one, as seen in Figures 3, 5, additional brain
lesions were found using AQP. Moreover, the contours of the
manually-traced ROI were smoother and less detailed than those
of the AQP. While these differences had negligible impact on
the estimated brain lesion volumes and on the spatial overlap
measures (Dice), they can explain the differences in HD, a
measure of the maximum distance between two surface points.

Regarding lesion volumes, each manually traced lesion
volume was overestimated (33% on average for phantoms)
compared to AQP (5% on average). A closer look at the data
shows that the manual delineation systematically overestimated
the volume of high MD lesion (44 vs. 7% for AQP on average for
phantoms). We observed also that Dice similarity coefficient and
precision for automated and manual methods were low (between
0.59 and 0.70) compared to values obtained for stroke or brain
tumor. These low values are indicative of the difficulty in manual
delineation of trauma lesions, even for experts, and may also
explain the high level of variability among themanual delineation
values (16% for phantoms and 12% for patients).

The aim of our study was to determine whether automatic

quantification of brain lesions would be as accurate as manual

delineation in two situations: phantom images and TBI images.

The latter obviously reflect the real life with possible presence

of blood and tissue deformation. In spite of that, the results
obtained with the proposed approach are encouraging. However,
it is important to note that the study of TBI patient management,
and associated imaging support, is inherently challenging. As
such, the authors draw attention to several limitations. First,
brain lesions of realistic TBI phantoms were inserted in brain
MD maps only. The use of TBI phantoms with multiparametric
images might have resulted in a better agreement with GT.
Second, normative MD values were obtained using a limited
sample of only 3 young male volunteers per site and TBI
data from one patient per site. Although it is important to
consider sources of variability between patients and volunteers,
the reliability between manual and automated procedures was
nevertheless high for TBI patients. Third, we considered one type
of MR sequence (diffusion) and one metric (MD) for detecting
the presence of vasogenic and cellular edema. Indeed, MD has
been chosen because it is widely used to determine the volume
of ischemic tissue (8). Brain ischemia is one leading cause of
secondary brain damage after severe TBI (23) and can result
in cellular edema and/or vasogenic edema in case of brain
blood barrier disruption. We did not consider hemorrhagic brain
lesions such as contusions, subdural and extradural hematomas,
subarachnoid hemorrhage and petechiae, although some may
have appeared as low MD lesions. Fourth, while the approach
seems robust to artifacts (see Figure 3), whether it misinterprets
some as lesions warrants further investigation. Fifth, a larger
panel of experts could offer more statistical weight to the results,
although it should be noted that we employed the largest panel
(5) so far of experts in TBI imaging, according to the literature
(5, 6). Sixth, a more comprehensive patient dataset to correlate

the volume of brain lesions in TBI patients with their outcome
was not available.

In conclusion, an automated atlas-based quantification
procedure has been effectively shown to quantify the volume
of low and high MD brain lesions after trauma, and thus
allow the determination of the type and volume of edematous
brain lesions. This approach had comparable performance with
manual delineation by a panel of experts. It will be used in a
large cohort of patients enrolled in the multicenter OxyTC trial
(NCT02754063). We will see whether the quantification of brain
lesion volume as well as type and location may play a role in the
neurologic outcome after severe TBI.
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