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Objective: To assess the short-term effects of strenuous dynamic stretching of the elbow

joint using an intelligent stretching device in chronic spastic stroke survivors.

Methods: The intelligent stretching device was utilized to provide a single session of

intensive stretching to the spastic elbow joint in the sagittal plane (i.e., elbow flexion

and extension). The stretching was provided to the extreme range, safely, with control

of the stretching velocity and torque to increase the joint range of motion (ROM) and

reduce spasticity and joint stiffness. Eight chronic stroke survivors (age: 52.6± 8.2 years,

post-stroke duration: 9.5 ± 3.6 years) completed a single 40-min stretching intervention

session. Elbow passive and active ROM, strength, passive stiffness (quantifying the

non-reflex component of spasticity), and instrumented tendon reflex test of the biceps

tendon (quantifying the reflex component of the spasticity) were measured before and

after stretching.

Results: After stretching, there was a significant increase in passive ROM of elbow

flexion (p = 0.021, r = 0.59) and extension (p = 0.026, r = 0.59). Also, elbow active

ROM and the spastic elbow flexors showed a trend of increase in their strength.

Conclusion: The intelligent stretching had a short-term positive influence on the passive

movement ROM. Hence, intelligent stretching can potentially be used to repeatedly and

regularly stretch spastic elbow joints, which subsequently helps to reduce upper limb

impairments post-stroke.

Keywords: spasticity, stroke, rehabilitation, elbow, tendon reflex

INTRODUCTION

Stroke is one of the leading causes of long-term motor disability in adults, with ∼795,000
people experiencing a new or recurrent episode of stroke every year in the United States
(1). Spastic hemiplegia is a common motor impairment post-stroke. Spasticity and muscle
weakness often occur together and contribute to the disordered motor control (2). Classically,
spasticity has been defined as “a motor disorder characterized by a velocity-dependent increase
in tonic stretch reflexes with exaggerated tendon jerks, resulting from hyperexcitability of
the stretch reflex, as one component of the upper motor neuron syndrome” (3). Recently,
to better reflect the underlying pathophysiology, the characterization of spasticity has been
extended beyond the velocity dependence. Wu et al. extended velocity dependence to
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position as well as velocity dependence (4). Li et al. extended
velocity dependence to velocity as well as muscle length-
dependent increase in resistance (5). It results from
hyperexcitable descending excitatory brainstem pathways and
the resultant exaggerated stretch reflex responses. Other related
motor impairments, including abnormal synergies, inappropriate
muscle activation, and anomalous muscle coactivation, coexist
with spasticity and share similar pathophysiological origins
(5, 6).

Spasticity is a complex clinical symptom including reflex
and non-reflex components, with both components contributing
toward the increased resistance (7–13). Though the primary
lesion attributing to spasticity lies within the central nervous
system, the changes in connective tissue that ensues with
immobilization further contributes toward an increase in
spasticity (14). Muscle weakness or paresis leads to immobility.
Immobility in turn can start a vicious cycle of changes including
peripheral soft tissue changes that reduce tissue compliance,
potentiation of reflex mechanisms, and spasticity. Eventually,
these peripheral changes lead to muscle fibrosis, and decreased
range of motion and function (15). Particularly, the increase in
stiffness seen in the spastic limb cannot solely be attributed to
the presence of hyperactive reflex. The increased resistance to
stretch could be attributed to the passive stiffness arising from
the connective tissues, tendons, ligaments, and passive muscle
properties (9).

The prevalence of spasticity is known to increase as the time
from stroke increases. About 17–42.6% of the chronic stroke
survivors report the persistence of spasticity in their extremities,
with the elbow joint known to be more commonly affected (79%)
as compared to the other joints (16). Pronounced spasticity in the
elbow disrupts the functional use of the upper limb, such as eating
and grooming (17). Effective management of elbow spasticity is
an important clinical need because of its frequent prevalence and
proclivity to reduce functional outcome (18–21).

A large variety of physiotherapeutic and occupational
therapeutic interventions have been described in the literature to
manage spasticity (16). Passive stretching exercises are among the
commonly prescribed techniques to alleviate spastic symptoms
and/or joint stiffness (22–26). Previous studies have suggested
that stretching of a spastic muscle in stroke survivors helps in
maximizing the range of motion of the affected joint, decreasing
musculotendinous stiffness due to passive torque reduction,
and subsequently reducing spasticity of the affected limb (27).
Passive muscle stretching has also been shown to activate
Golgi tendon organs and inhibit the excitability of alpha motor
neurons (27, 28). Some studies have investigated the effect of
stretching on stretch reflexes elicited by tendon tap reflex. The
reflexes elicited by tendon tap are affected by changes in muscle
spindle sensitivity and reduce reflex amplitude (29, 30). This
suggests that stretching might decrease the sensitivity of muscle
spindles in response to rapid mechanical perturbation. However,
passive stretching in clinical settings is usually performed
manually by therapists, which is laborious and requires strenuous
manipulation of the limbs of patients. Over the years, certain
mechanically driven devices have been developed to help stretch
the joints within restricted ranges, thereby reducing the burden

of this labor-intensive process on the therapists. However, most
of the existing devices such as the Continuous Passive Motion
(CPM) machine are controlled based on the joint position and
move at a constant velocity (31). These devices are commonly set
to move the joints in their flexible part of the range of motion
(ROM), and therefore do not usually stretch into the extreme
positions where the spasticity/contracture is severe (32, 33). On
the other hand, setting a CPMmachine too aggressively may risk
injuring the joint due to the lack of control of the resisting torque
generated by the soft tissues.

To stretch the spastic elbow joints strongly yet safely at their
extreme joint positions, we developed an “Intelligent” stretching
device that dynamically stretches the joints with quantitative
feedback control of the torque resistance as well as stretching
velocity (34). In contrast to the constant speed of the CPM
devices, the stretching velocity of this intelligent stretching
device decreases as the resistance to movement increases. Based
on the resistance torque produced during the movement, the
stretching device constantly adjusts the stretching velocity.
This ensures that the device provides a strong stretching in a
safe yet effective manner. Through this intelligent stretching
approach, the stretching provided can be adjusted according to
the spasticity/contracture of the individual stroke survivor. This
stretching device can be used not only to stretch the joint with
spasticity and/or contracture but also to quantitatively evaluate
stretch-induced changes in the biomechanical properties of the
joint. The purpose of this study was to assess the immediate
effects of strenuous dynamic stretching of the elbow joint
performed with the help of an intelligent stretching device in
chronic stroke survivors with a spastic elbow.

MATERIALS AND METHODS

Participants
Eight chronic stroke survivors (age (mean ± SD): 52.6 ±
8.2 years; 5 men and 3 women) who had stroke for more
than 1 year (duration (mean ± SD): 9.5 ± 3.9 years) were
recruited. Participants with first focal unilateral lesion, ischemic
or hemorrhagic, with a modified Ashworth score (elbow
flexors) >0 and deep tendon reflex (biceps) >2 were included.
Participants who presented with severe pain in the affected limb
(7 or more out of 10 in the self-rating scale) and those with
severe cardiovascular conditions were excluded. All participants
gave informed consent before participating in the study, which
was approved by the local Institutional Review Board. Table 1
provides the baseline characteristics of the participants enrolled
in this study.

Experimental Procedure
Participants received 1-h passive stretching under intelligent
control, and pre- and post-evaluations were conducted
immediately before and after the intervention. Figure 1 shows
the overall flow of the experimental procedure conducted during
the study.
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TABLE 1 | Baseline characteristics of participants.

Subject Age Gender TSO Affected MAS DTR

(Years) (Years) side (elbow flexors)

1 63.1 M 6.7 R 2 3

2 40.3 F 8.0 L 3 3

3 45.9 M 7.5 R 3 4

4 62.0 M 14.1 L 1 4

5 55.5 M 72 L 1+ 2

6 58.1 F 4.4 L 3 4

7 46.6 M 13.7 L 3 3

8 50.0 F 14.4 R 3 3

Mean 52.6 9.5 3.2

SD 7.7 3.6 0.6

TSO, time since onset; MAS, modified Ashworth scale; DTR, deep tendon reflex.

FIGURE 1 | Representation of the flow of the experimental procedure. PROM,

passive range of motion; AROM, active range of motion; MVC, maximum

voluntary contraction.

Evaluations
Instrumented Tendon Reflex Test
To quantify the reflex components of spasticity, we performed
an instrumented tendon reflex test at 60◦ of elbow flexion. The
elbow joint was restricted to an isometric condition to minimize
nonreflex torque contributions of joint stiffness, viscosity, and
limb inertia, which are dependent on joint motion. Since there
was essentially no limb motion, the reflex contribution was
readily separated from the minimized non-reflex contributions
to joint torque, which otherwise would have been difficult to
separate if the limbs couldmove. A rubber pad (1 cm in diameter)
with double-sided adhesive interface was used to perform the
tapping of the biceps tendon at a spot where the strongest reflex
response was evoked. An instrumented tendon hammer with a
force sensor mounted at its head was used to tap the rubber
pad. This arrangement transmitted the tendon-tapping force
accurately and evenly to the biceps tendon, and the coefficient

of variation of the tendon reflex parameters was reduced (34,
35). The participants were seated comfortably during this setup
and were asked to completely relax and not react to/anticipate
the tapping both before and during the tapping process. The
tapping force was increased gradually until a significant muscle
contraction was evoked. The biceps tendon was then tapped at
approximately that level about ten times during a trial, with
random inter-stimulus intervals averaging about 2.5 s. About
three trials were conducted. An electromyography (EMG) sensor
(Delsys Bagnoli-8, Boston, USA) was mounted on the biceps
musculature to measure the muscle response to the instrumented
tendon tapping. The tendon tapping force and elbow flexion
torque were sampled by a computer at 1 kHz after lowpass
filtering (90 Hz cut-off).

Passive ROM, Active ROM, and Stiffness
The elbow joint was moved passively in both flexion and
extension directions by the stretching device. As the elbow
joint was being moved, the angular joint position and passive
resistance torque (PRT) generated by the elbow musculature
were measured continuously. For the passive ROM (PROM),
the stretching device passively moved the elbow in the available
range under controlled quantitative peak resistance torques. For
evaluation of the stretching-induced improvement, the elbow
extension ROM at 10Nm PRT was used.

For active ROM (AROM), the participants were instructed to
actively move their elbow slowly, and the resultant ROM was
measured. Three trials of PROM and AROM were conducted
and averaged. The PROM measures were divided into flexion
ROM and extension ROM. AROM was measured as the total
elbow ROM performed by the participant. EMG sensors were
mounted on the biceps, triceps, and brachioradialis musculature
to measure the muscle actions during AROM.

The elbow joint stiffness at 5◦ of elbow flexion position
during stretching was determined as a non-reflex component.
The quantitative data of joint stiffness acquired at the beginning
and end of the stretching sessions served as before and after
parameters, respectively.

Muscle Strength
Muscle strength was also measured with the intelligent stretching
device. The participants were instructed to perform isometric
maximal voluntary contractions to measure the elbow flexor and
extensor strengths, respectively.

INTERVENTION

Stretching Under Intelligent Control
The intelligent stretching device (Figure 2) was driven by a
servomotor controlled by a digital signal processor (DSP),
with the Personal Computer (PC) and DSP collecting data
and controlling the stretching, respectively (34, 36). During
the stretching, the DSP controller read the joint position and
resistance torque and controlled the stretching velocity to be
inversely proportional to the resistance torque. As the resistance
torque increased near the extreme ROMs, the stretching device
slowed down, thereby resulting in a slow and gradual stretching

Frontiers in Neurology | www.frontiersin.org 3 December 2021 | Volume 12 | Article 742260

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rao et al. Dynamic Stretching After Stroke

FIGURE 2 | (A) The intelligent stretching device designed to stretch the elbow joint with spasticity and evaluate treatment outcome with multiple neuromechanical

outcome measures. A digital signal processor (DSP) controller constantly adjusts the stretching velocity based on the resistance, and it checks the joint position and

torque signals at 2,000Hz and shuts down the system if they are out of pre-specified ranges. The torque limit and position limit light-emitted diodes (LEDs) indicate

whether a resistance torque limit or position limit (safety limits) is reached, respectively, during the stretching. (B) Shows the position of the subject during the

stretching.

FIGURE 3 | Flexion and torque during two stretching trials (10Nm and 15Nm

peak torque) in an elbow with strong spasticity. The stretching velocity was

reduced gradually down to 0 as the resistance increased. Position limit was

reached at the extreme flexion. The blue and green lines represent the flexion

angle and torque changes at 10Nm and 15Nm peak torque.

of the involved muscle–tendon complex and producing a larger
elbow ROM. The stretching device stretched the relatively slack
muscles at higher speeds in the mid ranges where the resistance
was typically low. However, if the device detected high resistance
in the mid ranges, the stretching was accordingly slowed down.
Once the specified peak resistance torque or position limit was
reached, the stretching device held the elbow joint at that extreme
position for a period (∼5 s). To ensure safety, the DSP controller
constantly checked the joint position and torque signals at 2,000
times per second and shut the system down if they were out of
pre-specified ranges. Two mechanical stops were incorporated to
restrict and prevent themotor frommoving in a range that would
over-stretch the spastic joint.

During the experiment, the intelligent stretching device
performed the stretching in trials, with each trial lasting for
about 2min and stretching parameters adjusted according to
the discomfort level of the participants between trials. About

20 trials were conducted for each participant during a session,
accounting for a total of 40min of stretching. During the
stretching, the participants were asked to relax and not to
react to the stretch (if they did react, the device would reverse
its rotation before reaching the extreme positions). A peak
velocity (up to 45◦ per second, only possible at mid-ROM due
to the control strategy), peak resistance torque (typical value:
10 N·m), and length of the holding period (typical value: 5 s)
at the joint extreme positions were specified and if needed,
were conveniently adjusted for each trial. Figure 3 shows a
representative flexion angle and torque changes during the
strenuous stretching performed on an individual participant.

Data Analysis
The sampled elbow flexion angle θ(t) and joint torque T(t)
were low-pass filtered and sampled at 1 kHz. The EMG signals
were filtered with 20–450Hz bandpass filter. To extract the
EMG linear envelope, the raw EMG signals were full-wave
rectified and low-pass filtered with 10Hz cut-off. EMG onset was
determined when the EMG linear envelope amplitude exceeded
three standard deviations from themean of the background EMG
linear envelope. The background EMG was recorded during a
quiet phase before the stretching.

Reflex Excitability Before/After Stretching
To quantify the reflex properties, the biceps tendon reflex was
viewed in terms of a dynamic input-output relationship. The
tendon tapping force was designated as system input and the
reflex torque and EMG response were taken as system outputs
(9, 37). The impulse response was used to characterize the
reflex torque as the output of a system excited by the tendon
tapping force. The following physiological parameters were
extracted to characterize the impulse response of the tendon
reflex system: reflex gain (GS), contraction time (tc), half-
relaxation time (thrt), reflex loop delay (td), contraction rate (Rc),
half-relaxation rate (Rhr), peak reflex torque (Mp), and EMG
response. Figure 4 shows representative instrumented reflex test
results over multiple taps of the biceps tendon with the elbow at
60◦ flexion.
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FIGURE 4 | Comparison of before and after stretching for instrumented

tendon reflex test results over multiple taps on the biceps tendon of a stroke

survivor with spastic elbow. From top to bottom, the three rows show the

tendon tapping force, EMG, and elbow flexion torque, respectively. The elbow

was fixed at 60◦ flexion. The blue line represents the mean value and the red

and green lines represent the values 1 SD below and above the mean value,

respectively. N, Newton; mV, millivolts; Nm, Newton meters; msec,

milliseconds.

Determination of Joint Stiffness
In addition to ROM, joint stiffness was determined as another
non-reflex component by following themethods used in previous
studies (9, 33, 34, 38).

The anatomic joint angle and torque were plotted to get
the torque–angle curves (hysteresis loops). The total number
of hysteresis loops ranged from 4 to 8 based on the ROM of
the subject. The elbow stiffness at 5◦ elbow flexion position was
assessed as K = 1T/1θ, where K is the quasistatic stiffness, and
1T is the passive torque increment during a certain amount of
elbow angular movement (1θ).

Statistical Analysis
We performed the Wilcoxon Signed Rank test to compare the
before and after stretching effect on passive and active ROM,
strength, impulse response parameters of the instrumented reflex
test, and non-reflex components. The significance level was set at
0.05. The effect size was calculated using the following formula:
r = Z/

√
n, where n indicates the number of observations at two

timepoints and Z is the statistic output of Wilcoxon Signed Rank
test. The r values of 0.60, 0.40, and 0.20 represent large, medium,
and small effect size, respectively (39).

All statistics were performed by SPSS (Version 26; IBM Corp.,
Armonk, NY, USA).

FIGURE 5 | Elbow flexion and extension passive range of motion (PROM)

before and after a single stretching session. Error bars represent standard

deviation. *Stands for statistically significant difference p < 0.05 from Wilcoxon

Signed Rank test.

RESULTS

Elbow PROM and AROM
The passive extension ROM showed a significant change after the
session of strong stretching; it improved from 11◦ ± 9.6◦ (mean
± SD) to 4.6◦ ± 7.8◦ (p= 0.026, r= 0.59). (A full elbow extension
corresponds to 0◦ elbow flexion and the values provided here
denote the decrease in this flexion towards 0◦). The elbow passive
flexion ROM improved from 125.0◦ ± 4.7◦ to 130.5◦ ± 6.3◦ (p=
0.021, r = 0.59) (Figure 5). Subjectively, all the eight participants
reported having “felt good” about the forceful stretching.

The strenuous stretching loosened up the stiff elbows of the
participants and helped improve the elbow active ROM. After the
forceful stretching, the participants showed a trend of improved
active extension ROM from 11.5◦ ± 10.5◦ to 7.9◦ ± 7.8◦ (p
= 0.207, r = 0.40), and the flexion AROM from 118.4◦ ±
30.6◦ to 122.9◦ ± 32.3◦ (p = 0.391, r = 0.25). Functionally, the
participants could raise their hands to reach larger ROMs. For
example, for an individual participant with spastic elbow and
hyperactive reflexes (MAS = 3 for both biceps and triceps, and
deep tendon reflex scale = 4), the strenuous stretching loosened
the stiff elbow joint and improved voluntary elbow extension
from 20◦ flexion before stretching to 10◦ flexion after stretching.
The stretching increased the AROM partly due to considerably
decreased triceps co-contraction during elbow flexion (Figure 6).
Functionally, the patients could raise their hands to reach larger
ROMs. For the same participant, before stretching, he could
move the hand upward in front of the body by 18 cm, which
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FIGURE 6 | Active ROM when a stroke survivor moved against the passive load of the stretching device including a motor and gearhead (the motor was switched off),

before and after stretching. The upward flexion movement was in the vertical plane against gravity. There was considerable reduction of triceps co-contraction (the last

row) after stretching, with even stronger biceps contraction. deg, degrees; mV, millivolts; sec, seconds.

was increased to 28 cm after the intelligent stretching with
reduced co-contraction.

Muscle Strength
The elbow flexion strength showed trends of improvement in
the eight participants after the strenuous stretching. Elbow flexor
strength showed a trend of increase from 9.62 ± 7.23Nm to
12.61 ± 7.83Nm (p = 0.129, r = 0.43). The extensor strength
was 10.03 ± 7.24Nm before stretching and 10.56 ± 5.19Nm
after stretching (p = 0.736, r = 0.08). Participants with very
stiff joints showed larger increases, while participants with less
severe spasticity exhibited lesser increase in strength. The overall
strength increase in the eight patients was not statistically
significant, given the small sample available. However, similar
strenuous stretching of spastic ankles in a larger population of 27
stroke patients resulted in a significant increase in the strength of
spastic triceps muscle, which could be related to the loosening up
of the accumulated connective tissue and elongated muscle fibers
and sarcomeres (40) and a shift in the force–length curves in the
spastic muscles to a more optimal operating point (34).

Tendon Reflex Parameters
Tendon reflex was evaluated immediately before and after
stretching using an instrumented tendon hammer and system
identification approach (34, 41). The biceps tendon was tapped
similarly before and after stretching. Although the stretching
did not change any spinal/brain neurological abnormality,
reflex-mediated torque was reduced after stretching (Figure 4).
However, on comparing the impulse response parameters from
the instrumented reflex tendon test performed before and after
stretching, we found no significant differences in the reflex-
mediated tendon responses. Table 2 gives the impulse response
parameters before and after stretching.

Non-reflex Component
The spastic stroke survivors exhibited a trend toward decrement
after stretching. However, we did not find statistically significant
differences in the decrease of passive stiffness. Table 2 gives the
changes in passive stiffness of elbow flexors before and after
stretching (K at 5◦ elbow extension).
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TABLE 2 | Results from the tendon reflex and passive stiffness analyses.

Component Parameters Before stretching After stretching p-value

Tendon reflex GS (m·ms) 2.06 ± 1.19 1.8 ± 1.02 0.889

Rc (m/s) 0.40 ± 0.16 0.70 ± 0.38 0.90

Rhr (m/s) 0.35 ± 0.21 0.52 ± 0.32 0.40

tc (ms) 85.25 ± 20.99 98.75 ± 60.85 0.83

thrt (ms) 120.75 ± 56.35 116.50 ± 84.32 0.29

td (ms) 24.25 ± 17.78 25.00 ± 17.63 0.94

Mp (Nm) 1.96 ± 1.02 1.88 ± 0.87 0.67

EMG (mV) 0.28 ± 0.20 0.33 ± 0.22 0.57

Non-reflex K(Nm/deg) 0.22 ± 0.16 0.16 ± 0.06 0.26

GS, reflex gain; Rc, contraction rate; Rhr , half-relaxation rate; tc, contraction time; thrt,

half-relaxation time; td , reflex loop delay; Mp, peak reflex torque; K, stiffness at 5
◦ elbow

extension angle; m·ms, meter per millisecond; m/s, meter per second; ms, millisecond;
Nm, Newton meters; deg, degrees. Values are mean ± SD.

DISCUSSION

The current study focused on the immediate effect of strenuous
dynamic stretching performed by the intelligent stretching device
on eight chronic stroke survivors with spastic elbow joint. The
results indicate that this single session of strenuous dynamic
stretching significantly improved the passive elbow ROM with
a positive trend toward improvements in the elbow AROM,
strength, as well as relieving reflex and non-reflex components
of spasticity.

Studies that evaluated the effect of stretching on spastic
ankle joints reported positive effects of stretching of ankle
plantar flexors in reducing the ankle joint resistance and
improving the ankle ROM (33, 34, 36, 40, 42). The results
of our study corroborate with the previous studies, and the
stretching provided to the elbow flexors could have contributed
toward reducing the elbow flexor musculotendinous stiffness,
thereby improving both elbow flexion and extension PROMs.
Interestingly, few studies have noted that the increase in ROM
seen post-stretching could also be a result of increased tolerance
to the stretching (43). When reporting the effectiveness of
stretching on ROM, most studies have shown improvements
usually in PROM (44). The PROM changes seen in our study are
consistent with the previous studies.

The improvement in elbow AROM, though not significant,
showed good increment post a single session of strenuous
dynamic stretching. The improvements could be attributed to
reduction in the musculotendinous stiffness. The reduction in
passive stiffness with stretching treatment could have loosened
the elbow joint, which potentially could have enabled the
stroke survivors to move the joint in an increased range
(29). Lamontagne et al. (45) found that repeated passive
movements had an effect of causing thixotropic changes in
the stretched muscles. The dynamic stretching provided in
our study could have caused a similar thixotropic change
in the elbow musculature leading to improvement in the
ROM. Consequently, the dynamic stretching could have
elicited activation of the Golgi tendon organ and muscle

proprioceptors, thereby causing an improvement in the elbow
AROM (46).

Studies by Chung et al., Rydahl et al., and Galvão et al.
(9, 47, 48) observed that stroke survivors exhibited higher passive
stiffness, which was potentially attributed to connective tissue
changes and collagen accumulation leading to fibrosis within the
hypertonic muscle. Our stiffness analysis also exhibited a higher
passive stiffness in the elbow flexors among all our participants.
We were able to quantify the passive stiffness isolated from
the reflex properties by moving the elbow joint slowly under
precise control. By moving the elbow in this manner, we aimed
to minimize the phasic reflex activation. With a single session
of strenuous dynamic stretching, we noted a trend toward
decrement after the session. The dynamic stretching could have
contributed toward decreasing the tightened musculotendinous
unit, thereby reducing the muscle stiffness as well as relieving
the tension around the surrounding connective tissue and
fascia (44).

Although it did not reach a statistical significance, passive
stiffness of the spastic elbow flexor showed a trend toward
decrement after stretching, which could have resulted from
stress relaxation of the spastic muscle under the load applied
by the intelligent stretching device. Before stretching, the
experimenter set the joint ROM position and torque limits.
The stretching could go beyond the position limit by about
5◦ to allow stretching-induced improvement. The intelligent
stretching device stretched the elbow joint until a joint position
or torque limit was reached, and maintained the joint position
at the limit to induce “stress relaxation,” if the position limit
was reached, or “muscle yield” if the torque limit was reached.
At the end range of elbow extension, robotic control of the
elbow position—usually into further extension—was done at
2,000 times/s based on the joint torque and position. In this
experiment, the limits were set to reach a torque limit for a
forceful stretching. As a result, the stretching intensity (torque)
was kept constant as the joint was pushed into further extension.
This was actually “yield”, an increase in joint ROM and muscle
length under constant stretching tension.With this characteristic,
the intelligent stretching device introduces a genuine way to
measure “muscle yield” of human joint in vivo condition and
provides therapeutic stretching in the most similar way as
clinicians do.

Spastic muscles have the tendency to affect the sarcomere
length, leading to either their lengthening or shortening as
compared to the optimum sarcomere length (49–52). The
stretching may have the potential to either increase the length
of the spastic muscle or its tendon so that the abnormally
lengthened or shortened sarcomeres could possibly regain some
of their optimal length and help generate higher force capacity
(21, 50, 52–54). The trend toward improvement in both the
elbow flexor and extensor muscle strength that we noted
could be attributed to this potential change in the sarcomere
length caused by stretching. A second potential mechanism
for the trend of strength improvements can be attributed to
changes in the spinal excitability. It has been argued that one
of the mechanisms of spasticity is the increased activity of
the Ia afferents. However, several studies suggest II afferent
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fibers present in the muscle spindle also contribute towards
α-motorneurons hyper activation in spastic muscles. The II
afferent fibers signals are length-dependent and therefore the
stretching could have altered its activation at the resting state
and contributed to the increase in isometric strength from
resting to activation after of stretching the spastic muscles
(7, 55). However, a single session of stretching would not
have produced a large and sufficient change in the overall
sarcomere length, thereby not showing a significant change in the
strength production.

Few studies have quantified the reflex and non-reflex
changes in spasticity after stretching. Though our study did
not produce statistically significant changes in the impulse
response parameters, we did however notice some trend toward
change. A recent study comparing the reflex-mediated responses
among spastic stroke survivors and healthy individuals showed
increased GS, Rc, Rhr, longer tc, and thrt in stroke survivors (40).
The possible mechanisms contributing to these reflex-mediated
increments could be the enhanced excitatory synaptic activities
of Ia and α-motoneurons along with increased muscle spindle
discharge rates (6). Another possible mechanism is the reduced
presynaptic inhibition by the descending tracts or inhibition
of interneuron inhibitory activity (6, 8). The decrement in GS,

tc, and thrt after stretching, which is observed in our study,
indicates that this single session of intelligent stretching had
some effect in decreasing the Ia efferent and α-motoneurons
hyperexcitability. The shorter latency period of the td before
stretching could be due to the heightened state of the spastic
muscles leading to quicker development of muscle force (35).
The increase in this td latency after a stretching session may
further indicate reduction in the hyperexcitability of the muscle.
The consequence of these reflex changes in the spastic muscle
may present as a decrease in the tonic reflex excitability or
an increase in threshold of tonic stretch reflex, subsequently
attributing to the muscle-tendon unit length changes with
stretching and thus allowing an increase in the elbow ROM
(56, 57).

Contrary to our expectation of a decrease in Rc and Rhr,
we found that Rc and Rhr exhibited minute increments in
their values post-stretching. This shows that though a single
session of stretching could possibly reduce the hyperexcitability,
it would require multiple sessions to cause a significant reflex-
mediated change.

Several limitations should be acknowledged. First, only eight
chronic stroke survivors were included in the pilot study. Studies
with a large sample size with high statistical power are needed
in the future. Second, in the current study, there is a lack of
comparison group which could have provided the reference to
interpret the effect of stretching in reducing the hyperactive
reflex-mediated responses. Last, we did not examine the duration
of retention of stretching effects. Multiple measures with long
duration could be utilized for future studies.

In conclusion, a single session of strenuous dynamic
stretching significantly improved the passive elbow ROM with
a positive trend toward improvements in the elbow AROM,
strength, as well as relieving reflex and non-reflex components
of spasticity.
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