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Background and Purpose: Elevated blood pressure (BP) in acute ischemic stroke is

common. A raised BP is related to mortality and disability, yet excessive BP lowering can

be detrimental. The optimal BPmanagement in acute ischemic stroke remains insufficient

and relies on expert consensus statements. Permissive hypertension is recommended

during the first 24-h after stroke onset, yet there is ongoing uncertainty regarding themost

appropriate blood BP management in the acute phase of ischemic stroke. This study

aims to develop a decision support tool for improving the management of extremely high

BP during the first 24 h after acute ischemic stroke by using machine learning (ML) tools.

Methods: This diagnostic accuracy study used retrospective data from MIMIC-III and

eICU databases. Decision trees were constructed by a hierarchical binary recursive

partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value

when antihypertensive treatment was given in patients with an extremely high BP

(above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to

the American Heart Association/American Stroke Association (AHA/ASA), the European

Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines.

Regression trees were used to predict the time-weighted average BP. Implementation of

synthetic minority oversampling technique was used to balance the dataset according

to different antihypertensive treatments. The model performance of the decision tree

was compared to the performance of neural networks, random forest, and logistic

regression models.

Results: In total, 7,265 acute ischemic stroke patients were identified. Diastolic BP

(DBP) is the main variable for predicting BP reduction in the first 24 h after a stroke.

For patients receiving thrombolysis with DBP<120 mmHg, Labetalol and Amlodipine are

effective treatments. Above DBP of 120 mmHg, Amlodipine, Lisinopril, and Nicardipine

are the most effective treatments. However, successful treatment depends on avoiding

hyponatremia and on kidney functions.

Conclusion: This is the first study to address BP management in the acute phase

of ischemic stroke using ML techniques. The results indicate that the treatment choice

should be adjusted to different clinical and BP parameters, thus, providing a better

decision-making approach.
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INTRODUCTION

Machine learning (ML) applications in healthcare have
significant potential for improving clinical decision-making
diagnoses, treatment effectiveness, and healthcare management,
including lowering the costs for both healthcare providers
and patients (1). ML applications for Knowledge Discovery in
Databases (KDD) have been used for more than two decades and
are useful for discovering information and extracting knowledge
from data and reflect a multi-step process that involves thorough
data preparation, pattern searching, and knowledge evaluation
(2). The use of ML to extract non-trivial and previously
unknown useful information from data may be most beneficial
for physicians in areas where the level of evidence or class
of recommendation is low and will increase the likelihood of
the physicians adopting them (3). The use of ML in clinical
research to predict a particular clinical outcome is useful because
it has the potential to outperform the best clinical knowledge
obtained by current traditional medical research. In this study,
we applied the KDD process by using ML techniques to conduct
a robust interrogation to identify predictors of blood pressure
(BP) management after acute ischemic stroke, thus, having the
potential to aid clinicians in improving treatment regimens.

An elevation in BP is common in the acute phase of a stroke
and occurs early at the time of arrival to the emergency room.
In two-thirds of the patients, elevated BP was transient and
resolved within 2 weeks from symptom onset (4). Observational
studies have shown that elevated BP during ischemic stroke
onset is prognostically associated with an increased risk of early
adverse events and mortality. However, acute and aggressive BP
lowering within 24 h of stroke onset could also jeopardize the
outcome (5). Both elevated and low BP are independent factors
that predict poor outcomes among patients with acute ischemic
stroke and present a U-shaped relationship between BP and death
or disability (6, 7).

High BP in acute stroke can decrease blood perfusion
to areas of ischemic brain tissue, which, in turn, can cause
neurological damage (8). An extremely high BP can result in
intracerebral bleeding and hypertensive emergencies, including
renal failure, ischemic heart disease, and pulmonary edema (9).
In patients who received thrombolytic treatment, studies concur
that there is a strong association between high BP and worse
clinical outcomes, including death, disability, and hemorrhagic
transformation (7, 10). The AHA/ASA and ESC/ESH guidelines
recommend lowering the BP below 180/105 mmHg in patients
receiving thrombolysis in the first 24 h after acute stroke, a
strong class of recommendation (class I). In patients not receiving
thrombolysis, a clinical judgment is defined as whether to treat
hypertension when it exceeds 220/120 mmHg, a weak class of
recommendation (class II-b) (11, 12). There is no firm evidence
regarding BP management in patients with acute ischemic stroke
with a BP lower than 220/120 mmHg, who did not receive
thrombolysis (12). The specific interval for BP reduction is not
well-established, and the current approach of lowering BP by
15% is considered reasonable by a consensus expert opinion
(11, 12). The current recommended approach by the AHA/ASA
is to treat with labetalol, nicardipine, or clevidipine when systolic

blood pressure (SBP) is over 180–230 mmHg or diastolic BP
(DBP) is over 105–120 mmHg. If DBP exceeds 140 mmHg or
is not controlled by these treatments, sodium nitroprusside is
recommended. However, these recommendations are not based
on a strong class of recommendations (11, 13).

There are therapeutic strategies for elevated BP that are
not included in the current acute stroke guidelines. In most
hypertensive emergencies, intravenous (IV) drug administration
is considered, although oral therapy with ACEI/ARBs or
beta-blockers is effective in the acute setting of hypertensive
emergency because of the activation of the renin system.
Besides the medications mentioned above for BP lowering in
acute ischemic stroke, other treatment options are utilized in
various hypertensive emergencies including metoprolol, esmolol,
nitroglycerine, clonidine, and enalaprilat. The duration of action
of these treatments ranges from several minutes to several hours
and enables dose adjustment according to clinical judgment (12).
The use of these medications in the treatment of acute ischemic
stroke is required.

Few randomized clinical trials have examined the impact of BP
reduction immediately after acute stroke with antihypertensive
agents (14, 15). The effects of continuous antihypertensive
treatment, in previously known patients who were hypertensive
after acute stroke in the Continue Or Stop post-Stroke
Antihypertensives Collaborative Study (COSSACS), showed a
statistically significant reduction of 13/8 mmHg in BP at 2
weeks in the continuing group compared to the stop group, and
no differences emerged between the groups in rates of serious
adverse events, 6-month mortality, or major cardiovascular
events (14). However, the aforementioned study had inherent
limitations due to the complex clinical situation. It was not
placebo-controlled, and there was a multiplicity of pre-existing
antihypertensive treatments (14). The China Antihypertensive
Trial in Acute Ischemic Stroke (CATIS), a randomized clinical
trial, compared patients who received antihypertensive treatment
to those who discontinued all antihypertensive medications
during hospitalization. The treatment aimed to lower SBP by 10–
25% within the first 24 h. The primary outcome of death within
14 days after randomization and major disability at 14 days or
hospital discharge did not differ between the groups. However,
early antihypertensive therapy was associated with a lower rate
of 3-month recurrent stroke among patients with a history of
hypertension (15).

Several randomized clinical trials have examined the use
of specific antihypertensive agents (16, 17). The Controlling
Hypertension and Hypotension Immediately Post Stroke
(CHHIPS) randomized controlled trial investigated the effect
of BP reduction with labetalol and lisinopril vs. placebo in
patients with SBP > 160 mmHg. The SBP reduction within
the first 24 h was higher in both treatment groups (16). The
Intravenous Nimodipine West European Stroke Trial (INWEST)
showed a significant decrease in SBP and DBP with nimodipine
treatment vs. placebo in the first 48 h (18). Furthermore, several
randomized trials have examined the effects of angiotensin
receptor blockers (ARBs) on BP reduction in the acute phase
of stroke and observed a modest reduction in BP of up to 10/6
mmHg in the treatment group vs. the placebo group (17, 19, 20).
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In many clinical trials evaluating BP-lowering, markedly
elevated BP ranges (usually > 220/120 mmHg) were excluded
(14–16). However, the guidelines concern the treatment of severe
hypertension. In addition, no solid data are available to guide the
selection of antihypertensive treatment. Accordingly, the main
objective of this research was to develop a decision support tool
for improving the management of extremely high BP during the
first 24 h after acute ischemic stroke by using ML techniques. To
date, no published study has used ML techniques to predict BP
management in the acute phase of ischemic stroke.

METHODS

The source codes for the analyses can be found at: https://github.
com/OritMazza/BP_managment_AIS.

The MIMIC Code Repository is open source and available
online. It was used with minor changes for the variable extraction
tasks and can be found at the following link: https://github.com/
MIT-LCP/mimic-code.

MIMIC-III and eICU Collaborative
Databases
We used two large, public, and freely accessible intensive
care unit (ICU) databases of de-identified patients: the
eICU Collaborative Research Database (eICU-CRD) and the
Medical Information Mart for Intensive Care III (MIMIC-III)
database in a diagnostic accuracy study based on retrospective
multicenter data. Adult patients admitted to critical care units
at the Beth Israel Deaconess Medical Center between 2001
and 2012 with acute ischemic strokes were selected from the
MIMIC-III v1.4 Critical Care Database (21). Similar cohorts of
adult patients who were admitted to critical care units across
208 hospitals throughout the United States during 2014–2015
were recruited from the eICU Collaborative Research Database
v2.0 (22). The two datasets are independent because the hospital
source of MIMIC-III is not included in the eICU program (22).
The databases were accessed through the Google BigQuery
platform, a relational database management system, and the
data were extracted from the two reference databases using SQL
queries (23).

Cohort Selection
The cohort included adult patients aged 18–88. Older patients
were excluded because of the de-identification process of the
MIMIC-III and eICU databases, which obscured the identities of
patients above 89 years old to comply with the Health Insurance
Portability and Accountability Act (HIPAA) regulations (21, 22).

The ICD-9 codes were identified for acute ischemic stroke
as follows: 433 (occlusion and stenosis of precerebral arteries),
434 (occlusion of cerebral arteries), and 436 (acute but ill-
defined cerebrovascular disease). The ICD-9 codes were selected
according to their highly predictive values for actual cases of
acute ischemic stroke, as previously described (24). The 433.x0
ICD-9 code was excluded because of the very low PPV in
several studies, and 433.x1 was included to select more cases of
acute ischemic stroke with little impact on PPV (25). Patients
with ischemic stroke who received IV-tPA were identified

from the MIMIC-III database according to ICD-9 procedure
code 99.1, and those with endovascular treatment (EVT) were
identified by ICD-9 code 39.74 (26). Because of the differences
between the databases regarding the thrombolytic treatment
identification process, patients with acute ischemic stroke who
received IV-tPA were identified from the eICU database by using
the treatment table with the treatmentString variable and the
keyword “thrombolytics.” Table I in the Supplemental Material

provides a list of the selected ICD-9 codes and the number of
diagnoses according to different subgroups of acute ischemic
stroke codes.

A time window of 24 h from hospital admission was selected
for patients who did not receive EVT/tPA. According to
guidelines, tPA is administered at the hospital up to 3–4.5 h
from ischemic stroke symptom onset and, therefore, is usually
administered at a time window of 24 h from admission to
the hospital (11). A time window of 24 h after receiving tPA
treatment was selected for patients who received thrombolytic
treatment. Therefore, the cohort also included patients who
underwent acute ischemic stroke at the hospital and received
tPA treatment.

Figure 1A shows the MIMIC-III cohort flowchart. In the
MIMIC-III database, exclusion by ICD-9 code sequence as the
first or second diagnosis enables accurate selection of patients
with acute ischemic stroke during the querying process and
prevents the selection of admissions of the same patients
with other primary clinical conditions. Left joining with the
icustay table (icustay_id) for each patient resulted in 1,142
ICU admissions (icustay_id) and 1,061 hospital admissions
(hadm_id). The extraction of the selected time window of 24 h
from hospital admission (admittime) to the ICU admission time
(intime) resulted in a unique ICU stay for each patient in the
selected cohort.

Figure 1B shows the eICU cohort flowchart. Patients selected
according to their ICD-9 codes for acute ischemic stroke were
documented as active problems during the ICU stay using the
diagnosis table.

Knowledge Discovery in Databases and
the ML Approach
The KDD process is divided into three major steps, which we
followed in our study and are illustrated in Figure 2. The first
step is the data pre-processing step, which includes data cleaning,
data integration, data selection, and data transformation. Data
cleaning involves identifying and handling corrupt, incorrect,
inaccurate, and irrelevant data, as well as the missing values.
Data integration entails combining data from different sources
to generate a unified view and ensuring that the same variables
are within the same scale, and each variable has a single
meaning. In addition, data are integrated from several file
formats, for example, video or audio with text or tables. Data
selection entails choosing the relevant data using different
methods, such as feature selection or principal component
analysis. Data transformation aims to normalize or standardize
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FIGURE 1 | Cohort selection flowchart for acute ischemic stroke patients from two databases. Each step includes a distinct number of patients, admissions, and ICU

stays. The query process consists of three steps: selection according to age inclusion criteria, extraction according to ICD9 codes, and extraction according to the

time window of 24 h. (A) Flowchart for cohort selection from MIMIC-III database. (B) Flowchart for cohort selection from eICU database.

the independent variables to avoid bias resulting from using
variables with a different range of values.

The second step after preparing the data is the use of ML
techniques. According to the research question and the data
available, the ML approach is selected (either supervised or
unsupervised learning). When the predicted outcome is well-
defined and can be labeled, supervised learning is preferred.
The selection of specific algorithms is guided by the dependent
variable of the prediction task. When the dependent variable
is of continuous type, a regression algorithm is typically
selected. When the dependent variable is of categorical type,
a classification algorithm is typically selected. Some algorithm
types, for example, random forest and artificial neural networks,
fit both classification, and regression problems. An unsupervised

learning approach is considered when the prediction task is
unknown. In such cases, pattern identification and recognition
techniques can be applied.

The processed data were divided into training and validation
datasets. The training dataset is used to produce a trained and
fitted model that generalizes well to unknown data. When a large
amount of data is available, a sample of the original dataset—the
validation dataset—is held back from the training model and is
used to evaluate the model performance to obtain an unbiased
result of the model’s effectiveness. Typically, in this step, different
algorithms are compared to identify the best model that fits
the prediction task. The final step entails the evaluation of the
patterns and their presentation. This step is essential to ensure
that useful knowledge is derived from the data.
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FIGURE 2 | The major steps of the KDD process: data pre-processing, data analysis, and patterns evaluation. The pre-processing step includes data cleaning, data

integration, data selection, and data transformation. After preparing the data, the ML approach is selected (either supervised or unsupervised learning). The processed

data is divided into training and validation datasets. Different algorithms are compared to find the best model that fits the prediction task.

Primary Outcome
Figure 3 shows the flowchart of how the primary outcome was
determined and which criteria were selected for the assessment of
BP management. A BP management was determined successful
when BP treatment was administered according to the AHA/ASA
and ESC/ESH guidelines and resulted in a BP reduction of 10–
30% of the maximum value that was measured during the time
window of 24 h. Our scheme model, as represented in Figure 3,
was built in accordance with the guideline recommendations
that antihypertensive treatment should be restricted to high
BP and, thus, created decision rules according to different BP
levels. The threshold for starting antihypertensive treatment
after acute ischemic stroke was set at > 180/105 mmHg for
patients who received EVT/tPA and > 220/120 mmHg for non-
tPA patients (11). There is no evidence regarding the exact
interval for BP reduction when it is markedly elevated and
exceeds the recommended threshold. However, several studies
have suggested that this interval is safe or associated with good
clinical outcomes in patients with acute ischemic stroke (15, 27).

Further evaluation of the time-weighted average (TWA) of
SBP and DBP was calculated and used as a continuous outcome
variable in the prediction of algorithms. The TWA provides a less
biased and more accurate estimation of BP than a simple average
(28) and can be used to evaluate a BP after admission for acute
stroke (10, 29).

Dataset Pre-processing
The MIMIC-III (v1.4) relational database contains
26 different tables relating to unique patients, unique
admissions to hospitals, and unique admissions to ICUs
(21). The eICU Collaborative Database (v2.0) contains
31 tables concerning each ICU stay (22). We extracted

91 variables from seven different tables in the MIMIC-
III database (diagnoses_icd, patients, admissions, icustays,
chartevents, labevents, and prescriptions) and eight
different tables in the eICU database (diagnosis, treatment,
vitalaperiodic, apacheapsvar, vitalperiodic, medication, lab,
and patient).

We extracted 91 variables as possible attributes for prediction
algorithms. The variables were divided into four groups:
demographic, hemodynamic and vital signs, laboratory results,
and comorbidities. We included 91 out of 103 predictors used
by Wang et al.’s pipeline for the MIMIC-III database (30).
Because of the large number of missing values, unlike Wang
et al. variables that indicated mechanical ventilation were
excluded, and instead, we used the covariate of persistence
or absence of mechanical ventilation, whether one or more
of the following variables were present in the MIMIC-III
database: ventilator type, ventilator mode, respiratory pressure,
tidal volume, minute volume, inspiratory pressure, plateau
pressure, positive end-respiratory pressure (PEEP), airway
pressure release ventilation (APRV), high-pressure relief,
pressure-controlled ventilation (PCV) levels, time-cycled
pressure-controlled ventilation (TCPCV), and pressure support
ventilation (PSV) levels. In contrast to the MIMIC-III, the eICU
database has the vent variable in table apacheApsVar, which
contains information on whether the patient was ventilated at
the time of the worst respiratory rate. Similar to the mechanical
ventilation variable, we used the absence or persistence of
central venous pressure (CVP), cardiac output (CO), and
cardiac index (CI) as covariates in both databases because of
their high prevalence of missing values, and the importance
of including them as indicators of the need for more intensive
monitoring care.
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FIGURE 3 | Flowchart for primary outcome criteria to assess BP management in the 24 h after acute ischemic stroke. Positive outcomes are considered as “Success”

if initiation of therapy was given according to guidelines thresholds and if the average BP was decreased at least 10% and up to 30% off the maximum value during

the selected time window, otherwise determined as “Failure.” Different thresholds for starting antihypertensive treatment were determined according to whether

patients received EVT or tPA, or not. EVT, Endovascular treatment; tPA, tissue plasminogen activator.

Comorbidities in the MIMIC-III and eICU databases were
selected according to Quan et al. and enhanced the ICD9-
CM coding algorithm, which is also provided in the MIMIC-
III repository (30, 31). We used the U.S. National Library
of Medicine RxMix application programming interface (API)
(https://mor.nlm.nih.gov/RxMix/) to identify the members
of each antihypertensive drug class. Then, we extracted

prescriptions for antihypertensive medications in the first
24 h in the ICU or from the time of onset of the tPA
treatment. The output for each drug class was stored as a
binary result, namely, whether the medication from the specific
drug class was administered (1) or not (0). We included 106
antihypertensive medications, which were divided into eight
different drug classes. Table 1 shows the drugs that were used
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TABLE 1 | Drugs and classes of antihypertensive medications.

Class Drugs Routh of

administration

Positive

observations

(n = 8,025)

%

CCBs Amlodipine (38.1%)

Diltiazem (21.1%)

Nicardipine (35%)

Nifedipine (0.4%)

Nimodipine (0.9%)

Verapamil (0.2%)

Combinations (4.3%)

Enteral

Enteral

IV±PRN

IV

Enteral

Enteral

Enteral

683 5.2

Beta-blockers Atenolol (0.8%)

Carvedilol (4.8%)

Esmolol (0.04%)

Labetalol (45.62%)

Metoprolol (33.6%)

Nadolol (0.04%)

Combinations (15.1%)

Enteral

Enteral

IV

IV±PRN

Enteral/IV±PRN

Enteral

2,374 29.2

ACE-inhibitors Captopril (1.7%)

Enalapril (1.2%)

Lisinopril (96.8%)

Quinapril (0.3%)

Enteral

Enteral/IV

Enteral

Enteral

408 5

ARBs Losartan (90%)

Valsartan (10%)

Enteral

Enteral

40 0.5

Diuretics Bumetanide (0.9%)

Furosemide (84.8%)

Hydrochlorothiazide

(8.2%)

Spironolactone (4.2%)

Combinations (4.1%)

Enteral/IV

Enteral/IV

Enteral

Enteral

655 8

Direct

vasodilators

Hydralazine (100%) Enteral/IV±PRN 1,163 14.4

Sympatholytic

agent

Clonidine (100%) Enteral/TD 79 1

Other Nitroprusside (100%) IV±PRN 34 0.4

CCBs, Calcium channels blockers; ACE, Angiotensin-converting enzyme; ARBs,

Angiotensin receptor blockers. Enteral includes the following routes of administrations:

PO (Per os), NG (nasogastric), and PZ (Per Zonda), PEG (Percutaneous endoscopic

gastrostomy). IV: Intravenous. PRN (Pro-re-nata) refers to the administration of

prescribed medication as needed or as the situation arises according to physician

instructions. TD, Transdermal.

in the selected time window and the prevalence of use in the
selected cohort.

The data cleaning process included excluding variables, which
were marked as errors by physicians using the error variable
of the chartevents table. To ensure that a single maximum
value is not subjected to outliers or erroneous measurements,
we added a variable that counts the number of times that
the BP values elevated beyond the thresholds and excluded
the BP values that were only elevated once in the selected
time window. Different itemids for laboratory results or vital
signs were grouped according to their clinical taxonomy to
reduce missingness and duplicate measures, similar to other
studies (30). All variable units with more than one itemid
were examined. Height, weight, and temperature with different
measuring units were standardized to meters, kilograms, and
degrees Celsius, respectively. We used the minimum, maximum,
and average of the numerical values of the time series variables.
A similar approach was used by Purushotham et al. and Wang

et al. to aggregate time series variables using average values
or summations at their selected time windows (30, 32). The
same variables were selected from the eICU database with the
same measuring units as those in the MIMIC-III database.
Additionally, the eICU time series variables were treated the same
as in the MIMIC-III database.

Variables with more than 20% of missing values were excluded
from the dataset to avoid bias in the standard deviation.We could
not include two important risk factors as predictors, namely,
lipidogram and smoking status, because of insufficient data.
Missing values were replaced with average values.

Numerical variables were normalized in the range of
0–1 (0≤z(i)≤1) for better performance according to the
following formula:

Z(i) =
x (i) −min(x)

(x) −min(x)

where Z(i) is the normalized variable, and x(i) is the original
variable at index i=1, 2, . . . , 91.

We examined the interactions between the independent
variables and excluded the highly correlated predictors to avoid
multicollinearity problems. Then, to successfully apply our data
mining techniques to our dataset, we had to decrease the number
of input variables to simplify the results and provide a better
understanding and visualization (33). We selected a subset of
our original variables using the feature selection method, which
does not transform the variables and selects them from the
existing dataset (34). The results were produced using the freely
available software R, version 3.6.3 (35). Bidirectional stepwise
elimination was used with the step () function from the MASS
package in R (36). The training dataset included two-thirds
of the sample, and one-third was used to test the dataset. A
description of the variables can be found in Table 2 in the
Supplementary Appendix.

Models
Decision tree models are useful for decision-making and are
prevalent in healthcare research and, thus, were selected as our
primary approach for evaluating the data (37). We compared
the performance of this model with logistic regression, random
forest, and neural network algorithms. The performance of
the different models on the classification task was measured
by the confusionMatrix () function using the R package caret
(38). We used the mean accuracy, kappa, and F-score values
of the validated dataset to assess the overall performance of
the classification models. To predict the regression task, the
root means square error (RMSE) and the mean absolute error
(MAE) were used to evaluate the performance of the regression
tree model.

Balanced Dataset According to Different
Antihypertensive Treatments
For comparison purposes, we used the technique of treating the
imbalanced classification problems to lower biased predictions
that resulted from an imbalanced dataset that includes a
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different number of medications that were used. For example,
in the original datasets, 239 patients received nicardipine, while
1,082 patients received labetalol in the first 24 h, as presented
in Table 1. The differences between the absolute number of
medications that were usedmight result from specific suggestions
in guidelines for the acute lowering of BP in the treatment time
window or from the inherent heterogeneity of a multicenter
study, which may stem from differences in practice, including
differences in maximum doses and titration protocols between
different centers. This may partly explain the differences in
the probability of a successful BP lowering between different
medications. We were unable to include the doses that were
used because the doses were recorded differently at different
centers and their aggregation would have resulted in inaccurate
doses. To reduce this bias, we created a new, balanced synthetic
dataset based on the different medications that were used. In
each iteration, new synthetic data were created for a specific
treatment. To balance the data, the medications that were used
as independent variables in the original dataset were used as
dependent variables to create the balanced synthetic data. After
creating balanced synthetic observations for each treatment,
all the new synthetic observations were aggregated to a final
balanced dataset. In the final balanced dataset, we included
the same absolute number of eight medications (the most
prevalent in use in this dataset and have at least 30 records
in the dataset), specifically labetalol, metoprolol, carvedilol,
hydralazine, lisinopril, furosemide, amlodipine, and nicardipine.
The final balanced dataset included 300 observations for each
treatment, resulting in a total of 2,400 observations for eight
different treatments that were detected. In the balanced dataset,
we only included the patients who were treated with a single
antihypertensive treatment and excluded all the observations of
patients who were treated with more than one drug. Apart from
the balanced observations of patients who were treated with one
antihypertensive treatment, we included patients who were not
treated with antihypertensive drugs in the first 24-h window. The
balanced dataset was prepossessed in a manner similar to that of
the original dataset. The original dataset was divided into training
and testing datasets at a 2:1 ratio. The test set was left aside and
saved to examine the performance of the balanced dataset on
the original test set that reflects real-world data. We used the
Random Over Sampling Example (ROSE) package to generate
a new synthetic, balanced dataset for each treatment based on
sampling methods and the smoothed bootstrap approach. The
new synthetic data are generated from the conditional kernel
density. We used the ovun.sample () function, which enables
simultaneous oversampling and undersampling (39, 40).

RESULTS

The final cohort included 7,265 patients with acute ischemic
stroke, 7,470 admissions to hospitals, and 8,020 ICU stays.
Among all ICU stays, 1,579 (20%) were treated with tPA or EVT.
Of the ICU-stay cases, 694 (10%) met the criteria for “Success”
of the primary outcome. Table 2 shows the characteristics of the
study population.

TABLE 2 | Characteristics of the study population.

Patient characteristic Prevalence, (%)

or Mean ± SD

Sex

Women 46.8

Age, y 66.5 ± 13.6

18–29 (%) 1.5

30–49 (%) 9.8

50–69 (%) 42.3

70–89 (%) 46.6

Ethnicity

Caucasian (%) 74.4

African 12

American (%)

Hispanic (%) 4.5

Asian (%) 2

Other (%) 7.1

Selected comorbidities (%)

Hypertension (%) 27.4

Cardiac arrhythmias (%) 17.2

Diabetes uncomplicated (%) 7.4

Diabetes complicated (%) 0.5

Renal failure (%) 7.8

Congestive heart failure (%) 6.7

Chronic pulmonary disease (%) 7.2

Hypothyroidism (%) 3

Alcohol abuse (%) 1.7

Received endovascular or thrombolytic treatment (%) 19.7

Antihypertensive drug class

Beta-blockers (%) 29.2

Direct vasodilators (%) 14.4

CCBs (%) 8.4

Diuretics (%) 8

ACE-I (%) 5

Sympatholtics agent (%) 1

ARBs (%) 0.5

Nitroprusside (%) 0.4

Number of antihypertensives drug classes

0 (%) 60.9

1 (%) 19.4

2 (%) 13.7

3 (%) 4.6

4 (%) 1.3

5 (%) 0.2

Time-weighted average SBP (mmHg) 133.6 ± 20.1

Time-weighted average DBP (mmHg) 70.3 ± 18.2

SD, Standard deviation; CCBs, Calcium channels blockers; ACE-I, Angiotensin-converting

enzyme inhibitor; ARBs, Angiotensin receptor blockers.

Decision Tree Model
The tree is constructed by a hierarchical binary recursive
partitioning algorithm, which enables the visual representation of
statistically significant results as a tree. Unlike popular techniques
for building trees, CART and C4.5, the conditional interference

Frontiers in Neurology | www.frontiersin.org 8 February 2022 | Volume 12 | Article 743728

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mazza et al. Blood Pressure in Acute Stroke

tree (Ctree) method examines whether the covariates and the
response variable are statistically significant (p < 0.05) and have
a better handle on the overfitting problem and selection bias
toward covariates with many possible splits (41). The Ctree was
implemented using the ctree () function with the R package
party, which is useful for predicting both the categorical outcome
(classification trees) and continuous outcomes (regression trees).
The minimum criterion for each split was selected as p < 0.05,
and the input variable with the smallest p-value was used for the
next division (41).

Figures 4A, 5A show the two main branches of the
conditional interference tree. A variation of this tree is
represented in Figures 4B, 5B as subtrees. In Figures 4B, 5B, the
drug classes were replaced with the specificmedications that were
used in the first 24 h, as shown inTable 1. Additional information
regarding the specific medications that reduce BP to the selected
interval provides clinicians with more information regarding
which medication is most effective for BP reduction from every
drug class. For each branch, three subtrees were constructed
and are represented by asterisks (∗, ∗∗, and ∗∗∗). The different
drug classes were replaced by the drug that induced the greatest
reduction, as shown in Figures 4B, 5B.

In Figures 4A, 5A, at the top of the tree, the strongest
associated variable (p < 0.001) is the maximum DBP. The
splitting criteria for the first node are based on whether the
maximum DBP that was observed in the 24-h time window was
above 120 mmHg (left branch) or equal to or below 120 mmHg
(right branch). Figure 4A shows the right branch of the tree. The
second split is based on whether the patient received tPA or EVT,
as follows: TagtPA = 1 for “received” and TagtPA = 0 for “not
received” (node 2). On the right side for patients who received
EVT or tPA, when the DBP was between 105 and 120 mmHg
(node 15), and the SBP was below 188 mmHg (node 19), the
probability of BP reduction with beta-blockers was 0.9 (terminal
node 20, p = 0.048). When the DBP was below 105 mmHg
(node 15), patients who received beta-blockers (BetaB= 1) had a
probability of 0.7 to manage the treatment successfully when the
SBP was above 180 mmHg (terminal node 18, p < 0.001). Two
effective treatments from the beta-blocker class were identified.
Metoprolol with a 0.9 probability of reducing BP to the selected
interval when the SBP was above 181 mmHg (∗∗, node 6), and the
DBPwas between 106 and 120mmHg. Labetalol had a probability
of 1 when the DBP was between 97 and 120 mmHg.

Patients who received EVT/tPA and were treated with
vasodilators (DirectVasoD = 1, node 7) had a probability of 0.8
for predicting the primary outcome (terminal node 8, p < 0.001).
However, the treatment of Hydralazine (∗∗∗, node 7) was found to
be less effective in predicting BP reduction to the selected interval
(0.4 probability). Patients who received EVT/tPA had a very low
probability of BP reduction when ACE-I (node 9), CCBs (node
11), or diuretics (node 14) were administered (p < 0.001). On
the left side, patients who did not receive EVT/tPA with SBP
above 220 mmHg (node 3) and those who received beta-blockers
(node 4) had a probability of 0.8 for the prediction of the primary
outcome (p < 0.001). The most significant treatment from the
beta-blocker drug class was labetalol (∗, node 4), with the same
probability of BP reduction.

Figure 5A represents the left branch of the tree, where the
MaxDBP is above 120 mmHg. On the left side, in patients who
received beta-blockers (BetaB= 1, node 22), success in predicting
the primary outcome was related to sodium levels (node 34, p
= 0.01). For patients with SBP below or equal to 202 mmHg
(node 33) and sodium levels higher than 129 mEq/L, using beta-
blockers lowered the BP with a probability of 0.9 (terminal node
36). In comparison, for sodium values lower than 129 mEq/L,
the probability of lowering the BP was 0.5 (terminal node 35),
that is, random probability, and, thus, does not contribute to
hypertension management.

The subtree for the beta-blocker class is shown in Figure 5B

(∗, node 22). When labetalol is administered, the probability of
reducing BP is 0.9 (terminal node 38) if the SBP is below or
equal to 200 mmHg. However, when BP is above 200 mmHg, the
probability is 0.6 (terminal node 39). Whenmetoprolol (node 40)
is administered, the probability is 0.7 (terminal node 41).

On the right, patients who did not receive beta-blockers
(BetaB=0, node 22) but received ACE inhibitors (node 29), direct
vasodilators (node 23), and CCBs (node 31) had a probability of
1, 0.8, and 0.8, respectively (p < 0.001). Patients who received
diuretics (node 24) had a high probability, 1, when the SBP was
equal to or below 197 mmHg (node 26); however, when the
SBP was above 197 mmHg, the probability of BP reduction was
incredibly low and equal to 0.3 (p= 0.002).

As evident in Figure 5B, the most significant treatment from
the ACE-I class is lisinopril (node 24, subtree ∗∗∗), with the same
probability of 1 to reduce BP to the interval. Amlodipine (node
30, subtree ∗∗∗) was the most significant drug treatment from
the CCB class and resulted in the reduction of BP with a higher
probability (0.9). Furosemide (node 26, subtree ∗∗∗) lowers BP
with a probability of 0.8 (terminal node 22, subtree∗∗∗) when the
SBP (node 27) is below or equal to 204 mmHg. However, when
the SBP is above 204 mmHg, the probability to lower BP to the
selected interval is very low and equal to 0.1 (terminal node 29).
Hydralazine (node 23, subtree∗∗) lowers BP with a probability
of 0.9 (terminal node 36) if the SBP is above 225 mmHg and
lisinopril is not administered.

The decision trees presented in Figures 4, 5 yielded accuracy,
F-score, and kappa values of 0.977, 0.884, and 0.871, respectively,
for the original dataset and slightly lower values of 0.971, 0.857,
and 0.841, respectively, for the reduced dataset, as shown in
Table 3. The performance of the variant tree that yielded the
subtrees in Figure 4 was similar to that of the original tree
with accuracy, F-score, and kappa values of 0.971, 0.845, and
0.861, respectively.

We further evaluated the TWA of SBP and DBP
with regression trees to assess the effect of the different
antihypertensive drugs on BP reduction during the first 24 h
of treatment. This additional assessment provided information
regarding the level of BP achieved with the use of the different
treatments. The diastolic (Figure 6B) and systolic BP values
(Figure 6C) were evaluated independently as TWA over 24
hours. Only labetalol and hydralazine demonstrated a predictive
association on regression analysis (p < 0.001).

Treatment with Labetalol predicted a TWA BP of 138.5/72.6
mmHg. When Hydralazine was used, the predicted TWA BP
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FIGURE 4 | (A) The right branch of the classification tree. Each split is represented by a node. The first split is the root node, and the others are the intermediate

nodes. For each node, the Bonferroni-adjusted P-values are given. Each rectangle is a terminal node which is showing the probability distribution of occurrence over

the two classes of the primary outcome and includes the number of observations associated with the specific node result that files the decision claims. (B) Subtrees

represent the most prominent medication that lowers BP to the selected interval from each drug class by astricts.

was 140.9/80 mmHg. The predicted TWA SBP for patients who
received tPA was 134.7 mmHg.

Both regression trees showed a prediction of BP according
to different sodium levels. When the sodium levels were
higher than 132 mEq/L, the predicted TWA SBP was 131.6
mmHg, and for lower sodium levels, the predicted TWA
SBP was 126 mmHg. When the sodium levels were higher

than 133 mEq/L, the predicted TWA DBP was 70 mmHg,
while for lower sodium levels, the predicted TWA DBP
was 67.5 mmHg.

The RMSE of the TWA SBP regression tree model was 19.72
mmHg, and the MAE was 15.9 mmHg. Regarding the TWADBP
regression tree model, the RMSE was 24.6 mmHg, and the MAE
was 10.22 mmHg.
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FIGURE 5 | (A) The left branch of the classification tree. (B) Subtrees are represented by asterisks (*, **, ***) and show the most prominent medication that lowers BP

to the selected interval.

TABLE 3 | Comparison of the performances of the different models.

Model Original dataset Dataset after feature selection

Accuracy Kappa F-score Accuracy Kappa F-score

Ctree 0.977 0.871 0.884 0.971 0.841 0.857

RandomForest 0.984 0.91 0.901 0.972 0.843 0.864

Logistic regression 0.93 0.52 0.557 0.928 0.531 0.569

Neural networks 0.963 0.769 0.789 0.968 0.822 0.840
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FIGURE 6 | (A) Random forest variable importance by mean decrease in Gini index. (B,C) Represent the regression trees that predict the TWA of DBP and SBP,

respectively. Each terminal node has a boxplot that shows the median, IQR, and outliers. TWA, time-weighted average; DBP, Diastolic blood pressure; SBP, systolic

blood pressure; IQR, interquartile range.

Classification Model for the Balanced
Dataset
The results of the decision tree analysis based on the balanced
dataset are shown in Figure 7. Similar to the imbalanced dataset,
DBP was the main variable that predicted the primary outcome.
In addition, when the maximum DBP is below 120 mmHg,
BP management depends on the thrombolytic status. Of the
eight medications that were selected to be included in the
balanced dataset, only two medications in this group of patients
who received tPA/EVT showed statistically significant results for

lowering BP to the selected interval: Labetalol and Amlodipine.
Both had a probability of 1 to lower BP, 10–30% of the maximum
value in the first 24 h after stroke onset. This means that when a

physician will treat patients who receive tPA/EVT according to

guidelines (BP> 180/120 mmHg), he/she will lower the average
BP until the end of the first 24 h by 10–30% of themaximum value

if they will be treated with labetalol or amlodipine. When the
DBP is above 120 mmHg, the probability of lowering BP depends

on the SBP and on the specific treatment that was administered.
In addition, BP reduction also depends on the sodium level
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and kidney function (creatinine levels). Accordingly, when the
BP is above 163/120 mmHg, the probability of lowering BP
with amlodipine was 1, whereas when the SBP was below 163
mmHg, the probability of decreasing BP to the interval was only
0.5, that is, a random probability (p = 0.024, terminal nodes
14 and 13, respectively). When Labetalol is administered, the
probability is 0.7 (p < 0.001, terminal node 37). This means that
in high levels of BPs, there is a 70% probability that BP will be
lowered by Labetalol to the selected interval, but in the other
30%, whether BP is decreased is unknown. When Hydralazine
is administered, the probability is 0.6 (p < 0.001, terminal node
17). When lisinopril is administered, the probability of lowering
BP to the interval depends on the sodium levels: above 138
mEq/L, the probability is 0.9, while for lower sodium levels,
the probability is much lower and equals 0.5. The probability
of lowering BPs with nicardipine depends on the BP levels,
kidney function, and sodium levels, and accordingly, is equal
to 0.9 when the SBP is below 195 mmHg, the creatinine levels
are below 1.47 mg/dL, and the sodium levels are 133 mEq/L.
However, when the sodium levels are lower, the probability of
lowering the BP to the interval is 0. The probability of lowering
BP when the DBP is below 120 mmHg with metoprolol is low
and equals 0.6 (p < 0.001, node 26). The probability of lowering
BP with furosemide depends on the SBP levels. When the SBP
was above 200mmHg, the probability was 0.83. However, for SBP
< 200 mmHg, the probability was 0 (p < 0.001, terminal nodes
25 and 26, respectively). The performance of the balanced tree
yielded high accuracy, F-score, and kappa values of 0.94, 0.8, and
0.75, respectively.

Random Forest Model
Random forest algorithms aggregate many decision trees and add
randomness to the model, thus, improving the performance of
the decision trees and reducing overfitting (42). The classification
random forest algorithm was implemented using the R package
randomForest (43). It was tuned with a random search of the
number of variable samples at each split using the caret package
in R (38).

Each decision tree was randomly selected from a given
dataset using different bootstrap samples. The random forest
algorithm obtains a prediction from each tree, performs a vote
for each predicted result, and then selects the best solution
with the majority of votes. The most important variables
used in the algorithm are those with a lower probability of
incorrect classification.

Figure 6A represents the random forest variable importance
based on the mean decrease in the Gini index. MaxDBP,
Labetalol, MaxSBP, Metoprolol, Hydralazine, Tag tPA, and
minimum sodium levels are the most important variables in
the prediction task, similar to the results represented by the
decision trees.

Neural Networks
The feed-forward multi-layer perceptron (MLP) neural network
algorithm was implemented using the R package nnet (36). As
shown in Figure 8, 24 input variables were received in the first
layer on the left and processed within a hidden intermediate layer,

using a weighted summation and an activation function. Within
the hidden layer, a learning algorithm optimizes the weight
between two connected neuron-like units. The bias nodes shift
the activation function and generate better prediction results. The
output layer on the right produces the result for a given input
from the hidden layer.

Comparing the different classification models, the highest
performance was found for the random forest model with
accuracy, kappa, and F-score values of 0.984, 0.91, and 0.901,
respectively, for the original dataset, and 0.972, 0.843, and
0.864, respectively, for the reduced dataset. The results of the
performance of the different models are listed in Table 3.

The moderate model performance of the logistic regression
model is shown by lower accuracy, kappa, and F-score values of
0.93, 0.52, and 0.557, respectively, for the original dataset, and
0.928, 0.531, and 0.569, for the reduced dataset. After the random
forest and decision tree, the neural network algorithm showed
high accuracy, F-score, and kappa values.

DISCUSSION

This study assesses whether a patient who receives
antihypertensive treatment, according to recommended
thresholds, is an effective treatment that lowers BP in the range
of 10–30% below the maximum BP value in the first 24 h after
the acute ischemic stroke onset. In comparison to randomized
clinical trials that were tested in conventional methods, one or
two medications in each clinical trial and compare the results to
a placebo group, our study simultaneously examined over 100
antihypertensive medications using ML techniques.

This study has three major findings:

1. Blood pressure (BP) management in the first 24 h after a
stroke should be managed according to different BP levels
and other clinical variables, mainly kidney functioning and
sodium levels. Diastolic blood pressure (DBP) is the main
variable predicting the probability of BP reduction in the first
24 h after acute ischemic stroke.

2. For patients receiving tPA/EVT, labetalol and amlodipine
are effective treatments when antihypertensive treatment is
administered in cases where SBP > 180 mmHg and DBP <

120 mmHg.
3. Monitoring and treating low sodium levels (<133 mEq/L) is

important for successful BP reduction in the first 24 h after the
acute ischemic stroke in patients with very high BP (DBP>

120 mmHg). The independent regression analysis predicting
the TWA BP supports the relationship between sodium levels
and BP.

In accordance with the AHA/ASA recommendations, we found
that the group of patients receiving tPA would benefit from
beta-blockers when DBP ranges from 105 to 120 mmHg with
a high probability of reducing BP to the selected interval with
Labetalol (p= 0.004). These results are supported by the analysis
of both balanced and imbalanced datasets. Labetalol also lowers
BP with a probability ranging between 0.6 and 0.7 when the BP
is above 200/120 mmHg, that is, in 30–40% of cases, and the
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FIGURE 7 | Decision tree results of the balanced dataset according to different antihypertensive treatments.

goal of BP reduction to the interval is not reached. This may
reflect the difficulty of lowering BP with labetalol in patients
with excessively high BP. Treatment with labetalol predicted a
TWA BP of 138.5/72.6 mmHg (p < 0.001) in the hyper-acute
phase after a stroke. Unlike current recommendations, patients
receiving EVT/tPA with DBP< 120 mmHg had a low probability
of BP reduction over the prescribed range with CCB therapy (p
< 0.001) as a class group. However, the balanced dataset analysis
showed very good results with the use of amlodipine. The use
of amlodipine for patients receiving tPA/EVT should be further

studied as a potential antihypertensive treatment in this group of
patients. This is a novel finding that emerged from this study and
has practical importance.

Another important finding is the significance of electrolyte
balance, especially sodium levels, in BP management. In patients
with DBP above 120 mmHg, successful BP management is
related to sodium levels. According to the balanced results,
both lisinopril and nicardipine treatments depend on avoiding
hyponatremia. Sodium levels lower than 129–133 mEq/L do
not contribute to hypertension management in acute stroke
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FIGURE 8 | Multi-Layer Perceptron neural network model illustration. Three layers within the neural network are shown: the input layer, hidden layer, and output layer.

Twenty-four input variables labeled as I1-I24 are transmitted to the hidden layer. Within the hidden layer, neuron-like units are labeled as H1-H5. The bias nodes are

labeled as B1 and B2. The response variable in the output layer is labeled as O1.

because the probability of BP reduction is 0–0.5. Nicardipine
is also effective only when kidney functioning is normal or
only slightly elevated (creatinine <1.47 mg/dl) and when the
SBP is below 195 mmHg. Above an SBP of 195 mmHg, the
probability of lowering BP to the interval with nicardipine was
very low. However, we cannot exclude a temporary response to
a lower BP with nicardipine. According to the analysis of the
imbalanced dataset, nicardipine was not included in the results
of the decision tree algorithms. This might have resulted from
the relatively lower number of observations with nicardipine
treatment. The balanced dataset corrected the bias of minority
representation of nicardipine, which can be attributed to different
protocols that were used in different ICU units and found to be
statistically significant for the prediction task. Similar results for
the regression trees indicated a significant relationship between
BP and sodium levels. The regression trees predicted higher DBP
and SBP for higher sodium levels above 132 mEq/L and a modest
reduction in BP of 5.6/2.5 mmHg (p < 0.05) for lower levels
of sodium.

Hyponatremia is common in patients with acute stroke and is
attributed to stroke-related causes, such as elevated secretion of

antidiuretic hormone (ADH) and salt-wasting syndrome, as well
as to non-stroke-related causes, such as comorbidities, the use
of certain medications, and iatrogenic causes (44). The different
mechanisms by which hyponatremia occurs in acute stroke
patients might account for the difficulty in predicting the success
of the BP-lowering strategy in patients with hyponatremia. The
relationship between sodium levels and BP during the acute
phase of ischemic stroke is not well-established; however, in
certain circumstances, hyponatremia is related to fluid imbalance
and might impair BP regulation (45).

In accordance with the AHA/ASA recommendations to
use CCBs (nircadipine, clevidipine) and the INWEST trial
that showed a significant decrease in SBP and DBP with
nimodipine (18), we found that nircadipine and amlodipine
are efficient in lowering BP to the target interval under certain
conditions. Regarding amlodipine, when BP is above 163/120
mmHg, the probability of lowering BP ranges between 0.9 and
1. In patients receiving tPA/EVT with DBP < 120 mmHg,
only amlodipine was found to be effective. As discussed above,
treatment with nicardipine is effective when SBP< 195 mmHg,
and success depends on sodium and creatinine levels.
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Similar to the CHHIPS trial that showed a significant decrease
with lisinopril (16), our results show that patients with DBP >

120 mmHg who received lisinopril had a high probability (0.9–1)
to lower the BP to the target interval, with a statistical significance
of p < 0.001. These results are supported by the analysis of both
balanced and imbalanced datasets. According to the imbalanced
dataset, Lisinopril showed a low probability of reducing BP when
the DBP was lower than 120 mmHg. Treatment with lisinopril
was not included in the results of the balanced dataset for DBP<

120 mmHg (right branch of the tree, Figure 6), because it did not
meet the minimum criteria of split p < 0.05, or because other
variables (selected by the decision tree algorithm) had a lower
p-value and contributed more to the prediction task.

When DBP was above 120 mmHg, both hydralazine and
metoprolol showed a low probability of lowering BP (0.6). The
imbalanced dataset showed that treatment with Hydralazine was
effective when SBP was above 225 mmHg. However, for lower
BPs, hydralazine lowered BP with a very low probability. This
is not reflected in the balanced dataset analysis. This might
result from the fact that the imbalanced dataset also included
patients who received more than one antihypertensive treatment.
Therefore, we can see that subtree∗∗ in Figure 5 includes
more than one medication, and part of the results depend
on administering hydralazine with lisinopril as an adjuvant
treatment. Metoprolol lowers BP with a probability of 0.6–0.7
when the DBP is above 120 mmHg. When the DBP is between
106 and 120mmHg, the probability of lowering BP to the interval
is high and equals 0.9, according to the imbalanced analysis. As
with lisinopril, metoprolol was not included in the analysis of the
imbalanced dataset when the DBP was below 120 mmHg.

The algorithm shows that BP reduction with furosemide
is effective when the SBP is below 200 mmHg with a high
probability, 0.8, which will reduce BP. However, in patients with
SBP > 200 mmHg, the probability of lowering BP is very low.
This might be related to the fact that furosemide inhibits the Na-
K-Cl cotransporter, resulting in the increased secretion of sodium
in the urine. This explanation is suggested because the results
indicate that effective treatment depends on avoiding low sodium
levels for certain medications (nicardipine and lisinopril).

We emphasize that the analysis with ML techniques to predict
outcomes indicates the relationships between predictors and
outcomes rather than causality.

In our research, ARBs were not included in the decision tree
results because the variable did not reach the minimum criterion
of p < 0.05. These results are consistent with the trials that
showed a significant decrease of<10/6mmHgwhen compared to
placebo (19, 20). This decrease is likely not to exceed a threshold
of a 10% reduction in BP.

We found that both decision tree (Ctree) and random forest
algorithms have very high accuracy, kappa, and F-score values.
We chose a subset of features by using a bidirectional stepwise
algorithm that selected the most relevant features from the
original dataset and, thus, decreased the model complexity
without significantly reducing the prediction accuracy. The high
kappa and F-score values indicate the high validity of the models.
The moderate model performance of the logistic regression
model vs. the decision tree algorithm is evident by the lower

kappa and F-score values. Similar results of better accuracy
performance when tree algorithms were compared to logistic
regression were found when tested on large datasets (46). The
neural network algorithm also showed high accuracy, F-score,
and kappa values, but these values were slightly lower than those
of the decision tree and random forest algorithms. However, the
neural-network algorithm showed better performance after the
feature selection process. Nonetheless, it is difficult to visually
represent and explain neural networks.

Limitations
This study has several limitations. Our study reflects the
current general recommendations and current practices for
hypertension management after acute stroke. However, the two
databases that were used included data that were collected
during 2001–2012 (MIMIC-III) and 2014–2015 (eICU) and may
reflect the management of stroke patients before the up-to-
date recommendations that replaced the 2013 guidelines for the
early BP management of patients with acute ischemic stroke.
In addition, the exact range of BP lowering in extremely high
BP is not well-established yet. Patients with severe hypertension
(> 220/120 mmHg) were usually excluded from studies that
examined the clinical outcomes related to BP lowering after
acute ischemic stroke. Thus, whether a lowering of 10–30%
from the maximum BP for highly elevated BP is too drastic
should be further studied. Another important issue that clinicians
should take into consideration is that the decision-making in
hypertension management after acute stroke should not guide
treatment alone, and clinical judgment is cardinal, especially
for patients with acute concomitant comorbidities (such as
acute myocardial infarction, acute heart failure, aortic dissection,
or preeclampsia/eclampsia) in whom treatment should be
individualized. In addition, it is important to pay attention to the
contraindications of certain antihypertensive drug classes. The
use of beta-blockers in acute decompensation of heart failure or
the use of beta-blockers in patients with asthma exacerbation are
some of the examples. Further research is needed to examine the
outcomes of BP lowering in the acute phase after ischemic stroke,
especially in patients with severe hypertension (>220/120), who
are underrepresented in clinical trials. Outcomes according to
different BP-lowering intervals should be further examined.

CONCLUSION

This is the first study to address BP management in the acute
phase following ischemic stroke using ML techniques. The
study shows that the choice of antihypertensive treatment in
the context of acute ischemic stroke should be adjusted to
different BP levels and clinical features of the patient, thus
providing a better decision-making approach. Further work will
clarify whether there are different subgroups of patients for
whom specific BP management options are better, and might
include additional outcomes such as morbidity levels, mortality,
readmission to hospitals, and recurrent stroke.ML techniques are
used to discover hidden patterns from data and to apply robust
interrogation to datasets; however, there is a risk of overfitting.
However, the potential improvement in BP management in acute
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ischemic stroke suggested in this study should not be ignored.
Rather, follow-up studies should further examine the strategies
to reduce inherent ML risks and attempt to replicate the results
of clinical studies.
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