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Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by

epileptiform discharges from the regions outside the primary focus. It is one of the

major reasons for pharmacoresistance and surgical failure. Compared with primary

epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex

and diverse. In this review, we aim to summarize the characteristics of secondary

epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms

of secondary epileptogenesis in molecular, cellular, and circuity levels are further

presented. Potential treatments targeting the process are discussed as well. At last,

we highlight the importance of circuitry studies, which would further illustrate precise

treatments of secondary epileptogenesis in the future.
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INTRODUCTION

Epilepsy is one of the most common neurological diseases, affecting nearly 70 million people
with ∼1% incidence worldwide (1, 2). Patients with epilepsy suffer from unpredictable seizures.
Seizures are characterized by synchronous neural firing originating from the seizure focus.
However, more than one epileptic focus may emerge in some patients as the disease progresses,
defined as secondary epileptogenesis (3). Frank Morrell initially put forward the term secondary
epileptogenesis to describe an independent epileptic focus localized in the homotopic area of
the primary focus in the contralateral hemisphere (4). The existence of a secondary focus
may lead to further pharmacoresistance and failure of surgical intervention. Although the
phenomenon of secondary epileptogenesis has been recognized for long, its mechanism is still
“tales from the mist.” Hypotheses include excitatory actions of glutamate, depolarized GABA
transmission, and long-term alteration of synaptic plasticity. Here, we first summarized the
characteristics of secondary epileptogenesis by reviewing both clinical and experimental studies,
followed by different aspects of mechanisms. Then available and possible treatments for interfering
secondary epileptogenesis in the recent decades were presented. Given the significant advances of
experimental approaches, including optogenetics, neuroimaging, and electrophysiology, we suggest
understanding secondary epileptogenesis in a circuitry view and proposing open questions for
future direction to improve the management of this common and intractable clinical situation.
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SECONDARY EPILEPTOGENESIS

Early Findings From Animal Experiment
For many years, it has been known that epileptic discharge in
one hemisphere may be related to synchronous discharges in
the symmetric region of the other hemisphere (5). However,
the precise definition of secondary epileptogenesis was not
introduced until the 1960s. Morrell confirmed that after forming
the primary epileptic focus, an independent epileptic focus could
develop in the symmetric regions (which was also defined as the
mirror focus) (4). In another early study, researchers proposed
that the direct callosal junction between the primary and the
mirror focus is indispensable (6). They questioned whether
transecting the corpus callosum in the early stage can prevent
secondary epileptogenesis. To address this issue, experiments
were firstly performed on cats and rabbits. Ethyl chloride spray
was delivered to a small section of the pial surface to produce a
relatively small epileptogenic lesion. Recording electrodes were
implanted into the sprayed area as well as the symmetric region
to record electrical activities. After a few hours, the spike activities
in the lesion could be observed. However, several days later,
the paroxysmal independent discharges could be recorded by
the contralateral electrode. And the callosal transection could
prevent this process. Thus, it could be concluded that the
callosal pathway is probably the critical route for epileptic
propagation to the mirror focus in secondary epileptogenesis
(7). In 1975, secondary epileptogenesis was further confirmed
in the hippocampal kindled cats by Sato. In that study, epileptic
electroencephalographic (EEG) activities were found in different
regions apart from the mirror focus (8).

As for rodents, in 1962, Dow et al. firstly reported the
development of secondary epileptogenesis on rats. Ten to twenty
days after the cobalt application, which would produce a chronic
discharging focus at the right cerebral cortex, the epileptic
activities were observed at the contralateral hemisphere (9).
Another study from Levin et al. confirmed that the contralateral
focus, which would show recurrent spontaneous seizures, was
not rare in an ethyl chloride freezing induced epilepsy model
(10). To analyze the secondary epileptogenesis in rats in detail,
Engel applied cobalt powder into the posterior brain of the rats
to induce spontaneous epileptic seizures. They found that an
independent secondary epileptic focus was easy to develop in
the cobalt-induced epileptic model. Furthermore, the secondary
epileptic focus was usually more excitable than the primary ones
in the latter stage (11). A further histological study found that the
RNA level was decreased, and ganglioside sialic acid amount was
increased in the secondary focus (12). In addition to the chemical
convulsant, kainite acid (KA) induced secondary focus by
intra-hippocampal and intra-amygdala microinjection into the
mice brain (13). Similar results about secondary epileptogenesis
were found on other animal species, regardless of the diverse
approaches to induce epileptic seizures. As Engel et al. proposed,
the subsequent application of pentylenetetrazol could easily
induce epileptic discharges in the contralateral secondary focus
at dry ice treated rabbit’s cortex (14).

It has to be admitted that using chemical convulsants to
induce epileptic seizures has a major limitation. The uncertainty

of drug diffusion may further influence other extensive
regions beyond the injection site. Thus, further validation of
secondary epileptogenesis with a more specific primary focus is
necessary. Repetitive electrical stimulation in a routine region
was commonly used to investigate the progressive increase of
behavioral and EEG seizures (15). Secondary epileptogenesis
caused by electrical stimulation has been reported in multiple
animal species, including frog, caiman, opossum, and monkey
(16, 17). All the animals developed projected or evoked epileptic
discharge in the homotopic area. Among them, the squirrel
monkeys and rhesus monkeys had the fully independent mirror
focus in which the epileptic discharges at the contralateral cortex
have no correlation in timeline with that of the primary focus.
Furthermore, the time courses of secondary epileptogenesis in
lower mammals (e.g., rats, cats, and rabbits) seem to be shorter
than those of non-human primates (18).

Besides in vivo studies, in vitro, ictal models are also beneficial
for studying secondary epileptogenesis. In 1997, Khalilov et al.
firstly established a well-designed three-chamber in vitro model
by placing the intact hippocampal structures of neonatal male
Wistar rats in different compartments of a chamber. Those
well-isolated chambers separated by latex membranes could
be perfused with different solutions separately (19, 20). Using
this in vitro model, researchers could study the generation of
synchronized neuronal activities and investigate the propagation
of local epileptic excitability to distant areas. In their study, the
contralateral hippocampus developed an independent epileptic
focus after KA treatment on the primary focus despite the
application of tetrodotoxin on the commissural fibers to block
the neural connections reversibly (21). This in vitro preparation
of intact hippocampi demonstrated the existence of secondary
epileptogenesis in the isolated chamber and could be a promising
model to study its mechanisms.

Substantial findings obtained from different models have
confirmed the existence of secondary epileptogenesis in different
epileptic models (Table 1). The most common localization of
the secondary focus is the homotopic area contralateral to the
primary focus, and the time of formation may be related to the
intrinsic epileptic characteristics of the primary focus. However,
due to the limitations of experimental techniques, seizures of
these early laboratory experiments were mainly triggered by
convulsants or electrical stimulations and were characterized by
relatively extensive lesion area and vague primary focus (mainly
localized in the cortex). Given that only a certain amount of
patients had one specific epileptic focus, we suggest that the
chronic spontaneous epileptic models may be more appropriate
to study the mechanisms and discover potential therapeutic
targets for secondary epileptogenesis.

Clinical Evidence of Secondary
Epileptogenesis
Interestingly, the secondary epileptogenesis phenomenon was
first presented in animal experiments, and clinicians took many
years to validate secondary epileptogenesis in patients. The
secondary focus, which can generate separate epileptic seizures
in patients, was first reported in 1984. Morrell reviewed patients

Frontiers in Neurology | www.frontiersin.org 2 December 2021 | Volume 12 | Article 747372

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Shen et al. Secondary Epileptogenesis

TABLE 1 | Secondary epileptogenesis in animal models.

Years Authors (Ref.) Species Epileptogenic factors Primary focus Secondary focus

1947 Pacella et al. (5) Monkey Hydrous oxides of aluminum Motor cortex Contralateral motor cortex

1959 Morrell (4) Rabbit Ethyl chloride spray Right cortex Left cortex

1960 Morrell (7) Cat Ethyl chloride spray Right cortex Left cortex

1962 Dow et al. (9) Rat Cobalt powder Right frontal lobe Left frontal lobe

1967 Levin and McCrimmon

(10)

Rat Ethyl chloride spray Right somatosensory cortex Left somatosensory cortex

1968 Engel (11) Rat Cobalt powder Left posterior portion Right posterior portion

1968 Wilder et al. (16) Frog, cayman,

opossum,

monkey

Freeze lesion, penicillin Left cortex Right cortex

1970 Engel and Morrell (14) Rabbit Slivers of dry ice Right cortex Left cortex

1972 Westmoreland et al. (12) Rat Cobalt powder Right somatosensory area Left somatosensory area

1975 Morrell et al. (17) Frog Electrical stimulation Right hippocampal cortex Left hippocampal cortex

1975 Sato (8) Cat Electrical stimulation Left hippocampus Right hippocampus

1978 Schwarcz et al. (22) Rat Kainic acid Hippocampus Contralateral hippocampus

1980 Ben-Ari et al. (6) Rat Kainic acid Amygdala, caudate-putamen,

globus pallidus, bed nucleus of the

stria terminalis and septum

Contralateral homotopic area

1983 Jibiki et al. (23) Rabbit Electrical stimulation Right visual cortex Left visual cortex

1991 Kirkby et al. (24) Rat Electrical stimulation Right hippocampus Left hippocampus

1993 Beldhuis et al. (25) Rat Electrical stimulation Amygdala Contralateral amygdala

1993 Hiyoshi et al. (26) Cat Electrical stimulation Right amygdala Left mygdala

1994 Szente and Boda (27) Rat 4-aminopyridine Cortex Contralateral cortex

1996 Federico and MacVicar

(28)

Guinea pig Electrical stimulation Lateral entorhinal cortex (in vitro) Contralateral lateral entorhinal

cortex (in vitro)

1997 Forti et al. (29) Guinea pig Bicuculline Right anterior piriform cortex (in

vitro)

Left anterior piriform cortex (in vitro)

1997 Kudo et al. (30) Cat Electrical stimulation Right motor cortical Left motor cortical

1997 Mihaly et al. (31) Rat 4-aminopyridine Right frontal neocortex Left frontal neocortex

2000 Barna et al. (32) Rat 4-aminopyridine Right somatosensory cortex Left somatosensory cortex

2003 Gajda et al. (33) Rat 4-aminopyridine Somatosensory cortex Contralateral somatosensory cortex

2003 Khalilov et al. (21) Rat Kainic acid Right hippocampus (in vitro) Left hippocampus (in vitro)

2005 Arabadzisz et al. (34) Mouse Kainic acid Right hippocampus Left hippocampus

2005 Gajda et al. (35) Rat 4-AP Right cortex Left cortex

2008 Mouri et al. (36) Mouse Kainic acid Amygdala Contralateral amygdala

2009,2011 Nardou et al. (37–39) Rat Kainic acid Right hippocampus (in vitro) Left hippocampus (in vitro)

2013 Sobayo and Mogul (40) Rat Kainic acid Hippocampus Contralateral hippocampus

2017 Ito et al. (41) Rat Hyperthermia Right hippocampus Left hippocampus

2017 Kuang et al. (42) Rat Electrical stimulation Right amygdala Left amygdala

with benign brain tumors in whom the lesion stayed relatively
stable over time. However, EEG recordings confirmed that
34% of those patients could develop an independent secondary
epileptogenic focus remote from the tumor sites (13, 43).

The phenomenon of secondary epileptogenesis could be
further identified in patients with progressive epilepsy. In those
patients, determination of the epileptogenic zone has become
a considerable challenge. In a study in 1970, EEG parameters,
including the distribution of the beta rhythms and the behavior
of the bilateral spike, were analyzed after repetitive injections
of thiopental sodium in a total of 82 patients, aiming to guide
the epilepsy surgery. The simply routine EEG criteria appeared

unreliable for those patients who had widespread epileptic lesions
(44). Similarly, Gollwitzer et al. reviewed video-EEG recordings
from 100 patients with temporal lobe epilepsy (TLE) and found
that the bilateral independent interictal epileptiform activities
could be detected in 64% of patients. Their findings suggested
that seizure foci were localized in both hemispheres (45). Schmidt
et al. reported the phenomenon of seizure recurrence after
discontinuing anti-seizure drugs (ASDs) in six patients who had
undergone epilepsy surgery (most are temporal lobe surgery).
This phenomenon could be attributed to the formation of
secondary epileptic foci (46). Another evidence of secondary
epileptogenesis was that some patients could develop different
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TABLE 2 | Secondary epileptogenesis in patients.

Years Authors Sample size Conclusion

1952 Tukel and Jasper (49) 31 patients with parasagittal epileptogenic lesions Epileptogenic foci in the cortex near the corpus callosum can cause

widespread discharges at both hemisphere.

1961 Falconer and Kennedy

(43)

7 patients with small focal lesions (glial hamartomas,

angiomas, or other neoplasms)

The EEG disclosed there were bilateral, independent spike discharges in

both temporal regions.

1961 Rovit et al. (50) 20 patients Unilateral carotid amobarbital injection at primary epileptogenic lesions can

inhibit bilateral discharges.

1970 Lombroso and Erba (44) 82 patients presenting variety of seizures Patients with widespread brain involvement in seizure activity are

unappropriate for surgery.

1985 Morrell (13) 47 patients with cerebral tumor seen as epilepsy 34% of patients had bilateral, independent epileptiform discharge in their

EEGs, and more than one seizure type.

1994 Gilmore et al. (51) 22 patients with complex partial seizures and had

temporal lobe neoplasms

The mirror focus is not a contraindication to operation even when the

preponderance of interictal discharge is contralateral to the tumor.

1997 Eliashiv et al. (52) 60 patients who had standard en bloc anterior

temporal lobe resection

The seizure recurrence at sites distant to the lesion may relevant to years of

uncontrolled seizures.

1998 Morris et al. (53) 38 patients with intractable epilepsy and

ganglioglioma

Despite years of medically resistant seizures, patients with ganglioglioma

can still have good surgical outcomes.

2006 Kimiwada et al. (54) 14 children with partial epilepsy involving the

temporal lobe

Radiographic results show the recruitment of hippocampal and thalamic in

epileptic network.

2008 Surges et al. (55) 14 patients with tonic–clonic seizures of

extrahippocampal onset

Repeated extrahippocampal seizures can result in persistent modifications

in hippocampal excitability.

2010 Bortolato et al. (56) One patient with bilateral foci in frontal lobe The density of GABAA/benzodiazepine receptor binding in the mirror focus

had a significant increase.

2014 Kim et al. (48) One patient with intractable occipital lobe epilepsy Occipital lobe epilepsy can also have the mirror focus.

2017 Gollwitzer et al. (45) 100 patients diagnosed with temporal lobe epilepsy Bilateral independent interictal epileptiform activities could be detected in

the progress of TLE.

types of seizures later in the disease course, with an epileptic focus
distinct from the primary site. For instance, Morrell reported a
patient who developed a new seizure type (automatism followed
by head and eye turning to the left) distinct from the habitual
seizures with epigastric sensations followed by lip-smacking.
(47). These seizures were distinct from the primary ones as
a consequence of the formation of other epileptic foci. As
mentioned above, the phenomenon of secondary epileptogenesis
was reported more often in patients with temporal or frontal
lobe epilepsy and rarer in occipital lobe epilepsy. However, Kim
et al. reported an exception in occipital lobe epilepsy. The patient
had relapses of seizures 10 months after resecting the defined
seizure focus located at the left occipital lobe. Further validation
confirmed the formation of a secondary focus located in the
homotopic area of the right occipital lobe (48).

Clinical evidence on secondary epileptogenesis is still lacking,
limited to case reports or series with small sample size. It could
occur in different types of epilepsy (Table 2). Systematic and
comprehensive prospective cohort studies are still needed to
assess the prevalence and incidence of secondary epileptogenesis
in different types of epilepsy and identify factors related to
this phenomenon.

Dilemmas in Treating Secondary
Epileptogenesis
Over the last 30 years, about 30 ASDs have been approved
and used to help control epileptic seizures (57). In many
conditions, the seizure frequency could be reduced after

taking ASDs. However, there are still a certain proportion
of patients who would become pharmacoresistant. Compared
with patients who had only one seizure focus, those with a
secondary focus are more susceptible to pharmacoresistance
(58). For pharmacoresistant epilepsy, uncontrolled seizures
increase the risk of sudden unexpected death in epilepsy and
seriously affect the quality of patients’ daily life. Resection
of the epileptogenic zones turns to be the optimal option.
However, a secondary focus could restrict the surgery’s efficiency
because the presence of a secondary focus can generate
epileptic discharges independently, even when the primary focus
is resected.

Some researchers propose that the presence of secondary
epileptogenic focus might not account for surgical failure in
patients with epilepsy. Take the tumor patients, for instance.
Resection of the tumor itself was mostly sufficient for seizure
control, even if the mirror focus was spared in the surgery
(59). Meanwhile, Goldensohn insisted that EEG evidence of
multifocal discharge should not be considered when making
decisions regarding epilepsy surgery because follow-up research
showed that patients with bilateral foci still have a good prognosis
after resection of the unilateral seizure focus (60). A study with
22 patients with temporal lobe neoplasms demonstrated that
the mirror focus is not a contraindication for epilepsy surgery.
Resection of the primary focus resulted in the disappearance of
the secondary focus (51). In contrast, another study argued that
the seizure relapses after resection were usually due to secondary
foci in homotopic regions contralateral to the primary focus
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(48). Different phases of secondary epileptogenesis (dependent,
intermediate, and independent stages) proposed by Morrell may
explain these conflicting reports (13, 47). During the dependent
stage, the discharges that originated from the secondary focus
are always time-locked to that of the primary focus, which
means epileptic discharges at the secondary focus may only
be propagated from the primary focus. In the intermediate
stage, the discharges of the secondary focus can be different in
time phases from that of the primary focus. However, surgical
resection of the primary focus can lead to the vanishment of the
secondary focus, which means the maintenance of the seizures
in the secondary focus needs the existence of the primary focus.
Eventually, the secondary focus becomes permanent in the last
independent stage. In this stage, the seizure may originate from
the secondary focus after the resection of the primary focus.
Nevertheless, it should be noted that if the resection of a seizure
focus leads to a certain period of seizure-free at first, but followed
by a relapse of seizures, other epileptogenic factors such as
abnormal stem cells attributed by developmental malformations
or tumors may be also taken into account besides secondary
epileptogenesis (61).

Thus, although contradictions exist, a conclusion could be
drawn that secondary epileptogenesis is one of the major causes
of the less favorable surgical outcome. However, the outcome of
epilepsy surgery cannot be solely determined on the presence
of the secondary focus but should take the different phases
into account.

Possible Mechanisms of Secondary
Epileptogenesis
Unlike those neurological diseases with clear pathogenesis,
multiple epileptogenic factors include tumor, trauma,
neuroinflammation, genetic predisposition, etc., have been
shown to result in abnormal excitation in the brain and
consequently provoked seizures (1). Moreover, uncontrolled
repetitive seizures further aggravate epileptic conditions
like secondary epileptogenesis. Given that the genesis of
secondary epileptic focus largely depends on the seizure
propagation from the primary focus, mechanisms of excitability
spreading such as neurotransmission and synaptic plasticity are
closely related to secondary epileptogenesis. In the following
sections, we discuss the possible mechanisms of secondary
epileptogenesis systematically.

MOLECULAR MECHANISMS

Involvement of Excitotary
Neurotransmission
It is widely accepted that the actions of excitatory
neurotransmitters play a vital role in the process of seizure
propagation. The glutamate-mediated amplified excitatory
activity could lead to the recruitment of excitatory neurons
and initiation of the hyperactivity, then the spread of the
hyperactivity would cause the seizures (62). Pathological
excitatory neurotransmission mediated by glutamate receptors
has long been regarded as a major factor in clinical and

experimental epilepsy etiology. Ionic glutamate receptors
include N-methyl-D-aspartic acid (NMDA) receptor, KA
receptor, and α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) receptor, which conjugate with
ion channels to mediate fast signal transduction. Khalilov
et al. preliminarily revealed the correlation between ionic
glutamate receptors and secondary epileptogenesis in the
three-chamber model. They reported that the application of
NMDA receptor antagonist on the contralateral hippocampus
could prevent the formation of the secondary focus but not
the propagation of seizure activity (21), which means NMDA
receptors were involved in secondary epileptogenesis caused
by the long-lasting synaptic excitatory effects originating
from the primary focus. Given that the NMDA receptors
were composed of two GluN1 obligatory subunits and two
regulatory subunits (63), just as Acutain et al. reported,
the decreased expression of GluN2A would further lead
to increased seizure susceptibility (64). Thus it can be
speculated that changes of the NMDA subunits may also
underly secondary epileptogenesis. These findings suggest that
the activation of the NMDA receptor is necessary for forming
the secondary focus.

Similar to the NMDA receptor, other studies verified the
role of the AMPA receptor in secondary epileptogenesis. Barna
et al. proposed that intracerebral injection of the AMPA
receptor antagonist GYKI-52466 into both the primary and
mirror focus led to anticonvulsant effects in anesthetized
rats treated by 4-AP (32). Also, the role of the AMPA
receptors in secondary epileptogenesis of a KA treated rat
model was examined. Interestingly, the application of the
AMPA receptor antagonist CNQX led to a priority of
seizure generation in the ipsilateral hippocampus, while in
the selective KA receptor antagonist and the control group,
epileptic discharge mainly originated from the contralateral
side (40). Another study further verified this by showing
that the AMPA receptor antagonist could reversibly suppress
the seizure activity originating from the secondary focus
(28). Besides, although barbiturate anesthetics have been
widely accepted as a GABAergic function enhancer (65),
it is also reported that phenobarbital could modulate the
expression of AMPA-type glutamate receptor channels (66).
Based on this, Nardou et al. compared the effects of diazepam,
unrelated to the AMPA receptors and phenobarbital, on the
formation of the mirror focus. They reported that phenobarbital
but not diazepam could reduce the occurrence of epileptic
spikes in the mirror focus with the presence of GABA
and NMDA receptor antagonists (37), which laterally provide
evidence for the involvement of the AMPA receptors in
secondary epileptogenesis.

In brief, epileptic discharges resulted from neuronal
hyperexcitability. The repetitive abnormal epileptic discharges in
the primary focus can lead to an increased glutamatergic driving
force acting on both excitatory NMDA and AMPA receptors
of the possible secondary epileptic focus. This process will
decrease the threshold of seizure generation and thus contribute
to secondary epileptogenesis.
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FIGURE 1 | A brief diagram illustrates the action of glutamate and GABA receptors in secondary epileptogenesis. The shift action of GABA from inhibitory to

excitatory mediated by chloride co-transporters and excitation actions carried by glutamate commissural fibers co-mediate the formation of the secondary focus.

The Role of Inhibitory Neurotransmission
Besides excitatory glutamatergic synaptic transmission,
inhibitory GABA synaptic transmission also plays a crucial
role in maintaining the balance of excitation and inhibition in
the central nervous system. Abnormalities in the GABAergic
systems lead to declined inhibitory function in the brain,
resulting in the dominance of excitation.

Federico et al. examined the role of GABA and glutamate
receptor subtypes in the spread of epileptic activity. They
confirmed that GABAA but not GABAB receptors were essential
in seizure propagation (28). Perfusion of GABAA receptor
antagonist bicuculline could lead to spontaneous seizure activity
in the isolated guinea pig brain (29). The role of GABA receptors
was further verified in a clinical study. Bortolato et al. reported a
patient with neural damage in the right frontal lobe and a mirror
focus in the contralateral hemisphere. After the resection of the
primary focus, the density of GABAA/benzodiazepine receptor
binding in the left frontal lobe significantly increased (56). A
recent study has further reported the role of inhibition defects in
the formation of a secondary epileptic focus. The application of
bicuculline enhanced contiguous seizure propagation and focal
bicuculline microinjection into the regions distant to the 4-AP
injection site leading to a secondary, non-synchronous epileptic
discharge (67).

Additionally, excitatory GABA action induced by high
chloride concentration contributed to seizure generation (68–
70). After experiencing recurrent seizures, GABA transmitters
directly depolarized neurons due to a persistent increase
of extracellular chloride ions termed as a shift of GABA
function from inhibitory to excitatory. This early elevated
concentration of chloride ions is due to two chloride co-
transporters: NKCC1, which imports the chloride ions, and
KCC2, which extrudes them. In epileptic conditions, the changed
expression of KCC2 and NKCC1 would occasionally influence
the ionic homeostasis of chloride ions and contributes to
secondary epileptogenesis (71, 72). For example, the GABA-
acting ASD phenobarbital is a first-line drug to treat neonatal
seizures. However, it would be less efficient after recurrent
seizures because phenobarbital exacerbated the high intracellular

chloride mediated by a combined action of NKCC1 and
the downregulation of KCC2 in an established mirror focus
(38). Moreover, although the NKCC1 antagonist bumetanide
could not prevent the seizure propagation to the contralateral
hippocampus and the formation of the mirror focus, it could
block the spontaneous epileptiform activities and partly reduce
the excitatory action of GABA in the isolatedmirror focus (39). In
conclusion, these results suggest the excitatory action mediated
by chloride co-transporters can cause a longlasting shift in the
depolarizing direction of the actions of GABA and ultimately
induce secondary epileptogenesis.

The formation of the secondary focus is different from
that of the primary one and is mainly dependent on synaptic
transmission. According to the currently available evidence,
the excitatory transmission may mediate the early stage of the
secondary focus (dependent and intermediate phase proposed by
Morrell). In contrast, the abnormality of inhibitory transmission
may further mediate the consolidation stage of the secondary
focus (the independent phase). Therefore, the role of these two
kinds of synaptic transmission cannot be completely dissected
(Figure 1), and further integrating studies are needed to dissect
the mechanism of secondary epileptogenesis contributed by both
excitatory and inhibitory synaptic transmission.

Other Molecules Participate in Secondary
Epileptogenesis
In the central nervous system, besides the excitatory/inhibitory
neurotransmission, which is also the main target of available
ASDs, neurons directly connect the cytoplasms of adjacent
cells through channels docking of two hemichannels called gap
junction (73). It is a common direct pathway for intercellular
communication between glial cells and neurons. Connexin 36
(Cx36) mediated gap junction communication had been certified
to participate in epileptogenesis and emerge as a potential target
for epilepsy (74). Gajda et al. investigated the role of Cx36
mediated gap junction communication in the maintenance and
propagation of epileptic discharges in both the primary focus
and the mirror focus. They reported that the Cx36 channels also
promoted secondary epileptogenesis (35). The above function
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partially mediated the formation of the mirror focus. They also
demonstrated that the level of Cx36 mRNA was significantly
increased after experiencing 25–30 spontaneous seizures (33).

On the other hand, cumulative studies demonstrated
that epileptic pathogenesis might be associated with other
factors which indirectly regulate neural excitability. Such as
neurodegeneration, neurogenesis, and neuroinflammation,
of which neuroinflammation gradually attracts researchers’
attention (75–77). The inflammatory mediators play a significant
role in the development of chronic spontaneous seizures (41).
Early experiencing febrile seizures can induce the formation of
secondary adult epileptogenesis in some cases, which might be
mediated by neuroinflammation (78, 79). As Choi et al. reported,
the level of HMGB1 showed a significant increase in the serum
of patients with febrile seizures at first (80). It significantly
contributed to the pathogenesis of hyperthermia-induced
seizures and the following epileptogenesis. The application
of HMGB1 further aggravated the acquired epilepsy after
experiencing febrile seizures, which suggested that it played
a vital role in acquired secondary epileptogenesis (81). One
of the possible mechanisms may be that HMGB1 induces the
expression of P-glycoprotein (P-gp) (82), which is directly related
to drug resistance and epileptogenesis (83, 84).

In addition to neuroinflammatory cytokines, other
molecules have also been reported to be involved in secondary
epileptogenesis. Sulfated octapeptide of cholecystokinin (CCK-
8) was a kind of neuropeptide that could increase the firing
frequency of the action potentials in the neurons of the
hippocampal CA1 (85). Moreover, the decreased calbindin
staining might lead to decreased excitability and firing rate of
pyramidal cells (86). The unilateral injection of KA into the
dorsal hippocampus induced acute status epilepticus, followed by
a latent phase with ipsilateral neuronal degeneration, which could
generate epileptic seizures. Arabadzisz et al. investigated the
expression and distribution of some specific neuromodulators
in the hippocampus contralateral to the injection site in this
process. The labelings of CCK-8 and calbindin were selectively
decreased in the latent phase (34). The authors suggest that such
changes in CCK-8 and calbindin expression may relate to the
formation of epileptic seizures in the contralateral hippocampus.

Decades of studies have already revealed changes of some
crucial molecules in secondary epileptogenesis. Nevertheless,
the brain works as an interconnected network. The microscopic
molecular mechanisms may not reflect the whole dynamic
processes in secondary epileptogenesis. Macroscopical
perspectives should be taken into account in different
experimental designs.

CELLULAR MECHANISMS

Synaptic Plasticity in Secondary
Epileptogenesis
In addition to molecular mechanisms, changes in synaptic
function were also related to secondary epileptogenesis. The
concept “seizures beget seizures” has been widely known for
years. Moreover, cumulative studies have proved that repetitive

seizures lead to more severe chronic epilepsy (87). In that
process, synaptic plasticity certainly plays a key role. The long-
term potentiation and depotentiation (LTP and LTD) of synaptic
transmission are forms of long-lasting synaptic plasticity in the
mammalian brain. During the process of LTP, synaptic strength
gradually increases with the repetitive excitatory stimulation,
while the situation is inverse in LTD. Both LTP and LTD mediate
diverse forms of experience-dependent plasticity, including
learning and memory, emotional feelings, and epilepsy (88).
The phenomenon of LTP was first found in dentate granule
excitatory neurons, which was essential in the stabilization and
elimination of synapses during the development and adjustment
of neural circuits (89). It is reasonable that the genesis of the
secondary epileptic focus is associated with LTP due to that
the process of these two phenomena is very similar-both of the
two processes require repeated stimulation and reinforcement
(90). An electrophysiological study performed by Beldhuis et al.
analyzed bilateral hemispheres epileptiform activities on the
amygdala kindling rats. The analysis of the linear and non-linear
association functions showed that the connection between the
two amygdalas was strengthened after daily kindling, and the
excitability of the contralateral amygdala increased along with
the kindling process (25). Further immunohistochemical studies
illustrated that the activation of the neocortical areas contralateral
to the primary focus was the result of synaptic connections,
repeatedly strengthened synapses could lead to the spread of
seizures (31, 55).

Given that the changes in synaptic plasticity are closely
related to drug addiction (91). Kirkby et al. provided direct
evidence about the role of enhanced synaptic plasticity caused
by drug addiction in the secondary kindling process. They used
amphetamine as a pretreatment agent to induce addiction in
rats, thereby enhancing synaptic plasticity in the brain. Then
the relationship between amphetamine pretreatment and the
rate of kindling acquisition was studied. They demonstrated that
the amphetamine pretreatment would lead to a much faster
procedure of the kindling process in the secondary but not the
primary epileptic focus (24).

Synaptic plasticity changes eventually lead to the remodeling
of neural circuits and can be considered the connection from
macroscopic brain network to microscopic synaptic function and
transmitters, which provides another perspective for studying
secondary epileptogenesis.

Other Cellular Changes
Other alternative mechanisms for secondary epileptogenesis
which were occasionally reported include selective loss of
interneurons, formation of excitatory synapses, etc. (87). Also,
both mossy fibers sprouting and astrogliosis are reported as
biomarkers of aberrant excitatory synaptogenesis, and they were
observed in the unilateral KA model and electrical stimulation
model (92). Meanwhile, postepileptic lesions showed changes
in neuronal density, reactive astrogliosis, and sclerosis of
critical structures that might cause secondary epileptogenesis.
A histopathological study showed that most patients with TLE
would have the characteristics of severe neuronal loss in the
amygdala (93). However, the relatively small sample size of these
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studies limits the utility of these findings, and further systematic
studies are required.

Circuitry Views for Secondary
Epileptogenesis
With significant developments in neuroscientific experimental
techniques such as optogenetics, trans-synaptic viral tracing,
and large-scale single-unit recordings, epilepsy is gradually
considered a circuitry disease caused by the formation of
abnormal brain networks (94, 95). The study of the time sequence
of seizure initiation had demonstrated that the seizures were
not just synchronized events in a single region but involved
many crucial circuits originating from seizure focus to its
downstream regions. The formation of abnormal excitatory
circuits usually leads to the generation of seizures. For example,
our previous studies have demonstrated that the microcircuit
in the subiculum gates the genesis of the generalized seizures
and further pharmacoresistance in TLE (68, 96, 97). It can be
deduced that the heterogeneity of seizure spread sequence and
excitation amplitudes may further lead to the formation of the
secondary focus.

After reviewing decades of researches on secondary
epileptogenesis, a conclusion can be drawn that the secondary
focus was most likely to occur at the homotopic area of the
contralateral hemisphere. Because the two hemispheres of the
brain, especially in the temporal lobe regions, have the densest
neural projection. Our previous study demonstrated that the
unilateral kindled amygdala could promote the process of
kindling acquisition in the contralateral amygdala (42). Also,
it has long been deemed that the secondary epileptic focus
can occur not only in the contralateral homotopic areas but
also in the other regions of the ipsilateral hemisphere. The
independent epileptic discharge could be detected in both the
amygdala and the globus pallidus in an epileptic model whose
seizures originate from the hippocampus (98). In unilateral
amygdaloid overkindled cats, seizures could originate from both
the amygdala and the ipsilateral frontal cortex (26). These studies
suggest that the secondary epileptic foci do not form in isolation.
Generalization of epileptic excitability is usually accompanied by
the evolution of epileptic circuits.

Neuroimaging is a valuable tool to visualize the
microstructural changes of epileptic circuits. Moreover, isotopic
indicators in positron emission tomography (PET) have become
one of the most commonly used methods to estimate glucose
utilization of a particular nucleus. Handforth et al. compared
the behavioral severity with autoradiography anatomic patterns
in amygdala-induced status epilepticus. The spread of seizure
activities from the amygdala to other limbic and non-limbic
structures existed long before the appearance of motor seizures.
This network first recruited the direct amygdala projection
areas, then the contralateral structures (99). As Bankstahl
et al. reported, by applying a novel PET protocol targeting
the overactivity of P-gp, seizure-induced regional changes in
P-gp activity can be identified (100). The overexpression of
P-gp is closely related to epileptogenesis, by which method, the
potential secondary epileptic focus can be detected. Diffusion

tensor imaging (DTI) changes in patients with TLE were
evaluated, and evidence for the microstructural changes of the
hippocampus was also provided. Less-robust abnormalities of
DTI suggested the secondary involvement of the thalamus in
epilepsy. This structure was recruited into the hippocampal
epileptic network (54). Additionally, Pustina et al. compared
the role of three interhemispheric white matter pathways in
generating contralateral epileptiform spikes during interictal
activity. Diffusion tensor imaging was used to measure the
integrity of those pathways in the temporal lobes: the tapetum,
the anterior commissure, and the body of the fornix. These data
suggested that the tapetum pathway could cause the emergence
of contralateral spikes, and it was not due to the containment of
callosal fibers (101).

Growing evidence suggests that understanding the
mechanisms in neurological functions and diseases, especially in
epilepsy, cannot be focused solely on the microscopic molecular
level. Macroscopic circuitry views provide a more accurate and
dynamic mechanism perspective. Although a few studies have
already suggested that the formation of the secondary focus
is related to the circuits, systematic studies are still needed to
elucidate the circuitry mechanism of secondary epileptogenesis
(Figure 2).

AVAILABLE AND POTENTIAL
TREATMENTS FOR SECONDARY
EPILEPTOGENESIS

Epilepsy Surgery
In the early 1960s, the development of neurosurgical intervention
was just getting started. At that period, ASDs and surgical
resection were the main available treatments for epilepsy. For
patients with bilateral epileptic foci, neither medication nor
surgery can achieve a satisfactory curative effect. However,
given that corpus callosum was reported to play a critical role
in bilateralization and symmetrization of seizures (30). Some
clinicians would choose corpus callosotomy for patients with
intractable epilepsy. The curative effect of corpus callosotomy
on secondary epileptogenesis was initially demonstrated in
animal models. The effect of corpus callosotomy was firstly
demonstrated in a motor cortical kindling model. Kudo et al.
divided twelve cats into two groups, five with the corpus
callosotomy. The corpus callosotomy could significantly delay
the seizure progression from focal to generalized convulsive
seizures and decline the transfer effect of epileptic seizures (30).
Callosotomy was mainly chosen for those patients with complex
focal seizures or Lennox-Gastaut syndrome (102). Ono et al.
reported that 63.2% of the patients with bilateral discharges
showed desirable outcomes after callosotomy for intractable
epilepsy. While after correlating postoperative outcomes with
EEG data, it turned out that the patients with lateralized seizure
discharges often had superior effects compared with those who
had bilateral discharges (103).

However, besides the therapeutic effects, side effects
should not be ignored. The split brain syndrome as a
side effect of callosotomy had been reported due to brain
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FIGURE 2 | The schematic diagram of investigating the circuity mechanism of secondary epileptogenesis in temporal lobe epilepsy by using advanced experimental

approaches. Combined multifaceted techniques including chemogenetics, optogenetics, and viral tracing can help to reveal the possible circuitry basis of secondary

epileptogenesis.

asymmetry. Dyssynchrony of consciousness in the two
hemispheres can be observed and further affects the self-
care abilities of patients. Sometimes, callosotomy can even
ameliorate both generalized seizure and status epilepticus
(102). Thus, the callosotomy must be performed with special
caution and regarded as the last choice when no alternative
options exist.

Pharmacotherapy
Available ASDs

Most of the first and second generation ASDs like phenytoin,
valproic acid, and benzodiazepines are used to control seizures
in patients with or without secondary focus. Those ASDs
act on diverse molecular targets, including voltage-gated
sodium/calcium channels and GABAA receptors. Taken that
almost no available ASDs can interfere the epileptogenesis (3),
the ineffectiveness of these ASDs on secondary epileptogenesis
is imaginable.

However, some third-generation drugs act differently.
Levetiracetam (LEV) is a pyrrolidone derivative which can be
used as both anticonvulsant and antiepileptogenic medication.
It does not target postsynaptic receptors or membrane ion
channels but acts by combining with the component factor of
the synaptic vesicle (SV2A) and further blocks the transmission
of excitatory neurotransmission (104). The antiepileptogenic
effect of LEV was firstly demonstrated on animal models and
can persist after drug withdrawal (105). Yang et al. demonstrated

that early administration of LEV could prevent posttraumatic
epileptogenesis both in vivo and in vitro. It also significantly
raised the stimulus intensity required to trigger epileptiform
bursts (106). Furthermore, combined use of LEV and topiramate
could also significantly retard the epileptogenesis in rats after
pilocarpine-induced status epilepticus (107). Although direct
evidence was still lacking, it can be deduced that LEV might also
interfere with the genesis of secondary epileptogenesis.

To sum up, the complete abolishment of secondary
epileptogenesis by current ASDs is still not evident. Available
ASDs, which mainly target ion channels and GABA receptors,
turn out to be invalid for epileptogenesis. Future drug designs
should focus on molecules and mechanisms closely related to
secondary epileptogenesis.

Future Potential Medications

Novel mechanisms findings of secondary epileptogenesis would,
in turn, provide potential therapeutic targets for it. For
example, both preclinical and clinical evidence has highlighted
the importance of neural inflammation on epileptogenesis in
recent years. There is positive feedback between the pro-
inflammatory factors and the epileptic activities. The biosynthesis
of inflammatory cytokines and prostaglandins will be activated
after epileptic stimuli and, in turn, enhance the epileptic
excitability (108). Thus, the inflammatory inhibitors may have
potential antiepileptic effects. We previously reported that
targeting the caspase-1-interleukin-1β inflammatory pathway
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could reduce neuronal excitability and suppress secondary
epileptic susceptibility caused by febrile seizures (79, 109).
Besides, as mentioned above, the inhibitor of HMGB1 may
also have the potential to treat secondary epileptogenesis (81).
Additionally, the phenomenon of LTP is based on the function
of AMPA receptors and NMDA receptors. (88). Consequently,
the AMPA and NMDA receptor antagonist application delays
the enhancement of synaptic connection and may prevent the
formation of the secondary focus.

Aside from approaches targeted on the molecules closely
related to secondary epileptogenesis, directly retarding the
primary epileptogenesis may also be helpful (110). New
directions of ASDs development should address both the primary
and secondary epileptogenesis rather thanmerely seizure control.
With the development of pharmacogenomics and the discovery
of accurate biomarkers, precise individualized therapy for
secondary epileptogenesis will be possible and could certainly
help those patients.

Other Treatment Options

Neurostimulations, including deep brain stimulation, vagus
nerve stimulation, and transcranial magnetic stimulation, are
effective for neurological diseases (1). Among these, deep brain
stimulation has gradually evolved as an effective alternative
treatment in epilepsy, with the advantages of reversibility
and controllability. For secondary epileptogenesis, our previous
research firstly reported that low frequency stimulation (LFS,
1Hz) at the primary focus could significantly retard the
secondary kindling acquisition of the mirror focus (Figure 3).
Then we further specified the time window of LFS for
secondary epileptogenesis treatment. The LFS would have a
better effect before developing into a generalized seizure (42).
Similarly, Couturier et al. determined the relative efficacy
of different protocols of brain stimulation for secondary
epileptogenesis. By comparing the antiepileptic effects of LFS
on the corpus callosum and high frequency stimulation (HFS)
at both primary focus and anterior nucleus, a conclusion
can be drawn that the LFS at the corpus callosum can
significantly reduce the seizure frequency of both primary
and secondary focus (111). These results provided direct
evidence to confirm the promising therapeutic effect of LFS for
secondary epileptogenesis.

Recently, the brain-responsive neurostimulator (RNS
System, NeuroPace Inc.) has been approved by the FDA
as an adjunct treatment for refractory epilepsy, including
patients who had more than one epileptic foci (112). In a case
report, by implanting an RNS System into a patient whose
left temporal seizure focus overlapped with language areas
which led to the residual of epileptic structures after surgery,
Geller et al. reported that this adjunct treatment achieved a
desirable curative effect in that patient (113). Transcranial
focal stimulation (TFS), a noninvasive neuromodulation
strategy, has been shown to reduce seizure activities
and avoid P-gp overexpression in different experimental
models. According to these, it is indicated that TFS may also

FIGURE 3 | Summary diagram of efficacy of LFS on the primary focus for

secondary epileptogenesis. In the kindling model of secondary

epileptogenesis, bilateral amygdalae were kindled successively. The

application of LFS at the primary focus significantly retards the epileptogenesis

of the secondary focus. The rectangle on the left represents the stage to which

the primary focus was kindled. The color of the rectangle on the right

represents the relative speed of the formation of the secondary focus.

represent a new neuromodulatory strategy to revert secondary
epileptogenesis (114).

Despite the promising results, neuromodulation is limited by
its invasive nature (associated with device implantation) and
battery-related problems. Future studies should focus on the
crucial brain regions involved in secondary epileptogenesis and
develop more biocompatible and continuable devices.

CONCLUSION AND FUTURE
PROSPECTIVES

To sum up, secondary epileptogenesis is a longlasting issue
that remains unsolved in epilepsy. Decades of clinical
and experimental evidence have confirmed its existence
and gradually revealed the possible mechanisms ranging
from the molecular to the circuitry level. Both excessive
activation of excitatory receptors and reduced inhibition
of GABA receptors eventually lead to the formation of
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the secondary epileptic focus. Other molecules such as
HMGB1, caspase-1, and CCK-8 may also contribute to this
process. Currently, surgery seems to be the optimal option for
secondary epileptogenesis. However, both neuroinflammation
inhibitors and DBS show great potential in retarding secondary
epileptogenesis. More importantly, with the development of
optogenetics and chemogenetics, treatments targeting crucial
circuits show great potential in interfering with secondary
epileptogenesis. The combination of new neurobiological
techniques can bring new insights to illustrate the mechanism
of this longlasting problem and novel therapeutic approaches
as well.
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