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Background: Stroke survivors are at high risk of dementia, associated with increasing

age and vascular burden and with pre-existing cognitive impairment, older age. Brain

atrophy patterns are recognised as signatures of neurodegenerative conditions, but the

natural history of brain atrophy after stroke remains poorly described. We sought to

determine whether stroke survivors who were cognitively normal at time of stroke had

greater total brain (TBV) and hippocampal volume (HV) loss over 3 years than controls.

We examined whether stroke survivors who were cognitively impaired (CI) at 3 months

following their stroke had greater brain volume loss than cognitively normal (CN) stroke

participants over the next 3 years.

Methods: Cognition And Neocortical Volume After Stroke (CANVAS) study is a

multi-centre cohort study of first-ever or recurrent adult ischaemic stroke participants

compared to age- and sex-matched community controls. Participants were followed

with MRI and cognitive assessments over 3 years and were free of a history of cognitive

impairment or decline at inclusion. Our primary outcome measure was TBV change

between 3 months and 3 years; secondary outcomes were TBV and HV change

comparing CI and CN participants. We investigated associations between group status

and brain volume change using a baseline-volume adjusted linear regression model with

robust standard error.

Results: Ninety-three stroke (26 women, 66.7 ± 12 years) and 39 control participants

(15 women, 68.7 ± 7 years) were available at 3 years. TBV loss in stroke patients was

greater than controls: stroke mean (M) = 20.3 cm3 ± SD 14.8 cm3; controls M =

14.2 cm3 ± SD 13.2 cm3; [adjusted mean difference 7.88 95%CI (2.84, 12.91) p-value

= 0.002]. TBV decline was greater in those stroke participants who were cognitively

impaired (M = 30.7 cm3; SD = 14.2 cm3) at 3 months (M = 19.6 cm3; SD = 13.8 cm3);
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[adjusted mean difference 10.42; 95%CI (3.04, 17.80), p-value = 0.006]. No statistically

significant differences in HV change were observed.

Conclusions: Ischaemic stroke survivors exhibit greater neurodegeneration compared

to stroke-free controls. Brain atrophy is greater in stroke participants who were cognitively

impaired early after their stroke. Early cognitive impairment was associated greater

subsequent atrophy, reflecting the combined impacts of stroke and vascular brain

burden. Atrophy rates could serve as a useful biomarker for trials testing interventions to

reduce post-stroke secondary neurodegeneration.

Clinical Trail Registration: http://www.clinicaltrials.gov, identifier: NCT02205424.

Keywords: stroke, neurodegeneration, brain atrophy, post-stroke cognition, cognitive impairment (CI)

INTRODUCTION

Stroke care has been transformed in the last three decades by
improved reperfusion treatments and rehabilitation therapies.
Despite this, the global burden of stroke remains high, in part
due to long-term cognitive impairments and increased risk of
dementia (1). Cumulative vascular risk factors increase dementia
risk (2, 3); conversely, good cardiovascular health reduces this
risk (4). Risk of stroke and of cognitive decline are also conflated:
cognitive impairment can anticipate the development of incident
stroke (5) and be a manifestation of this risk (6). One of the
strongest risk factors for post-stroke cognitive impairment is a
history of pre-stroke cognitive or functional decline (7).

Brain atrophy precedes and predicts cognitive decline in
many neurodegenerative syndromes, but the trajectories of brain
volume loss and cognitive impairment in stroke survivors are
poorly understood. These have been difficult to disentangle
given relatively few post-stroke longitudinal cohort studies
with high-quality serial imaging and cognitive data. Prior
studies also often included people with pre-stroke cognitive
impairment and dementia, further complicating associations.
Structural brain changes are already present at the time of
stroke, including smaller hippocampal volumes and increased
white matter hyperintensity (WMH) volumes (8). It has been
demonstrated that both greater brain atrophy and increased
WMH are associated with risk of future stroke (9). We have
demonstrated that stroke survivors have greater predicted brain
age (10), extensive white matter degeneration at 3 months
after stroke (11), and hippocampal, thalamic and ipsilesional
hemispheric atrophy that continues over the first post-stroke
year (12).

Brain atrophy rates are now being used as biomarkers for
clinical trials in a number of neurological disorders (13, 14),
including dementia (15). Regional atrophy rates have been shown
to correlate with other markers of neurodegeneration, including

Abbreviations: CANVAS, Cognition And Neocortical Volume After Stroke; CCI,

Charlson Comorbidity Index; CDR, Clinical Dementia Rating; CI, cognitively

impaired; CN, cognitively normal; HV, hippocampal volume; IQCODE, Informant

Questionnaire on Cognitive Decline in the Elderly Short Form; NART, National

Adult Reading Test; TBV, total brain volume.

CSF and blood biomarkers (16). Annualised hippocampal and
total brain atrophy rates have been described in normal ageing
and dementia syndromes (17–20), as well as being used as
outcome measures for treatment response in clinical trials
(15, 21). While the neuroimaging signatures of AD and other
neurodegenerative diseases are nowwell-described (22–25), there
are few data in ischaemic stroke survivors.

Understanding the trajectories of brain volume loss in
people with vascular contributions to their cognitive profile
has important clinical implications. Mixed neuropathologies
are ubiquitous in late-life dementias (26), and a greater
understanding of vascular neurodegenerative imaging signatures
would assist in diagnostic assignment and clinical treatment.
Total and regional brain atrophy rates may serve as useful tools to
assess treatment response for interventions to reduce post-stroke
secondary degeneration and vascular cognitive impairment,
especially as most recent multimodal intervention trials for
dementia prevention largely targeted cardiovascular risk (27,
28). An imaging biomarker has several advantages over more
traditionally used cognitive assessments, as atrophy rates are not
as dependent on language, educational attainment, culture, or
socio-economic status as canonical cognitive tests (29, 30).

We aimed to determine whether ischaemic stroke was
associated with progressive neurodegeneration via a prospective,
3-year cohort study comparing participants with ischaemic
stroke to their age- and sex-matched healthy controls. Our aim in
this study was to test for associations between group status: total
brain volume in stroke vs. control participants for our primary
hypothesis, brain volume change in those stroke participants
with cognitive impairment vs. normal cognition at 3 months
in our secondary hypothesis. We included participants with no
history of cognitive impairment or decline, cross-checked via
interview with family members and treating health practitioners.
In addition, we aimed to determine whether stroke survivors
with cognitive impairment at 3 months exhibited greater brain
atrophy over the subsequent 3 years compared to those who were
cognitively normal. We hypothesised that stroke survivors would
exhibit greater total brain volume loss than controls, and that
those who were cognitively impaired at 3 months after stroke
would exhibit greater brain volume loss than those who were
cognitively normal.
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METHODS

We received ethics approval from Human Research Ethics
Committees at each of the participating hospitals. All participants
provided written consent in person in accordance with the
Declaration of Helsinki.

The Cognition And Neocortical Volume Study (CANVAS)
study is a multi-centre cohort study including patients with
ischaemic stroke and healthy controls and tested with serial MRI
scanning and cognitive testing over 3 years (31).

Patients were recruited between April 2012 and July 2015
from the Stroke Units at three University teaching hospitals in
Melbourne, Australia: Austin Hospital, Box Hill Hospital, and
Royal Melbourne Hospital. Control participants were recruited
until September 2015 to optimise age- and sex-matching. All
testing and brain imaging were done at the Melbourne Brain
Centre, Austin Hospital campus.

Participants
Stroke survivors with first-ever clinical or recurrent ischaemic
stroke and no history of dementia were recruited within the first
3 months of their stroke. They were approached for recruitment
as inpatients or via phone interview once discharged. They
were included if they had an ischaemic stroke of any stroke
subtype (7), and excluded if there was pre-existing cognitive
impairment (based on participant, primary care practitioner,
and informant); could not have MRI (e.g., implanted metal,
severe orthopnoea); had primary haemorrhagic stroke, TIA, or
no clinically confirmed stroke; or were unlikely to survive 3 years
due to severe medical illness.

Healthy age- and sex-matched control participants with no
history of cognitive impairment were recruited from a pool of
community participants who had previously volunteered in MRI
studies and from local community groups. Spouses and age-
appropriate family members of stroke participants were also
approached to attempt socioeconomic matching. Inclusion and
exclusion criteria were the same as for stroke patients, except for
the stroke diagnosis.

Measurements
Sociodemographic
We obtained information via interview: age, years of education,
handedness, marital status, stroke and dementia family history,
smoking pack years (number of cigarettes per day multiplied
by years of smoking), alcohol consumption (low ≤14; high
> standard drinks/week); history of depression, hypertension,
type 2 diabetes mellitus (T2DM), hypercholesterolemia and
atrial fibrillation (AF) given either via physician diagnosis or
medication use. Body mass index [BMI; kg/m2; low <25, high
(≥25)] was calculated using weight and height measurements.

Clinical
We obtained information of stroke side, use of thrombolysis,
admission stroke severity [National Institute of Health Stroke
Scale (NIHSS)] score, aetiology (32) and subtype (Oxfordshire
criteria) (33).We used the modified Rankin Scale (34) (mRS)
as an estimate of neurological disability and the Charlson

Comorbidity Index (CCI) (35), a validated co-morbidity score, as
an estimate of general medical comorbidity, removing the stroke
score for people with stroke.

Venous blood was drawn for APOE genotype determination
on participants who consented to DNA analyses and storage.
Individuals were categorised asAPOE ε4 carriers or non-carriers.

Imaging
All participants were scanned on the same MRI scanner
which did not undergo significant hardware or software
upgrades over the study period. Whole brain images were
acquired on a single 3T Siemens Tim Trio Scanner with a
12-channel head coil (Siemens, Erlangen, Germany) (please
see https://www.ahajournals.org/journal/str for details). All
images were visually inspected for quality control before
processing using automated pipelines and excluded if degraded
by motion or other artefacts. Cortical reconstruction and
volumetric segmentation on MPRAGE images were performed
using the longitudinal stream (http://surfer.nmr.mgh.harvard.
edu/fswiki/LongitudinalProcessing) in FreeSurfer V6.0 (36).
Hippocampal results were based on averages of left and right
hippocampal volumes.

Stroke lesions were traced by our imaging analyst (MSK)
and cross-checked by a stroke neurologist (AB). Stroke lesion
sites were also cross-checked with acute inpatient imaging,
particularly their DWI lesion site on acute MRI where available.
We did not adjust for stroke lesion volume as its association
with post-stroke brain atrophy rates and cognition is not known
(7), and because it was fully correlated with stroke status
(zero volume in controls); therefore, a feature not an artefact.
We understand that there are vigorous arguments both for
and against lesion volume adjustment. WMH probability maps
were obtained from FLAIR images using the lesion prediction
algorithm (37) from the lesion segmentation toolbox included
in SPM12.

Cognitive
We used the National Adult Reading Test [NART (38)] to
estimate pre-morbid IQ and the Informant Questionnaire on
Cognitive Decline in the Elderly [IQCODE-Short Form (39)] to
estimate pre-morbid general cognitive functioning and to probe
for the presence of preceding undiagnosed cognitive decline.
Symptoms of anxiety and depression were examined at each
session using the Generalised Anxiety Disorder-7 [GAD-7 (40)]
scale and Patient Health Questionnaire-9 [PHQ-9 (41)] together
with a clinical interview.

Neuropsychological testing was done in a single session
allowing time for breaks. The cognitive testing protocol has
been previously described (31), and included: Hopkins Verbal
Learning Test-Revised [HVLT-R (42)]; Detection, Identification
and One-Back computerised tests from the CogState Battery
(43); Rey-Osterrieth Complex Figure; Star Cancellation Task;
Verbal Fluency Task (FAS and Animals); Trail-Making Test
A and B; Digit Span and Digit-Symbol Tasks from the
Weschler Adult Intelligence Scale-Third Edition [WAIS-III (44)];
Token Test 16-item version; Boston Naming Test (45); and
Clock Drawing Test. Age-appropriate normative values (mean,
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TABLE 1 | Summary of cognitive tests included under each cognitive domain.

Domain Selected tests

Attention/processing

speed

Digit-span (forward, backward)

Digit symbol task

Trail-making test (Part A)

CogState detection task (simple reaction

time, milliseconds)

CogState identification task (choice reaction

time, milliseconds)

CogState one-back task (accuracy, %)

Memory Hopkins-verbal learning test-revised (retention and

delayed recall)

Rey-Osterrieth complex figure task (delayed recall)

Visuospatial Rey-Osterrieth complex figure task (copy)

Executive Trail-making-test (Part B)

Clock drawing test (CLOX)

Rey-Osterrieth complex figure task (organisational score)

Language Boston naming test

Controlled oral word association test (COWAT)

Note that we grouped visual and verbal memory tasks. Our battery was weighted

to attention, processing speed and executive tasks as recommended by the National

Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular

cognitive impairment harmonisation standards (46).

standard deviation) were used where available to create z-scores
for each cognitive task.

A composite z-score was created for each cognitive domain
by averaging z-scores across tasks: attention (focused attention,
working memory, processing speed), executive function,
memory, language, and visuospatial function – see Table 1.
These groupings were via consensus decision after round-
table discussions and input from our cognitive neurologists
(A.B., D.D.), psychologist (L.B.) and neuropsychologists (J.B.,
E.W., T.C.).

A weighted Global Clinical Dementia Rating (CDR) Score
(47) was performed at the 3-year post-stroke assessment to
examine for functional decline.

Cognitive Outcome Evaluation Committee
Participants were assigned their status of normal cognition (CN),
cognitively impaired (CI), or dementia, in these panel meetings.
We also allowed the assignment of unclassifiable if the participant
was unable to complete sufficient cognitive testing and/or no
history was obtained from an informant.

A participant was assigned cognitively normal (CN) if z-
scores in all cognitive domains were within accepted age- and
years of education-adjusted norms and there was no evidence of
functional decline due to cognitive impairment (i.e., activities of
daily living (ADLs) were unaffected).

A participant was judged to be CI if (1) the z-score for at least
one cognitive domain was lower than −1.5, and (2) there was
no evidence of functional decline due to cognitive impairment
(ADLs were unaffected).

A participant was judged to have dementia if (1) z-scores for
two or more cognitive domains were lower than −1.5 and (2)
there was evidence of functional decline (i.e., significant impact
on activities of daily living between time-points due to cognitive

impairment, as demonstrated by (a) discussions with next-of-
kin and the Short-Form IQCODE, and/or (b) CDR score of 1
or greater.

We note that a threshold of z-score >−1.5 is a standard
cut-point for most neuropsychological tests, as an accepted
threshold for decline or impairment for those tests with extensive
normative data. While continuous z-scores may be better
approach for assessing cognitive trajectories and longitudinal
change, we emphasise that the 3-month allocation was a cross-
sectional one to divide the groups into impaired/not impaired,
therefore allowing examination of the association between early
cognitive impairment and 3-year brain volume change.

Outcome Measures
Primary Outcome
Our primary outcome measure was total brain volume (TBV)
change between the 3-month and 3-year time-points compared
between stroke patients and controls. TBV and CCI were chosen
a priori as the adjustment covariates, as male sex is associated
with larger heads (48), and both medical co-morbidities (2) and
age (48) are associated with brain atrophy.

Secondary Outcomes
Secondary outcome 1 was TBV change between 3-months and
3-years comparing CN and CI stroke participants. We adjusted
for TBV at 3-months, CCI scores, and years of education;
the latter as it is correlated with cognitive performance and
post-stroke dementia risk (7). Cognitive status at 3 months,
not 3 years, was included in our model. Three-year cognitive
outcomes were not included in this model as we did not
perform predictive modelling for 3-year cognitive outcomes.
These outcomes will be utilised in future analyses examining
associations between imaging metrics and risk factors and will
be available for future pooled analyses to allow adequate power
for predictive modelling.

Secondary outcome 2 was hippocampal volume (HV) change
between 3-months and 3-years in stroke patients and controls
with adjustments identical to primary outcome.

Secondary outcome 3 was the comparison of HV change
between 3-months and 3-years comparing CN and CI stroke
participants with adjustments identical to secondary outcome 1.

Sample Size Calculation
We calculated our sample size to include sufficient participants
for both the primary outcome and secondary outcome 1. We
based our brain volume loss estimates on pilot (49) and published
data (48, 50). We estimated 35 participants per group yielding
power of 0.8 assuming two-sided alpha of 0.05. For the CI
vs. CN comparison, we estimated an expected prevalence of
cognitive impairment of 30% at 3 months (7). We used an
ANCOVA method to estimate sample size for two samples
with repeated measures (CN vs. CI stroke in a ratio of 2:1),
including a correlation score between baseline and follow-up.
Using an alpha level of 0.05 (two-sided), power = 0.8, and
correlation = 0.1, we estimated that 108 participants would be
required (36 CI and 72 CN), with predicted 20% attrition due
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to death or non-participation, giving a total 135 stroke and 40
control participants.

Statistical Analysis
Our statistical analysis plan was formulated prior to study
database lock. All missing data were assumed to be missing-
at-random following deliberations by the Cognitive Outcome
Evaluation Committee prior to statistical analysis. After cognitive
group allocation and analyses, we compared demographic
and stroke characteristics in stroke patients who completed
the 3-month and 3-year review sessions with those who
withdrew from the study or were unable to attend study visits
(Supplementary Tables II, III).

Patient characteristics were summarised as either means and
SD, or medians and interquartile ranges (IQRs), for continuous
variables; and counts (proportions) for categorical variables.
They were compared between groups using t-test, Mann-
Whitney-test, or chi-square/Fisher Exact-test depending on the
distribution. We conducted our primary complete case analysis
on the sub-sample of participants with data available at 3 months
and 3 years.

We used a linear regression model with robust standard error
estimation to investigate the primary outcome for the complete
case analysis: TBV change between 3-months and 3-years as the
dependent variable, group (stroke vs. control) as independent
variable, and TBV and CCI at 3 months as covariates. The same
approach was used for Secondary Outcome 1 using CN vs. CI
group, and the inclusion of years of education as covariate.

We applied the same models for Secondary Outcomes 2 and 3
but used HV change as our dependent variable.

We conducted further sensitivity analysis on the sub-sample
of participants who had 3-month data irrespective of 3-year
data availability under the assumption of missing-at-random.
This sensitivity analysis was conducted using linear mixed-effects
modelling with specific outcomes of interest as output variables;
individual group, time-points, and multiplicative group-by-time
interaction term as independent variables; adjustment covariates
as specified above; and individual participants as random effects.

Analyses were done in Stata version 15.0 (StataCorp, College
Station, TX, USA). Two-sided p-values < 0.05 were regarded
as indicative of statistical significance. No correction for
multiplicity of comparisons to limit family-wise Type I error rate
was undertaken.

RESULTS

Participants
Over the study period, 3,037 stroke patients were admitted to
the participating stroke units and screened for potential study
recruitment; 2,659 did not meet study criteria (i.e., haemorrhagic
stroke, prior history of dementia, severe stroke making 3-
year survival unlikely, etc.). Of the 378 potential participants,
203 declined study participation, 40 were not included for
other reasons (e.g., rural or regional participant unable to
travel to the scanner). We recruited 135 stroke participants
(Supplementary Figure I).

Nine were not available at the 3-month study visit (two
returned at 3 years). One-hundred and 26 stroke patients
attended their testing session at 3months: four had incomplete or
non-evaluable MRI scans; one had incomplete cognitive testing.
A total of 122 were available for primary outcome analyses and
a total of 121 participants had complete data sets at 3 months
(Table 2).

At 3 years, 15 stroke participants had died, and 14 had moved
interstate, were uncontactable, or withdrew for other reasons
(n = 29; Supplementary Tables I, III); 102 stroke participants
returned for their study visit but nine had non-evaluable scans,
meaning a total of 93 were included for the primary outcome
analysis at 3 years; 92 were included for secondary outcomes
1 and 3 as one stroke participant had an incomplete cognitive
assessment at 3 months (Table 3; Supplementary Tables II, III).
Our attrition rate was 19% for stroke participants (102/126), in
line with the 20% predicted for our analyses.

We examined for attendance and evaluable scan bias following
database lock. Incomplete data sets were associated with
obesity at both time-points, and with older age and history of
hypertension at 3 years (Supplementary Tables II, III), but not
with admission stroke severity.

One-hundred and forty-six control participants were screened
for study participation: 18 did not meet inclusion criteria,
22 declined participation and 66 did not respond to our
invitation to participate. Forty control participants were
included in the 3-month assessment and 39 were available
for the 3-year assessment as one participant withdrew. Two
participants had silent lesions noted on their research MRI
scans, but no stroke diagnosis after clinical review, remaining in
the study.

All control participants were cognitively normal at 3 months
and 3 years. At 3 months, there were 80 CN and 41 CI
stroke participants (Table 3). At 3 years, there were 73 CN,
16 CI and 4 dementia stroke participants, which included 67
CN and 25 CI assigned at the 3-month visit. Significantly
more (p = 0.016) 3-month CI participants died or did
not attend their 3-year visit (34%) than CN (14%). Note
that cognitive status groupings were done at the 3-month
timepoint, not at 3 years, when there were 4 participants
with dementia.

Sociodemographic
No differences in age and sex were observed between groups at 3
months and 3 years.

Clinical
Strokes were in all vascular territories
(Supplementary Figure II). No differences in stroke
characteristics were observed between stroke participants
available at 3 months and 3 years (Supplementary Tables I, III).

At 3 months, stroke participants had higher CCI scores than
controls and were more likely to have a history of T2DM,
hypertension, smoking and atrial fibrillation (Table 2). At 3 years,
stroke participants had more atrial fibrillation than controls.
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TABLE 2 | Characteristics of stroke and control participants attending the 3-month assessment.

Stroke Control

N N p

Sociodemographic

Age, years, M ± SD 126 68.4 (11.84) 40 68.8 (6.63) 0.85

Men, no. (%) 126 87 (69.1%) 40 25 (62.5%) 0.45

Clinical

APOE ε4, no. (%) 112 20 (17.9%) 39 4 (10.3%) 0.32

Depression, no. (%) 126 12 (9.5%) 40 4 (10%) 1.0

Charlson Comorbidity Scores (35), Md

(Q1, Q3)

126 3 (2, 5) 40 3 (2, 3) 0.03

Hypertension, no. (%) 126 80 (63.5%) 40 17 (42.5%) 0.03

Hypercholesterolaemia, no (%) 126 57 (45.2%) 40 14 (35%) 0.28

Type 2 diabetes mellitus,

no. (%)

126 32 (25.4%) 40 4 (10%) 0.047

Atrial fibrillation, no. (%) 126 30 (23.8%) 40 1 (2.5%) 0.002

Smoking, pack years,

Md (Q1, Q3)

122 1 (0, 17) 40 0 (0, 30) 0.045

Obesity, no. (%) 126 37 (29.4%) 40 7 (17.5%) 0.16

Imaging

Days to scan (Md, Q1, Q3) 122 92 (85, 112) 40 94 (87, 08) 0.71

Total brain volume (cm3, M ± SD) 122 1,079 (123) 40 1,113 (83) 0.054

Hippocampal volume (mm3, M ± SD) 122 3,862 (490) 40 4,032 (343) 0.017

Stroke lesion volume (mm3, Md, Q1, Q3) 122 1,866 (443, 6,869) - - -

WMH volume (mm3, Md, Q1, Q3) 122 1,866 (443, 6869) 40 684 (225, 690) 0.0001

Cognitive

Education, years, Md (Q1, Q3) 126 12 (10, 15) 40 17 (11, 18) 0.0005

NART-FSIQ, Md (Q1, Q3) 113 111 (111.5, 124.9) 40 120.9 (111.5, 124.9) 0.0002

Comparison of demographic, imaging and cognitive characteristics of stroke patients and healthy controls at 3 months. Significant p-values are in bold.

Cognitive impairment at 3 months was associated with greater
age (71.8± 8.9 years CI vs. 64.6± 12.4 CN), higher CCI (4 CI vs.
3 CN) and hypertension (80% CI vs. 46% CN; Table 3).

Cognitive
Control participants had significantly greater years of education
and higher NART-FSIQ scores compared to stroke participants
(Table 2). No associations were observed between years of
education and NART-FSIQ and cognitive impairment in stroke
participants (Table 3).

Imaging and Stroke Characteristics
Stroke participants had smaller HV than controls at 3 months
(3,862 ± 490 mm3 vs. 4,032 ± 343 mm3, Table 2) and higher
WMH volumes than controls at both time-points (e.g., 3-month
median stroke = 866 mm3, controls = 684 mm3, p = 0.0001;
Table 2; Supplementary Tables).

Cognitively impaired stroke participants had smaller TBV
(CN = 1,119 ± 108 cm3, CI = 1,026 ± 110 cm3) and HV
(CN = 4,047 ± 394 mm3, CI = 3,589 ± 360 mm3) and
larger stroke lesion volumes (CN = 1,181 mm3, CI = 5,899
mm3) but not WMH volume (median CN = 1,572 mm3, CI
= 2,069 mm3) than cognitively normal participants. Cognitive

impairment was not associated with admission NIHSS, prior
stroke, or side of stroke (Table 3). We observed more large-
artery embolic and less lacunar strokes in the CI group.

Primary Outcome: Change in TBV
Figure 1 and Table 4 demonstrate that both groups lost TBV
between 3-months and 3-years, but TBV loss in stroke
participants (n= 93, 26 women, 66.7± 12 years) was significantly
greater than controls (n= 39, 15 women, 68.7± 6.7 years): stroke
mean 20.31 cm3 ± SD 14.8 cm3; controls mean 14.22 cm3 ± SD
13.21 cm3; adjusted mean difference 7.88 95% CI (2.84, 12.91)
p-value 0.002. This was confirmed on sensitivity analysis (n =

122 stroke, n= 40 controls, p-value for group-by-time interaction
0.002).

Secondary Outcome 1
Figure 2 shows that TBV decline was greater in the CI group
(mean = 30.67 ± SD 14.18 cm3) relative to the CN group (mean
= 19.63 ± 13.84 cm3); adjusted mean difference [10.42; 95% CI
(3.04, 17.80), p-value= 0.006; Figure 2], confirmed on sensitivity
analysis (CN n = 80, CI n = 41, p-value for group-by-time
interaction 0.001).
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TABLE 3 | Characteristics of stroke participants who were cognitively normal vs. cognitively impaired at 3-month visit.

Cognitively normal Cognitively impaired

N N p

Sociodemographic

Age, years, M (SD) 67 64.6 (12.4) 25 71.76 (8.90) 0.003

Men, no. (%) 67 52 (77.6%) 25 14 (56%) 0.067

Clinical

APOE ε4, no. (%) 62 12 (19.4%) 23 5 (21.7%) 0.77

Depression, no. (%) 67 6 (9.0%) 25 3 (12.0%) 0.70

Charlson comorbidity scores, Md

(Q1, Q3)

67 3 (2, 4) 25 4 (3, 5) 0.006

Hypertension, no. (%) 67 31 (46.3%) 25 20 (80.0%) 0.005

Hypercholesterolaemia, no. (%) 67 25 (37.3%) 25 13 (52.0%) 0.24

Type 2 diabetes mellitus, no., (%) 67 12 (17.9%) 25 8 (32.0%) 0.16

Atrial fibrillation, no. (%) 67 12 (17.9%) 25 4 (16.0%) 1.0

Smoking, pack years, Md (Q1, Q3) 66 0 (0, 12) 25 7 (0, 18) 0.29

Obese, no. (%) 67 18 (26.9%) 25 6 (23.1%) <0.99

Imaging

Days to scan (Md, Q1, Q3) 67 98 (83, 121) 25 90 (87, 96) 0.39

Total brain volume (cm3, M ± SD) 67 1,119 (108) 25 1,026 (110) 0.0008

Hippocampal volume (mm3, M ± SD) 67 4,047 (394) 25 3,589 (360) 3E-06

Stroke lesion volume

(mm3, Md, Q1, Q3)

67 1,181 (288, 4,331) 25 5,899 (2,382, 23,604) 0.01

WMH Volume,

(mm3, Md, Q1, Q3)

67 1,572 (448, 4,790) 25 2,069 (664, 7,695) 0.25

Cognitive

Education, years, Md (Q1, Q3) 67 13 (10, 16) 25 12 (10, 14) 0.08

NART-FSIQ, Md (Q1, Q3) 66 113 (104, 121) 24 107 (98, 115) 0.15

Stroke characteristics

Previous stroke, no. (%) 67 6 (9.0%) 25 4 (16.0%) 0.45

Thrombolysis, no. (%) 67 12 (18) 25 1 (4) 0.11

aNIHSS score, Md (Q1, Q3) 67 2 (1, 4) 25 3 (2, 5) 0.17

aNIHSS severity, mild (0–7), no. (%) 67 62 (92.5%) 25 23 (92%) 1.0

mRS score at assessment, Md (Q1,

Q3)

66 1 (1, 1) 25 (1, 2) 0.42

mRS severity, mild (0–1), no. (%) 66 50 (75.8%) 25 16 (64.0%) 0.30

Stroke side, no. (%) 67 25 0.92F

Right 38 (56.7%) 15 (60.0%)

Left 27 (40.3%) 9 (36.0%)

Bilateral 2 (3.0%) 1 (4.0%)

Oxfordshire, no. (%) 67 25 0.05F

Lacunar 11 (16.4%) 0 (0%)

Posterior 23 (34.3%) 9 (36%)

Partial anterior 33 (49.3%) 15 (60.0%)

Total anterior 0 (0%) 1 (4.0%)

Stroke participant demographic, clinical, imaging, cognitive and stroke characteristics comparing CN vs. CI at 3 months.
FFisher exact-test value per category; aNIHSS, admission NIHSS. Significant p-values are in bold.

Secondary Outcomes 2 and 3
HV change was comparable in both stroke and control
participants [stroke n = 93, controls n = 39, complete case
analysis adjusted mean difference 0.02, 95% CI (−0.02, 0.05), p=
0.32; sensitivity analysis: n= 40 controls, n= 122 strokes, p-value

for group-by-time interaction 0.26]. No significant difference in
HV change was observed between CN and CI stroke participants
[complete case analysis adjusted mean difference 0.01 (−0.04,
0.06), p-value = 0.61; sensitivity analysis: CN n = 80 CI, n = 41,
p-value for group-by-time interaction 0.41].
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FIGURE 1 | Total brain and hippocampal volume change stroke vs. controls.

Total brain volume (A) and hippocampal volume (B) change between

3-months and 3-years in stroke patients and healthy controls. Y-axis = change

in brain volume (cm3 ). Positive values represent decline in brain volumes: i.e.,

greater brain volume loss. Midline = median brain volume change. X-axis: n =

93 stroke, n = 39 healthy controls.

DISCUSSION

We report the primary and secondary outcomes from
CANVAS, a prospective cohort study of ischaemic stroke
patients compared to age- and sex-matched controls where
all participants were cognitively normal at recruitment
and all ischaemic stroke subtypes were included. We
found that TBV loss in stroke participants over 3 years
was significantly greater than controls. Further, TBV
loss over 3 years was greater in stroke patients who were
cognitively impaired at 3 months compared to those without
cognitive impairment. We did not find these associations
for hippocampal volume loss, although cognitively impaired
participants had smaller hippocampi than those who were
cognitively normal.

No participants had a history of cognitive decline prior to
study entry. One-third of our stroke participants were cognitively
impaired 3 months after stroke, and 26% were impaired at 3
years, but more participants who were cognitively impaired at 3

months died or did not attend the 3-year visit. In addition, we
found an association with higher BMI and incomplete data sets.
Cognitively impaired stroke participants at 3 months had smaller
brain volumes, larger stroke lesion volumes, more vascular risk
factors, and higher CCI scores, but notWMH volume, than those
who were cognitively normal.

The lack of difference between WMH volume in cognitively
normal and cognitively impaired stroke participants at 3 months
is perhaps a surprising null finding. There are several possible
explanations. Our stroke participants are already at high risk
of greater WMH burden due to their vascular risk factors, and
we demonstrated that they have greater WMH volume than
control participants. In addition, our study was powered for our
primary hypothesis and first secondary hypothesis using TBV,
and it is likely that we were underpowered to detect difference
inWMH volume between the cognitively normal and cognitively
impaired groups. We would argue that WMH volume is perhaps
better than visual rating scales of WMH severity, due to its
objectivity and more quantitative nature. We have reported on
WMH estimation in prior papers, and note that even using
current methods, the impact of WMH on white matter integrity
may be underestimated (51).

Hippocampal atrophy is strongly associated with vascular
risk factors. We have previously reported smaller hippocampi
in stroke than control participants at baseline (8), and shown
that atrophy rates are greater in 3 months after stroke (12)
than the ensuing 9 months. However, we did not find that
stroke hippocampal atrophy rates were greater over 3 years
than controls, nor did we find an association with cognitive
impairment. This could be because most of the hippocampal
atrophy had already occurred – a potential floor effect. Many
authors have proposed that incipient Alzheimer’s pathology is
contributing to the hippocampal atrophy, and that pre-existing
protein deposition leads to the observed atrophy. However, this
has not been borne out on PET amyloid imaging studies of stroke
(52, 53), nor did we find an association between hippocampal
volume and amyloid status in a small PET amyloid sub-study at
3 years (54). Vascular risk factors are increasingly considered as
primary drivers of hippocampal degeneration (11, 12).

Also, the lack of association between hippocampal atrophy
and post-stroke cognitive impairment may not be surprising
when viewed in the clinical context of vascular cognitive deficits.
We did not use paired associate measures as our verbal memory
test, which are more sensitive to hippocampal dysfunction.
Vascular cognitive impairment is not characterised by the
primary amnestic deficits seen in clinical Alzheimer’s dementia.
Rather, it is characterised by slowed speed of processing,
memory retrieval problems, behavioural, attention and executive
dysfunction, which are dependent on normal thalamic and
frontal white matter tract and cortical function. Thalamic
dysfunction has been implicated in the clinical impairments seen
after stroke, with ipsi- and contralesional thalamic atrophy over
the first year reported (12). In addition, we have previously
reported that hippocampal subfield atrophy correlated better
with verbal memory impairment in this cohort, suggesting that
whole hippocampal atrophy may not be the metric of choice in
post-stroke cognitive impairment (55).
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TABLE 4 | Primary and secondary hypotheses results: linear regression analyses.

Outcome Stroke Control Adjusted mean difference

(95%CI)

p-value

Brain volume comparison between stroke and control participants

A. TBV change (cm3) 20.31 (14.84) 14.22 (13.21) 7.88

(2.84, 12.91)

0.002

B. HV change (cm3 ) 0.09 (0.09) 0.08 (0.08) 0.02

(−0.02, 0.05)

0.32

CN CI Adjusted mean difference

(95%CI)

p-value

Comparison between CN and CI stroke participants

C. TBV change (cm3 ) 19.63 (13.84) 30.67 (14.18) 10.42

(3.04, 17.80)

0.006

D: HV change (cm3 ) 0.09 (0.10) 0.11 (0.09) 0.01

(−0.04, 0.06)

0.61

A: Primary outcome difference between stroke and control total brain volume (TBV) change between 3 months and 3 years; B: Secondary outcome 2: Difference between stroke and

control hippocampal volume (HV) change between 3 months and 3 years; C: TBV change in stroke participants who were cognitively normal (CN) vs. cognitively impaired (CI) at 3

months; D: Difference between HV change in CN vs. CI stroke participants. All volume values: mean (SD) in cm3. First 2 rows are comparisons between stroke and controls; second 2

show data from stroke participants with cognitive impairment at 3 months after stroke and those who were cognitively normal. Significant p-values are in bold.

The observed reduction in TBV in stroke survivors and
the strong association with greater TBV loss in those who
were cognitively impaired at 3 months are novel. Imaging
measures of global brain volume necessarily capture both grey
and white matter atrophy. The latter is often underestimated
in histopathological studies, as white matter atrophy is hard to
estimate histologically. Advances in neuroimaging have allowed
us to chart white matter loss after stroke (11). The frontal lobes
are especially vulnerable to vascular brain burden (56), and
attention and executive function are dependent on the integrity
of these frontal networks. We have demonstrated degeneration
of the frontal distributed brain networks subserving attention
and executive function 1 year after stroke (56, 57). The deficits
associated with vascular cognitive impairments could be posited
as disconnection syndromes, arising both from the stroke lesions
and from concomitant white matter disease.

It is likely that there are multiple mechanisms underlying
this white matter degeneration in stroke populations, but
we know that brain infarction triggers extensive, pervasive
neuroinflammation (58). Microglial activation occurs within
brain networks involving the infarct, including the thalami
bilaterally (58). These sustained inflammatory responses may
contribute to the Wallerian degeneration in tracts connected to
the stroke. This ongoing grey and white matter degeneration
(11, 12), captured in our study by the increased TBV loss seen
in the stroke group, may manifest clinically as cognitive decline.

Our findings further our understanding of post-stroke
neurodegeneration and open a window into potential
mechanisms. They also have important clinical implications.
Post-stroke outcomes are usually measured at 3 months after
stroke. The focus of stroke research in the last two decades
has been on penumbral salvage and therapies that enhance
reperfusion and recanalisation – especially thrombolytic
therapies and endovascular clot retrieval (59–62). There is
no doubt that these treatments have transformed stroke care.
However, stroke clinicians are now shifting their focus to

improvements in rehabilitation and post-acute care (63–66).
Post-stroke cognitive impairment is identified as a key priority
area for research and support by stroke survivors, but predictive
models for individualised risk factors for cognitive decline are
sorely needed (67). In other neurodegenerative diseases causing
dementia, there is a strong association between brain atrophy
and cognitive decline: neurodegeneration precedes and predicts
the onset of cognitive impairment (68–71). Researchers are now
seeking interventions to prevent post-stroke cognitive decline
(14, 72, 73). The description of brain atrophy rates following
stroke allows the use of atrophy rates as a potentially modifiable
imaging biomarker that could be used in association with other
more traditionally used outcome measures of function.

Study strengths include the strongly positive primary
hypothesis, and our prospective, observational control-cohort
design with identical study visits, imaging protocols and
cognitive tasks for all participants. Our high-quality imaging,
multi-domain approach to cognition, expected attrition rate and
documented missing data are also strengths. Study weaknesses
include the small numbers compared to large community-based
studies, incomplete data sets associated with older age, relatively
mild, mainly male, stroke participants, and our healthier,
more educated control participants – a common problem with
volunteer bias, especially imaging studies (74). The mismatch
between years of education and NART is an important limitation,
as it is well-described that less education is associated with
higher risk of dementia; more education is associated with
a lower risk and greater cognitive reserve (75). Educational
attainment is also impacted by geography and socioeconomic
status. However, we would emphasise that while overall our
stroke participants had less years of education than our controls
(stroke 12 years vs. controls 17 years, p = 0.0005), there was
no difference in educational attainment between those stroke
participants with cognitive impairment vs. those who were
cognitively normal (cognitively normal 13 years vs. 12 years for
impaired, p= 0.08).
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FIGURE 2 | Total brain and hippocampal volume change cognitively normal

vs. impaired. Total brain volume (A) and hippocampal volume (B) change

between 3-months and 3-years post-stroke in CN and CI stroke groups

determined at 3-months. Y-axis = change in brain volume (cm3 ). Positive

values represent decline in brain volume, negative values represent an increase

in brain volume. Midline = median brain volume change.

Like many cohort studies with long follow-up, our exclusion
criteria were biased towards participants who would be likely to
be alive in 3 years. In addition, the rigorous exclusion of prior
cognitive decline or impairment immediately reduced a third of
stroke ward admissions, especially with the exclusion of prior
psychiatric or neurological disease. Another group of potential
participants was excluded on the basis of insufficient English
proficiency (all participants had to have English proficiency as
the administered cognitive tests were all normed on English
speakers). This is a limitation in our study and biased our
recruitment towards milder stroke in people without severe
medical illness. In addition, it can be very difficult to match
vascular risk factors in stroke-free controls, as these same
risk factors obviously increase their chances of incidental or
concomitant stroke. Unlike some other, larger studies, our
primary objective was not to examine determinants of post-
stroke dementia, and therefore we were not powered to look at
predictors of cognitive decline and dementia at 3 years, but plan
to pool these data with larger prospective studies including stroke
participants alone.

CONCLUSIONS

Ischaemic stroke survivors exhibit greater neurodegeneration
compared to stroke-free controls. Atrophy is greater in those
who are cognitively impaired early after stroke. The coupling
of early cognitive impairment and greater subsequent atrophy
likely reflects the combined impacts of stroke and vascular
brain burden. Our results help to disentangle the complex
interactions between incipient cognitive decline, the cumulative
impact of vascular risk factors, and the effect of the super-added
stroke lesion. These brain atrophy rates can be used for future
intervention trials to reduce post-stroke neurodegeneration.
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