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Introduction: The relationship between serum neurofilament light chain (sNfL) and

myelin oligodendrocyte glycoprotein antibody (MOG-Ab) status has not been yet

investigated in children with the acquired demyelinating syndrome (ADS).

Objective and Methods: The sNfL levels and MOG-Abs were measured by

ultrasensitive single-molecule array and cell-based assay in a cohort of 37 children

with ADS and negativity for serum anti-aquaporin 4 (AQP4) antibodies. The sNfL

levels were compared in MOG-Ab+/MOG-Ab– and in two subgroups MOG-Ab+

with/without encephalopathy.

Results: About 40% ADS resulted in MOG-Ab+. MOG-Ab+ were younger at sampling

(median = 9.8; range = 2.17–17.5 vs. 14.7/9–17; p = 0.002) with lower frequency of

cerebrospinal fluid oligoclonal bands positivity (27% vs. 70%; p = 0.013) compared

to MOG-Ab–. About 53% of MOG-Ab+ presented encephalopathy at onset, 1/22 of

MOG-Ab– (p = 0.0006). Higher sNfL levels (p = 0.0001) were found in MOG-Ab+

(median/range = 11.11/6.8–1,129) and MOG-Ab– (median/range = 11.6/4.3–788)

compared to age-matched controls (median/range = 2.98/1–4.53), without significant

difference. MOG-Ab+ with encephalopathy resulted significantly younger at sampling

(median/range: 4.5/2.17–11.17 vs. 14.16/9.8–17.5; p = 0.004), had higher sNfL levels

(median/range:75.24/9.1–1,129 vs. 10.22/6.83–50.53; p = 0.04), and showed a trend

for higher MOG-Ab titer (0.28/0.04–0.69 vs. 0.05/0.04–0.28; p = 0.1) in comparison to

those without encephalopathy.

Discussion: We confirmed high sNfL levels in pediatric ADS independently from the

MOG-Ab status. Encephalopathy at onset is associated more frequently with MOG Ab+

children with higher sNfL levels and MOG titer. These findings suggest a role of acute
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demyelination in association with axonal damage in the pathogenesis of encephalopathy

in pediatric ADS.

Keywords: serum neurofilament light chain, encephalopathy, myelin oligodendrocyte antibody, pediatric acute

demyelinating disease, biomarkers

INTRODUCTION

The occurrence of the first event of acquired demyelinating
syndromes (ADS) in children is estimated to be 0.87 (95% CI
0.35–1.40) per 100,000 children per year (1).

Anti-myelin oligodendrocyte glycoprotein antibodies (MOG-
Abs) have emerged as potential biomarkers useful for the
differential diagnosis and reflecting pathogenic mechanisms,
disease course, prognosis, and therapeutic response in pediatric
patients with ADS (2–6). Serum neurofilament light chain
(sNfL) is a marker of neurodegeneration in several neurological
diseases (7–10).

The NfL is a component of the neuron cytoskeleton and
is released in the extracellular space after neuronal cell death
(11, 12).

A significant correlation has been found between
cerebrospinal (CSF) and sNfL levels in children with ADS
(2) suggesting that sNfL could be a promising peripheral
biomarker for axonal injury.

The MOG-Abs had been demonstrated to activate Ab-
dependent cellular cytotoxicity against MOG, located on the
myelin surface in the central nervous system, determining
demyelination (13).

Recent data showed a correlation between clinical/radiological

activity, cognitive impairment, and an increase of sNfL levels

in pediatric patients with multiple sclerosis (MS) and clinically

isolated syndrome (CIS) (2, 3). High sNfL levels were also

found in patients with neuromyelitis optica spectrum disorders

(NMOSDs) associated with aquaporin-4 (AQP-4) antibodies

(3) and in patients with the anti-MOG-Ab-associated disorder

(MOGAD) (14) indicating the presence of axonal damage
in all these disorders. The overall incidence of MOGAD is
0.16 per 100,000 people, with higher seropositivity in children
(0.31/100,000) than in adults (0.13/100,000), especially in
patients who have experienced an ADS prior to the age of 10
years (15). The most common presenting phenotype of MOGAD
is acute disseminated encephalomyelitis in children (40–56%)
and optic neuritis (ON) in adults (44%) (16). The relationship
betweenMOG-Ab titers and sNfL levels remains an area of active
investigation. A recent paper (17) demonstrated in a series of
38 consecutive adult onset ADS MOG-Ab+ that sNfL levels
correlated with attack severity and predicted long-term outcome.
The same authors, (18) more recently, analyzed sNfL levels at
onset and during follow-up in 18 adult ADS MOG-Ab+ and
showed that sNfL levels predominantly increase at disease onset.
To date, the relationship between sNfL levels and MOG-Abs has
not yet been investigated in pediatric populations with ADS.

In this study, in a cohort of 37 children with the first event
of ADS, we tested sNfL levels in MOG-Ab+ and MOG-Ab–
patients, and in two subgroups of MOG-Ab+ subdivided into

those with and without encephalopathy. Moreover, we compared
demographic, clinical, neuroimaging, and laboratory features
between these groups.

METHODS

Study Population
Between February 2019 and December 2020, 37 patients (F/M
15/22) younger than 18 years with a first acute event of ADS
and negativity for serum anti-AQP4 antibodies (AQP4 antibodies
are routinely requested in all children with ADS in our center)
were recruited at the Neuropsychiatric Unit and the Paediatric
Neurology Unit of University/Hospital Policlinico of Bari. All
patients underwent blood sampling at the time of the first
presentation before starting any treatment.

All sera were tested for sNfL levels and for the presence and
levels of MOG-Abs. An additional group of 20 serum samples
from age-matched unaffected controls were also tested for sNfL.
Baseline demographic (age and gender), clinical (symptoms
at onset classified as ON, brainstem involvement, spinal cord
involvement, encephalopathy; monofocal or multifocal onset),
MRI (presence of brain and/or spinal cord abnormalities), and
laboratory [CSF presence/absence of oligoclonal bands (OB)]
features were recorded for all patients.

Serum MOG IgG-Ab Assessment
The MOG-Abs were detected by a cell-based assay (CBA).
Briefly, cultured human cells (HEK293 cells) were transfected

TABLE 1 | Comparison of baseline demographic, clinical, laboratory and

radiological features between pediatric ADS MOG-Ab positive (+) and MOG-Ab

negative (–).

ADS

MOG-Ab+

ADS

MOG-Ab-

p-value

Number 15 22

Female, n (%) 5 (33%) 9 (40%) ns

Age at sampling, median (range),

years

9.8/2.17–17.5 14.7/9–17 0.002

MOG-Ab titre, median (range) 0.12/0.04–0.69 /

CSF IgG oligoclonal bands (%) 4/15 (27%) 15/22 (70%) 0.013

Abnormal brain MRI (%) 11/15 (75%) 19/22 (87%) ns

Abnormal spinal cord MRI (%) 9/22 (62%) 13/22 (59%) ns

Encephalopathy at onset 8/15 (53%) 1/22 (4.5%) 0.006

Optic Neuritis at onset (%) 7/15 (47%) 11/22 (50%) ns

Myelitis at onset (%) 8/15 (53%) 14/22 (64%) ns

Brainstem at onset (%) 7/15 (47%) 7/22 (32%) ns

Multifocal onset 8/15 (53%) 6/22 (27%) 0.09
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with a vector coding for the antigen MOG conjugated to GFP
and used as substrate in an indirect immunofluorescence assay
(19). Immunofluorescence was performed on transfected cells
cultured on glass coverslips. Cells were exposed to the sample
sera for 1 h at room temperature, and serum MOG-IgG was
detected on the surface of MOG expressing cells, using goat
anti-human 568 Alexa-Fluor conjugated secondary antibodies
(Invitrogen, Life Technologies, Carlsbad, CA, USA). In order to
evaluate unspecific background staining, we routinely performed
serum antibody staining using empty vector transfected cells
for both immunoassays. A cover glass containing cells was
observed using a DMRXA fluorescence microscope (Leica
Microsystems, Wetzlar, Germany) provided with a DFC700T
color camera. The antibody titer for MOG-Abs was performed
by a ratiometric method (20) using the cells expressing the
fluorescent protein (MOG-GFP). Briefly, for each cell line,
the analysis was performed using a 20× objective, and two
microscopy fields were randomly chosen. For each field, four
different regions containing two to four cells were analyzed. Each
region was analyzed, fluorescent intensity was measured with a
grayscale, and background subtracted values were given as the
ratio of red/green for the MOG antibody titer. Values range 0 for
no staining and 1 for maximum antibody binding. Therefore, we
defined these values as MOG quantitative ratio (MOGqr).

Serum NfL Assessment
The sNfL levels were determined by an ultrasensitive single-
molecule array (Simoa) method using the Quanterix-SRX
Analyzer Platform (Quanterix, Lexington MA, USA). Blood
samples were collected from each of the participants, centrifuged,
and sera divided into aliquots were frozen at −80◦C for
subsequent use.

The sNfL concentrations were measured via the commercially
available SimoaTMNF-light R© Advantage Kit (Quanterix,
Lexington MA, USA), a Singleplex Assay Kit.

Samples (25 µl of serum was diluted 1:4 in the plate by
adding 75 µl of sample diluent in each well) were tested blindly
and in duplicate and two quality control (high concentration
and low concentration quality control) samples were run, in
duplicate as well, on each plate for each run necessary to complete
the study. The sNfL concentrations (pg/ml) were calculated
using a standard curve made from a sample of known NfL
concentrations in triplicate according to the instructions of
the manufacturer.

The intra-assay coefficient of variation (CV) values have
been calculated by the SRX Analyzer Software (Quanterix Corp.
Billerica Massachusetts, US) from technical replicate measures of
specimens assayed within a single run.

Statistical Analysis
Statistical analysis was performed by using IBM SPSS, release
v.20.0 (IBM Corporation, Armonk, NY, USA). We compared
demographic, clinical, neuroimaging, and serological data
by the Kruskal–Wallis test, Mann–Whitney test, Wilcoxon
rank test, Fisher’s exact test, and χ2 test. Correlation
between age at sampling and sNfL levels were evaluated by
the Spearman test. Statistical significance was defined as a
two-sided p <0.05.

RESULTS

About 15 ADS (40%) resulted MOG-Ab+ and 22 (60%) MOG-
Ab–. The median value and range of MOG-Ab was 0.12/0.04–
0.69 MOGqr in MOG-Ab+ patients. Demographic, clinical,
laboratory, and radiological data of the two cohorts are reported
in Table 1. MOG-Ab+ ADS had a significantly lower median
age at sampling (median = 9.8; range = 2.17–17.5 vs. 14.7/
9–17; p = 0.002) and showed a lower frequency of CSF
OB positivity (27% vs. 70%; p = 0.013) in comparison to
MOG-Ab– ADS. About 53% of MOG-Ab+ patients presented

FIGURE 1 | sNF-L levels in 15 MOG-Ab positive and 22 MOG-Ab negative children with a first acute event of acquired demyelinating syndrome and 20 age-matched

health controls (I-ICs).
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FIGURE 2 | Correlation between age at sampling and sNFL levels in 37 children with a first acute event of acquired demyelinating syndrome (ADS).

TABLE 2 | Comparison of baseline demographic and laboratory features between MOG-Ab positive (+) ADS with encephalopathy and MOG-Ab positive (+) ADS without

encephalopathy.

ADS

MOG+ without

Encephalopathy

ADS

MOG+ with Encephalopathy

p-value

Number 7 8

Gender (F/M) 2/7 3/8 ns

Age at sampling, median (range), years 14.16 (9.8–17.5) 4.5 (2.17–11.17) 0.004

MOG-Ab titre, median (range) 0.05 (0.04–0.28) 0.28 (0.04–0.69) 0.1

sNfL median (range) pg/ml 10.22 (6.83–50.53) 75.24 (9.1–1.129) 0.043

encephalopathy at onset, but only in 1/22 of MOG-Ab–
patients (p = 0.0006). A multifocal onset was associated more
frequently (53%) in MOG-Ab+ than in MOG-Ab– (27%; p =

0.09) ADS.
Among MOG-Ab– patients who had CSF OB positivity

(15/22), nine of them had MRI features typical or suggestive of
MS, and these patients fulfilled criteria for a CIS diagnosis (21).

Significant (p = 0.0001) higher sNfL levels were found
in both MOG-Ab+ (median/range = 11.11/6.8–1,129)
and MOG-Ab– (median/range = 11.6/4.3–788) patients
compared to age-matched controls (median/range = 2.98
(1–4.53), but no significant difference was found between the
two groups (Figure 1). A significant negative correlation
was found between age at sampling and sNfL levels in
this cohort of pediatric ADS (R = −0.434, p = 0.007)
(Figure 2).

When compared MOG-Ab+ patients with (N. 8) and without
(N.7) encephalopathy (Table 2), children belonging to the first
group resulted significantly younger at sampling (median and
range: 4.5/2.17–11.17 vs. 14.16/9.8–17.5; p = 0.004), had higher

sNfL levels (median/range: 75.24/9.1–1,129 vs. 10.22/6./6.83–
50.53; p = 0.04), and showed a trend for higher MOG-Ab titers
(0.28/0.04–0.69 vs. 0.05/0.04–0.28; p = 0.1) in comparison to
those without encephalopathy.

Figure 3 represents a flowchart for the whole study
population.

DISCUSSION

In this study, we assessed for the first time in a pediatric
population with a first acute event of ADS, sNfL levels according
to MOG-Ab status. By using a sensitive MOG-Ab assay, we
identified 40% of MOG-Ab+ patients in a selected cohort
of pediatric ADS confirming the results observed in previous
similar cohorts (22), showing that 30–40% of pediatric ADS
were associated with MOG-Ab positivity. MOG-Ab+ children
were younger at onset in comparison to the MOG-Ab– patients
as reported in a previous study in which about 50% of MOG-
Ab+ had <11 years at presentation (15). We found a lower
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FIGURE 3 | Flowchart of the study population.

frequency of CSF OB positivity (27%) in MOG-Ab+ ADS
patients in comparison to MOG-Ab– patients (70%) as found in
a previous larger population (23) showing a frequency of 9.1%
of CSF OB positivity in MOG-Ab+ and of 94.6% in MOG-
Ab– pediatric MS patients. The frequency of the abnormal brain
and spinal cord findings did not differ between the two groups.
According to previous studies showing a majority of cases (50%)
of monophasic forms of MOGADmanifest as acute disseminated
encephalomyelitis, especially in patients under the age of 5–10
years (22, 24, 25), in our study, we found encephalopathy was
present at onset in 53% of MOG-Ab+ patients and only 1/22
MOG-Ab– (<1%), andMOG-Ab+ patients with encephalopathy
resulted significantly younger at sampling than MOG-Ab+
patients without encephalopathy. sNfL levels did not differ
between pediatric MOG-Ab+ and MOG-Ab– children, but they
resulted significantly higher in both groups compared to age-
matched controls, confirming that neuroaxonal damage is a
prominent feature in ADS. A significant negative correlation
was found, in our cohort of pediatric ADS, between age at
sampling and sNfL levels. Earlier studies observed an association
between sNfL and age, with higher sNfL levels in younger
pediatric MS, and a correlation between age and CSF NfL with
the highest levels in younger children with neurologic diseases
(26). This finding is consistent with histologic observations for
pediatric MS lesions, where the amount of acutely damaged
axons inversely correlated with the age of patients (27). A recent
paper (2) demonstrated in a cohort of 102 pediatric patients
with a first acute event of ADS that sNfL levels were higher in
children presenting with encephalopathy than in those without
encephalopathy symptoms. In the current study, we further
demonstrated that in ADS MOG-Ab+ children, encephalopathy
is associated with higher sNfL levels and a trend for higher
MOG titer. These findings not only confirm the prominent

role of axonal damage in the pathogenesis of encephalopathy in
pediatric MOGAD (28) but also suggest a possible associated role
of acute demyelination.

The role of local anti-MOG IgG deposits and complement
activation in the pathogenesis of EAE and ADS MOG+ is
still a matter of debate. Serguera et al. (29) reported that IgG
and C1q were associated with myelin and phagocytic cells
in brains with EAE and in biopsies of children with ADS
MOG+, suggesting that local anti-MOG IgG deposits and
complement activation in the perivenular white matter may play
a central role in the pathogenesis of EAE and ADS MOG+,
initiating and amplifying demyelination. Another paper (30)
demonstrated thatMOG-Abs frommost patients require bivalent
binding that poorly binds to C1q, questioning the pathogenicity
of MOG-Abs is mediated by complement activation. In a
more recent study (28) conducted on immunohistochemically
analyzed brain tissue biopsies from 11 patients with MOG-
Ab-associated disease and other inflammatory demyelinating
diseases, the occurrence of perivascular deposits of activated
complements and immunoglobulins was occasionally observed
in some MOG-Ab-associated demyelinating lesions even if the
frequency was much lower than that in AQP4 antibody-positive
NMOSD.

These discordant results indicate the need for further
studies to ascertain the role of MOG-Abs in the pathogenesis
of MOGAD.

The main limitation of this study concerns the small
size of each group, especially the subgroup of ADS MOG+;
nonetheless, we provide convergent observations with other
larger studies. Clearly, larger cohorts and longitudinal
studies in pediatric ADS are needed to better investigate
the potential interactions between MOG-Ab titers and
sNfL levels.
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