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Purpose: Neuroimaging elucidations have shown structural and functional brain

alterations in HIV-infected (HIV+) individuals when compared to HIV-negative (HIV–)

controls. However, HIV− groups used in previous studies were not specifically considered

for sexual orientation, which also affects the brain structures and functions. The current

study aimed to characterize the brain alterations associated with HIV infection while

controlling for sexual orientation.

Methods: Forty-three HIV+ and 40 HIV– homosexual men (HoM) were recruited

and underwent resting-state MRI scanning. Group differences in gray matter volume

(GMV) were assessed using a voxel-based morphometry analysis. Brain regions with the

altered GMV in the HIV+ HoM group were then taken as regions of interest in a seed-

based analysis to identify altered functional connectivity. Furthermore, the amplitude

of low-frequency fluctuation (ALFF) and regional homogeneity values were compared

between the two groups to evaluate the HIV-associated functional abnormalities in local

brain regions.

Results: HIV+ HoM showed significantly increased GMV in the bilateral

parahippocampal gyrus and amygdala, and decreased GMV in the right inferior

cerebellum, compared with the HIV– HoM. The brain regions with increased GMV

were hyper-connected with the left superior cerebellum, right lingual gyrus, and left

precuneus in the HIV+ HoM. Moreover, the ALFF values of the right fusiform gyrus, and

left parahippocampal gyrus were increased in the HIV+ HoM. The regional homogeneity

values of the right anterior cingulate and paracingulate gyri, and left superior cerebellum

were decreased in the HIV+ HoM.

Conclusion: When the study population was restricted to HoM, HIV+ individuals

exhibited structural alterations in the limbic system and cerebellum, and functional

abnormalities in the limbic, cerebellum, and visual network. These findings complement

the existing knowledge on the HIV-associated neurocognitive impairment from the

previous neuroimaging studies by controlling for the potential confounding factor, sexual

orientation. Future studies on brain alternations with the exclusion of related factors like

sexual orientation are needed to understand the impact of HIV infection on neurocognitive

function more accurately.

Keywords: homosexual, HIV infection, gray matter volume, functional connectivity, amplitude of low frequency

fluctuation, regional homogeneity
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INTRODUCTION

Even with the success of combination antiretroviral therapy
(cART), various neurological complications caused by the
infiltration of the human immunodeficiency virus (HIV) in the
central nervous system (CNS) (1), especially HIV-associated
neurocognitive disorder (2), remain a heavy disease burden.
Neuroimaging is a vital tool to provide insight into structural,
functional, and molecular changes occurring in the brain and
has the potential to comprehensively elucidate the pathogenesis
of HIV-associated neurocognitive disorder (3, 4). Structural
magnetic resonance imaging (sMRI) studies of HIV-infected
(HIV+) individuals have found widespread brain atrophy
and volume reduction in the subcortical structures including
caudate nucleus, putamen, amygdala, thalamus, hippocampus,
and parahippocampus (5–8), and cerebellar (9, 10). Resting-state
functionalMRI (rs-fMRI) studies revealed that HIV+ individuals
had certain attenuation in brain intra- and internetwork
connections, especially in the default mode, salience, and
executive control networks, which might underlie the reported
cognitive impairments (11, 12). However, these studies were
inconsistent in regional distribution and effect sizes of brain
abnormalities, and their conclusions cannot be generalized to the
whole HIV+ cohort.

The inconsistencies in neuroimaging studies of HIV

infection might be caused by multiple confounding factors,

including age, sex, and substance use. For instance, age
and HIV synergistically deteriorate cognitive performance
through overlapping pathogenic mechanisms (13). One study
reported that age exacerbated HIV-associated white matter
abnormalities and fronto-subcortical white matter integrity
loss (14). Numerous neuroimaging studies also showed brain
atrophy, white matter damage and functional network strength,
as a result of substance use in persons living with HIV (4).
Discrepant results from previous studies might also be due to
the heterogeneity of clinical status in studied samples, such as
cART initiation and adherence, route of HIV infection, stage
of HIV infection, viral suppression, and CD4 cell counts. For
example, HIV+ individuals with constant cART showed greater
functional connectivity in fronto-striatal networks than HIV+
individuals without cART (15), which was possibly related to
the reduced inflammatory response and glial activation during
cART (16). To sum up, different confounding factors might have
different effects on alterations in the structure and function of
brain, which to some extent affects the understanding of HIV
infection effects. And many other factors have not been taken
into account.

Sexual orientation is a biological phenomenon for unknown
reasons. Many previous studies have investigated the brain
differences between differing sexual orientations after controlling
for potential mediating factors including HIV infection and
substance abuse. sMRI showed, compared with the heterosexual
men (HeM), the homosexual men (HoM) displayed thinner
visual cortex and thicker patietal cortex, smaller thalamus
and larger corpus callosum (17–19, 48). A positron emission
tomography study that measured the cerebral blood flow
showed that the amygdala connections in HoM were more

widespread from the left amygdala whereas those in HeM were
more widespread from the right amygdala (20). Furthermore,
a series of rs-fMRI studies revealed differences in regional
homogeneity, amplitude of low-frequency fluctuation (ALFF),
and functional connectivity between HoM and HeM (21, 22).
Sexual transmission is currently one of the main modes of HIV
transmission. A recent investigation showed that gay men and
other men who have sex with men accounted for an estimated
17% of new HIV infections globally (23). However, as a potential
confounding factor, sexual orientation has not been specifically
considered when investigating the effects of HIV infection on
brain alteration.

Considering this background, we designed a prospective MRI
study, which controls for the sexual orientation in addition
to other confounding factors controlled in previous HIV
neuroimaging studies, to investigate the structural and functional
changes in the HIV+ individuals. To be more specific, we limited
our samples to HIV+ or HIV– HoM. We collected their sMRI
and rs-fMRI data, performed voxel-based morphometry (VBM)
and seed-based functional connectivity analysis, and calculated
the ALFF and regional homogeneity values. The purpose of
the current study was to determine how HIV alters the brain
structure and function when sexual orientation was explicitly
controlled as the homosexual males.

MATERIALS AND METHODS

Participants
A total of 43 HIV+ HoM (age 28.23 ± 3.80 ranging from 21
to 35 years) and 40 HIV– HoM (age 27.80 ± 4.49 ranging
from 19 to 35 years) were recruited in this current study. There
was no significant group difference in the mean age [t(81) =

−0.475, P = 0.636, BF+0 = 0.25, with median posterior δ =

−0.09, 95% CI = (−0.50, 0.31)]. The inclusion criteria were:
(1) adult men aged between 18 and 35 years; (2) right-handed
subjects; (3) individuals that were able to sign informed consent.
The exclusion criteria were: (1) individuals with the history of
confounding neurological diseases including multiple sclerosis,
Parkinson’s disease, epilepsy, or dementia; (2) individuals with
current or past opportunistic central nervous system infection;
(3) people with head injury with loss of consciousness longer
than 30min; (4) individuals with the existence of psychiatric
disorders including schizophrenia, depression or anxiety; (5)
individuals having a history of alcohol or drug abuse; (6)
individuals with MRI contraindication. The clinical assessment
characteristics are presented in Table 1. Among the 43 HIV+
HoM, 28 received the standard neurocognitive tests before the
MRI scan. None of the tested participants were diagnosed as
cognitive impairment (global deficit score≥ 0.5) (24). This study
was approved by the institutional review board of Shanghai
Public Health Clinical Center, and all the participants provided
written informed consents.

MRI Data Acquisition
Scanning was performed using an Ingenia 3.0 T scanner (Philips,
Amsterdam, Netherlands) with an 8-channel phase-array head
coil at the Shanghai Public Health Clinical Center. For the
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TABLE 1 | Demographics, clinical information, and neurocognitive performance of HIV+ HoM and HIV– HoM.

Category HIV+ HoM (n = 43) HIV– HoM (n =40) P-value BF

Age (years) 28.23 ± 3.80 27.80 ± 4.49 0.636 0.25

Duration of HIV infection (months) 43.00 (18.00 − 66.00) †

Duration of cART (months) 39.00 (17.00 − 57.00) †

Current CD4+ cell count (cells/µl) 479.65 ± 179.56 (353.00 − 640.00) †

Nadir CD4+ cell count (cells/µl) 247.86 ± 117.76 (183.00 − 310.00) †

Current CD8+ cell count (cells/µl) 807.47 ± 282.41 (622.00 − 994.00) †

Highest CD8+ cell count (cells/µl) 1,140.23 ± 451.26 (819.00 − 1,381.00) †

Current viral load †

<20, n (%) 9 (21%) †

Not detected, n (%) 31 (72%) †

GDS, n 0.27 ± 0.29 (0.07 − 0.36), 28 †

Data were shown in mean ± SD; IQR, interquartile range; extremum.

†, Not measured; and P-values were computed based on two-sample t-test. BF, Bayes factor; GDS, global deficit score.

resting-state scan, subjects were instructed to stay awake and to
remain as still as possible while keeping their eyes closed. Resting-
state fMRI images were acquired via an echo-planar imaging
sequence (echo time = 25ms, repetition time = 2,000ms, flip
angle = 75◦, field of view = 224 × 224mm, axial slices = 34,
slice thickness = 4mm, and voxel size = 1.0 × 1.0 × 1.0mm,
200 time points). T1-weighted structural images were obtained
on a sagittal orientation employing a magnetization-prepared
rapid gradient-echo sequence (echo time = 3.8ms, repetition
time = 1,900ms, flip angle = 8◦, field of view = 240 × 240mm,
170 slices per slab, voxel size = 1.0 × 1.0 × 1.0mm, and
matrix= 256× 256).

MRI Data Analysis
The VBM analysis was performed using Statistical Parametric
Mapping (SPM12) with the VBM8 toolbox. The raw data
were first checked for the scanner artifacts and anatomical
abnormalities. Subsequently, the whole-brain T1-weighted
images were segmented into gray matter, white matter,
and cerebrospinal fluid images, and were normalized to
adjust for differences in volume. Finally, all segmented
images were smoothened with an 8mm full width at a
half-maximum (FWHM) Gaussian kernel standard to increase
the signal-to-noise ratio. Significance was identified using a
voxel-level threshold of P < 0.001 and a cluster-level threshold
of P < 0.05 with family wise-error (FWE) correction for
multiple comparisons.

The resting-state fMRI data were preprocessed using the
Statistical Parametric Mapping (SPM12) and the Resting-State
fMRI Data Analysis Toolkit (REST, http://www.restfmri.net).
After discarding the first 10 volumes, the remaining fMRI images
were realigned, and slice-timing was corrected. The images were
then co-registered to individual T1-weighted images and spatially
normalized using the Montréal Neurological Institute (MNI)
template. We removed subjects who had head motion exceeding
3.0mm of maximal translation (in any direction of x, y, or z)
or 3.0◦ of maximal rotation during the course of scanning. The
normalized images were re-sampled to an isotropic voxel size of
3.0 × 3.0 × 3.0mm and smoothened using an FWHM Gaussian

kernel of 6mm before they were subjected to the removal
of the linear drift. Six head motion parameters, and ventricle
and white matter signals were regressed out before temporal
filtering (0.01–0.08 Hz).

The clusters identified from the VBM analysis were defined
as regions of interest (ROIs) and served as the seeds in the seed-
based functional connectivity analysis. For each participant, the
time courses of voxels in each ROI were extracted and averaged
across voxels. Pearson correlation was computed between the
seed time series and time series of other voxels in the brain,
and the correlation coefficients were transformed into Fisher’s Z-
scores. Group differences were compared with controlling age as
a covariate. Statistical significance was identified using a voxel-
level threshold of P < 0.001 and a cluster-level threshold of P <

0.05 with FWE correction for multiple comparisons.
The ALFF value of each voxel was calculated by averaging

the square root of the power spectrum with 0.01–0.08Hz. The
regional homogeneity value of each voxel was estimated by
calculating Kendall’s coefficient of concordance of the given voxel
along with its adjacent 26 voxels. Group comparisons of ALFF
and regional homogeneity values were performed using the two-
sample t-test with age controlled as a covariate, and significance
was identified using a voxel-level threshold of P < 0.001 and
a cluster-level threshold of P < 0.05 with FWE correction for
multiple comparisons.

In addition to the standard framework of frequentist
statistics featuring P-value null-hypothesis significance testing,
we calculated the Bayes factors (BF+0) based on t-values and
sample sizes using the BayesFactor package in R (https://cran.
r-project.org/web/packages/BayesFactor/index.html) (25). BF+0

≥ 3 provides evidence for the alternative hypothesis; BF+0 ≤

1/3 provides evidence for the null hypothesis; 1/3 ≤ BF+0 ≤ 3
indicate that there is insufficient evidence to draw a conclusion
for or against either hypothesis (26).

RESULTS

As shown in Figure 1 and Table 2, the HIV+ HoM
group had significantly higher GMV mainly in the
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FIGURE 1 | Gray matter volume (GMV) differences between HIV+ HoM and HIV– HoM based on voxel-based morphometry (VBM) analysis. (A) Brain regions with

significantly increased gray matter in the HIV+ HoM group (voxel-level uncorrected P < 0.001, cluster-level FWE-corrected P < 0.05). (B) Brain regions with

significantly decreased gray matter in the HIV+ HoM group (voxel-level uncorrected P < 0.001, cluster-level FWE-corrected P < 0.05). The color bars indicate

T-statistics.

bilateral parahippocampal gyrus (ParaHippocampal_R
and ParaHippocampal_L, brain labels were based on the
AAL3 atlas) and amygdala (Amygdala_L and Amygdala_R)
compared with HIV– HoM controls after controlling for age but
reduced GMV were observed in the right inferior cerebellum
(Cerebelum_8_R) (FWE corrected, voxel-level P < 0.001,
cluster-level P < 0.05).

The cluster with increased GMV in the parahippocampal
gyrus and amygdala found in the VBM analysis was then used
as the seed in the seed-based functional connectivity analysis
of rs-fMRI data. No significant group difference was found
using the strict threshold (voxel-level P < 0.001, cluster-level
P < 0.05 with FWE correction). With a less strict threshold
(voxel-level uncorrected P < 0.005, cluster size > 50), the
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TABLE 2 | Gray matter volume differences between HIV+ HoM and HIV– HoM.

Region Coordinates Cluster Size T-value P-value BF

x y z

HIV+ > HIV–

ParaHippocampal_R 20 −1 −21 3,614 7.281 <0.0000 39,130,564

Amygdala_L −5 −3 −11 3,614 5.293 <0.0000 13,729

Amygdala_R 9 −4 −14 3,614 4.659 <0.0000 1,429

ParaHippocampal_L −15 2 −20 3,614 4.613 <0.0000 1,220

Cerebelum_8_L −17 −69 −38 95 4.760 <0.0000 2,024

Putamen_L −30 −9 6 62 4.375 <0.0000 550

HIV+ < HIV–

Cerebelum_8_R 33 −70 −60 874 −4.296 0.0001 424

Calcarine_L 0 −78 7 715 −4.121 <0.0000 242

Cerebelum_Crus2_L −32 −83 −41 337 −4.506 <0.0000 849

Hippocampus_R 27 −27 −5 206 −5.065 <0.0000 5,969

Thalamus_R 12 −29 12 145 −4.061 0.0001 201

Cerebelum_6_R 8 −65 −15 67 −3.548 0.0007 44

BF, Bayes factor. Brain regions at a voxel-level threshold of P < 0.001 and a cluster-level threshold of P < 0.05 with FWE correction for multiple comparisons were highlighted.

FIGURE 2 | Brain regions with increased functional connectivity to the cluster with increased GMV (parahippocampal gyrus and amygdala) in HIV+ HoM compared

with HIV– HoM (voxel-level uncorrected P < 0.005, cluster size > 50). The color bars indicate T-statistics.

TABLE 3 | Functional connectivity differences between HIV+ HoM and HIV– HoM.

Region Coordinates Cluster Size T-value P-value BF

x y z

HIV+ > HIV–

Cerebelum_Crus1_L −15 −84 −18 96 4.022 0.0001 178

Lingual_R 12 −45 −6 92 3.619 0.0005 53

Precuneus_L 0 −63 18 57 3.198 0.0020 17

BF, Bayes factor. Corrected for multiple comparisons (voxel-level uncorrected P < 0.005,

cluster size > 50).

functional connectivity strength of the cluster with the left
superior cerebellum (Cerebelum_Crus1_L), right lingual gyrus
(Lingual_R), and left precuneus (Precuneus_L) was decreased in
the HIV+ HoM group compared with the HIV– HoM controls
as shown in Figure 2 and Table 3.

No significant group difference was found in ALFF and
regional homogeneity values using the strict threshold

(voxel-level P < 0.001, cluster-level P < 0.05 with FWE
correction). With a less strict threshold (voxel-level uncorrected
P < 0.005, cluster-level P < 0.05), the HIV+ HoM exhibited an
increase in ALFF in the right fusiform gyrus (Fusiform_R) and
left parahippocampal gyrus (ParaHippocampal_L) as shown in
Figure 3A and Table 4. With a less strict threshold (voxel-level
uncorrected P < 0.005, cluster size > 50), the HIV+ HoM
exhibited a decrease in regional homogeneity in the right
anterior cingulate and paracingulate gyri (Cingulate_Ant_R),
and left superior cerebellum (Cerebelum_Crus1_L) as shown in
Figure 3B and Table 5.

DISCUSSION

The current study investigated the impact of HIV on brain
structure and function in a cohort of adults with the same sexual
orientation. We found that, in homosexual males, HIV infection
showed greater GMV of limbic structures (parahippocampal
gyrus and amygdala), and increased functional connectivity
of these limbic structures with cerebellum, and brain regions
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FIGURE 3 | Local functional abnormality in HIV+ HoM compared with HIV–

HoM. (A) Brain regions with increased amplitude of low-frequency fluctuation

(ALFF) values in the HIV+ HoM group (voxel-level uncorrected P < 0.005,

cluster-level FWE-corrected P < 0.05). (B) Brain regions with decreased

regional homogeneity in the HIV+ HoM group (voxel-level uncorrected P <

0.005, cluster size > 50). The color bars indicate T-statistics.

TABLE 4 | Amplitude of low-frequency fluctuation (ALFF) differences between

HIV+ HoM and HIV– HoM.

Region Coordinates Cluster Size T-value P-value BF

x y z

HIV+ > HIV–

Fusiform_R 24 −33 −21 147 3.814 0.0003 94

ParaHippocampal_L −21 −27 −18 210 3.778 0.0003 85

BF, Bayes factor. Corrected for multiple comparisons (voxel-level uncorrected P < 0.005,

cluster-level FWE-corrected P < 0.05).

associated with the visual network (middle occipital gyrus
and lingual gyrus). These results provided evidence of brain
abnormalities in people living with HIV infection.

Our major finding was the structural and functional
dysfunction of the parahippocampal gyrus in the HIV+ HoM.
Several previous studies have repeatedly reported the impact of
HIV infection on the parahippocampal gyrus. A previous study
comparing the HIV+ older adults with age-matched uninfected
controls showed reduced GMV in the parahippocampal gyrus

TABLE 5 | Regional homogeneity differences between HIV+ HoM and HIV– HoM.

Region Coordinates Cluster Size T-value P-value BF

x y z

HIV+ < HIV–

Cingulate_Ant_R 3 33 0 195 −4.328 0.0000 471

Cerebelum_Crus1_L −18 −72 −30 56 −3.678 0.0004 63

BF, Bayes factor. Corrected for multiple comparisons (voxel-level uncorrected P < 0.005,

cluster size > 50).

(27). Another study about people living with HIV infection
also found brain atrophy in the hippocampus/parahippocampal
gyrus (28). In contrast to these previous findings, our main
finding was that the HIV+ HoM group had a greater GMV
in the bilateral parahippocampal gyrus compared with controls.
Compared to the relative abundance of literature elucidating the
structural atrophy to inflammation and immune function (29–
31), the mechanisms of pathogenesis, such as hypertrophy of
brain structures have not been well-understood. As we studied
a relatively young cohort compared to previous studies, we
speculated that the increased GMV of the parahippocampal
gyrus may have been related to the early compensation of brain
functions due to the brain parenchymal lesions induced by
HIV infection. This speculation was further supported by the
enhanced regional function in this region as indicated by the
increased ALFF. The parahippocampal gyrus has been associated
with many cognitive functions, especially in episodic memory
and visuospatial processing (32). Our study also reported
increased functional connectivity between the parahippocampal
gyrus and the precuneus, which participates in memory-related
activities and is closely connected to the hippocampus (33). Thus,
the abnormalities we reported in the parahippocampal gyrus may
affect memory, providing supporting evidence to the memory
dysfunction associated with HIV infection (34, 35).

In addition to the parahippocampal gyrus, the amygdala also
showed increased GMV in this study. As an important nucleus
that can affect mood, emotion, learning, and memory function,
the GMV changes in the amygdala were often involved in
neurological or psychiatric diseases, such as Asperger syndrome
(36), anxiety (37), and advanced depression (38). A neuroimaging
study involving HIV+ individuals exposed to early life stress
showed that high levels of stress and HIV could interact to
increase the amygdala volume and may result in neurocognitive
dysfunction in HIV+ individuals (39). In terms of sexual
orientation, the amygdala is an important component of the
core neural pathway of male sexual arousal and is responsible
for emotional response regulation (40). The activation of the
amygdala in HoM was greater than heterosexual males in
response to specific visual stimuli (41). It is possible that the
sexual orientation and HIV could also interact to increase the
amygdala volume. However, the potential interaction between
male homosexual orientation and HIV infection remains to
be further investigated. In addition, the cingulate gyrus, which
is reciprocally connected with amygdala, showed decreased
regional homogeneity in the HIV+HoM of our study.
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We found decreased GMV in the cerebellum in the HIV+
HoM, which is consistent with previous studies (42, 43).
The function of left superior cerebellum was also disrupted
as indicated by the decreased regional homogeneity in the
HIV+ HoM. Furthermore, we found increased functional
connectivity between the left superior cerebellum and the
cortical areas with greater GMV (mainly the parahippocampal
gyrus) in the HIV+ HoM group comparing to the HIV–
HoM. This is in accordance with the previous studies
indicating important functional interactions between the
cerebellum and the hippocampus formation. For instance,
functional connectivity between the left hippocampus and
the bilateral cerebellum was increased in HIV+ individuals,
which was associated with the spatio-temporal prediction
of movements in the memory formation (44). In a study of
cerebellar functional connectivity in HIV+ male individuals,
decreased functional connectivity between the right lobule
VI and the left hippocampus was considered as the brain
mechanism underlying the impairment of spatial and temporal
processing function (45). As the parahippocampal gyrus is
the main surrounding structure of the hippocampus and
plays an important role in memory encoding and retrieval
(46), the increased functional connectivity between the
parahippocampal gyrus and cerebellum found in the current
study might similarly indicate the behavioral impairments in
memory functions.

The HIV+ HoM group also exhibited functional abnormality
in the brain regions involved in the visual network. The
lingual gyrus plays an important role in visual attention and
visual judgment (46). As discussed previously (41), the HoM
showed greater activation of the amygdala when processing
specific visual stimuli. The increased functional connectivity
we found between the visual areas and brain structures
with increased GMV including the amygdala in the HIV+
HoM group might suggest a certain relationship between the
HIV infection and HoM. We also found a local functional
abnormality in the visual network in the HIV+ HoM,
demonstrated by the increased ALFF values in the fusiform
gyrus involved in visual processing. As little evidence has
been reported in previous studies, the relationship between
visual cortex dysfunction and HIV infection needs to be
further studied.

There were several limitations in this study. First, the grouping
of sexual orientation was based on the self-identification of
participants, lacking a measurement basis such as the Kinsey
scale (47). We might have included participants who were
“homosexual but with incidental or occasional heterosexual
tendencies,” which is separated from “exclusive homosexual”
on the Kinsey scale. The current findings need to be further
verified using exclusive homosexual individuals. Second, the
clinical information of enrolled individuals was incomplete,
including some important confounding factors, such as the
medication regimen of HIV+ patients. And although individuals
having a history of alcohol or drug abuse were excluded

in our study, these conditions were obtained via self-report
and concealment of illicit drug use could not be ruled out.
Thus, we could not completely eliminate the influence of
such confounding factors on the results. Third, the present
study did not conduct a full set of neurocognitive tests in all
HIV+ patients, and the explanation for the positive results
of structural and functional MRI was mainly dependent on
the reports from other scholars. Future research involving a
specific neurocognitive performance may help address some of
these questions.

To our best knowledge, this is the first study to strictly
control sexual orientation while investigating the HIV-related
alteration in the brain structure and function. We found
significant structural abnormalities of the limbic system
and cerebellum, and changes in functional connectivity and
activity in the brain regions related to memory and visual
function in the HIV+ HoM compared with the HIV– HoM
controls. Further studies are needed to expand the sample
size, acquire relevant clinical information, and group strictly
according to confounding factors, and employ multimodal
imaging methods, so as to improve our understanding
of the pathophysiological mechanism of HIV infection in
the brain.
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