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Aim: Current treatment of occluded cerebral vessels can be done by a variety of

endovascular techniques. Sometimes, the clot responds in varying degrees to the

treatment chosen. The Ex vivo characterization of the clot occluding the arteries in acute

ischemic stroke can help in understanding the underlying imaging features obtained from

pre-treatment brain scans. For this reason, we explored the potential of microCT when

combined with electron microscopy for clot characterization. Results were compared to

the clinical CT findings.

Methods: 16 patients (9 males, 8 females, age range 54–93 years) who were referred

to our institution for acute stroke underwent dual-source CT.

Results: Clinical CT clots were seen as either iso or hyperdense. This was corroborated

with micro-CT, and electron microscopy can show the detailed composition.

Conclusion: MicroCT values can be used as an indicator for red blood cells-rich

composition of clots. Meaningful information regarding the clot composition and

modalities of embedding along the stent retrievers can be obtained through a

combination of microCT and electron microscopy.

Keywords: stroke, clot, computed tomography, micro-CT, electron microscopy

INTRODUCTION

Due to recent advances in clinical imaging in acute ischemic stroke (AIS), various imaging
approaches are available for practitioners, as such that they can guide the reperfusion
treatment (1–3).

Among the underlying imaging features related to the AIS (4, 5), visualization of the clot can be
performed in a clinical setting using either magnetic resonance imaging (MRI) (4–6) or computed
tomography (CT) scans (4, 6–8). Information such as clot extent (volume or length) (4, 9–11) and
clot shape (12) is known to be linked to the treatment outcome. Red blood cell (RBC)-rich clots can
be depicted and measured using the blooming artifact with susceptibility-weighted MRI imaging
(4, 5), which is an important indicator for the clot amenability to endovascular treatment. In
non-contrast enhanced CT (NCCT) images (4) the clot can be directly visualized when it appears as
an area of relative high density within a blood vessel, referred to as a hyperdense artery sign (HAS)
(4, 6, 7, 13, 14), and is a highly specific—albeit with low sensitivity—indicator of occlusive stroke
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(4, 13, 15). In addition, the clot density in CT scan, as
measured in Hounsfield Units (HU), can be an indication
of the clot composition, in terms of red blood cells or
fibrin content, with high density of the HAS being related
to RBCs rich clots (16). In contrasting enhanced CT images,
the clot can be indirectly visualized via the arterial filling
defect. Clot permeability, represented by the residual flow
grade (17), is associated with arterial recanalization after
thrombolysis. The density of the clot could potentially be used
to guide treatment choices and/or predict clinical outcome
(18–20). For example, a higher density of the HAS is related
to a better angiographic outcome after treatment, either by
thrombolysis or thrombectomy (16, 18, 21). The advent of
artificial intelligence and automated segmentation methods (22)
brings to a new level the potential that clot visualization holds
for indicating the underlying clot histological features (23), and
for enabling the selection of treatment strategy (24, 25). To
confirm the causality between the clot imaging features and the
treatment outcome, the ex vivo characterization, in terms of clot
composition, is necessary (26–28). Conventional histopathology
is usually employed to gather information whether the clot is
red blood cells-rich or fibrin/platelets-rich (29–31), or, more
recently, to discover markers for resistance to treatment (32–
34). Alternatively, electron microscopy can offer important
information on clot organization, composition, and markers
of intravital contraction (29). However, the compositional
characteristics of the clot, as examined by histopathology or
electron microscopy, are not straightforwardly linked to features
observed in clinical imaging, since the blood pool around the
clot can contribute, in addition to the clot itself, to the density
observed in CT scans. Discriminating between the clot itself
and the surrounding blood pool can lead to a more accurate
interpretation of brain scans. For this reason, it is important
to characterize the clot ex vivo with imaging techniques similar
to those used in clinical setting. Recently, the preparation of
analog clots series (35), spanning a wide range of red blood
cells, fibrin, and platelets content, allowed the development
of parametric studies which identified MRI sequences (36)
and CT protocols (37) capable of differentiating different clot
types in vitro.

However, clots extracted from patients differ in size,
heterogeneity, and compactness from the in vitro clots.
Characterizing the clots extracted from patients with acute
ischemic stroke can be important for understanding how the
clot bio-physical properties relate to clinical imaging features,
and how such features can be relevant for the diagnosis
and treatment of AIS (29). Such understanding will render
clinical imaging useful for instituting personalized treatment.
The aim of our study is to examine clots that were extracted
from patients with acute stroke and examine, with high-
resolution techniques, if more information could be obtained
about the clot composition. We also aimed to compare,
in a pilot experiment, the characterization of the clots in
relation to clinical imaging data. Such understanding will,
in perspective, render clinical imaging useful for designing
personalized treatment.

METHODS

The study has been accepted by our local Ethics Committee
(CCER number 2018-00476).

For clot characterization in relation to clinical CT imaging,
we included in the study 16 patients (9 males, 8 females, age
range 54–93 years) who were referred to our institution for acute
stroke, and they underwent dual-source CT in the emergency
department, and did not qualify for thrombolytic treatment prior
to thrombectomy. Thrombectomy was performed according to
the standard clinical practice. For the analysis of the clinical CT
scans, the images were uploaded to a computer using OsiriX
(Pixmeo, Geneva, Switzerland), and the mean Hounsfield units
(HU) values were averaged from at least two regions of interest
assigned to the clot occluding the arteries. In addition, with
the purpose of examining the clots embedded onto the stents,
we included 5 patients (3 males, 2 females, age range 49–87
years, 3 of them received thrombolytic treatment) from which
the retrieved clots remained attached onto the stent retriever
after thrombectomy.

MicroCT Imaging
Ex vivo experiments were carried out on a low dose X-Ray micro
computed tomography scanner (Quantum GX, Perkin Elmer).
The scanner uses a cone beam X-ray source and a flat panel
X-ray detector to acquire high quality slice images, which are
rendered for 3D visualization. CT scans of clots fixed in formalin
were acquired on the micro-CT along the maximum intensity
projections. The micro-CT can measure the Hounsfield Units
(HU) of the analog clots along the x, y, and z axes. Calibration
was performed by imaging a water-filled falcon tube, and the
HU calibration values were adjusted for air (−1000) and water
(0), which allowed measuring the attenuation value of the falcon
tube. Then, each clot was rinsed with saline solution, drained
on sterile pads, and subsequently placed in a sealed falcon tube
to maintain moisture and prevent tissue degradation prior to
imaging. The clots were imaged with the low noise imaging
protocol (14min), with 90kV X-ray energy, 88 µA, and 140µm
voxel size. Segmentation and quantification of clots attenuation
ex vivo was performed in 3D Slicer1 (38), using a linear fit, in
which air and tube served as reference values.

Scanning Electron Microscopy (SEM)
Imaging
After imaging with microCT, the clots, either self-standing
or integrated onto the stent, were fixed in glutaraldehyde
(2.5%) overnight at 4◦C. Subsequently, samples were washed
in phosphate buffer solution (PBS) 10X three times for 20min
each, were dehydrated in solutions of ascending concentrations
of ethanol (50, 60, 70, 80, 90, and 100%) for 15min each
time, and were dried using critical point drying. The samples
were mounted on scanning electron microscopy (SEM) stubs
using carbon tape and carbon paint and sputtered with a 5 nm
AuPd (80%/20%) coating. The microscopy observations were

1http://www.slicer.org
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TABLE 1 | Baseline characteristics of patients with stroke included in this pilot study, and which did not receive thrombolytic therapy prior to mechanical thrombectomy.

Antiplatelet * Anticoagulant * Antiplatelet and

anticoagulant *

No antithrombotic

medications

Patients, n ** 1 9 1 5

Age (years), mean 80 82 71 67

Gender (male), n 0 6 1 2

Time thrombotic event onset -to-treatment >4.5 h,

n (mean, h)

1

(7 h)

2

(8 h)

0 2

(12 h)

Conditions contraindicating the thrombolytic therapy, n

Subcortical hemorrhage 0 0 0 1

Arterial hypertension 1 2 0 2

Intracranial aneurysm 0 0 0 1

Myocardial infarction 0 1 1 0

Occlusion location, n

M1 1 7 0 4

M2 0 2 1 0

P3 0 0 0 1

Type of clot, n

Fibrin-rich—white ***, n 0 2 0 1

Fibrin-rich—intermediate ****, n 0 0 1 3

RBCs rich *****, n 1 7 0 1

Endovascular technique, n

Aspiration 0 2 1 0

Stent retriever 0 1 0 0

Combination 1 6 1 5

No. of passes, mean 2 1.7 4 3.6

Final TICI score, n

0 0 0 0 2

2b 0 0 0 2

2c 0 1 1 0

3 1 8 0 1

* Medication received prior to thrombotic event.
** n, number of patients.
*** Fibrin volumetric content > 95%.
**** Fibrin volumetric content >70% and <95%, RBCs volumetric content <30%.
***** RBCs volumetric content > 85%.

performed with an ultra-high-resolution field emission Zeiss
Merlin SEM, equipped with a Gemini II column, using the
Everhart-Thornley secondary electron detector, 5 kV acceleration
voltage and 500 pA probe current.

Clinical CT Scan Data Analysis
For the analysis of the clinical CT scans, the images were
uploaded to a computer using the software OsiriX, and the
mean HU values were averaged from at least two regions of
interest assigned to the clot occluding the arteries. Analysis was
performed by two blinded neuroradiologists who wrote down
the numbers.

Statistical Methods
Hounsfield Units (HU) data is presented in mean ± standard
deviation (SD). The normality of data was confirmed using the
Shapiro-Wilk test. Two tailed Welch’s t-test was used to find
out if statistically significant differences occurred between the

means of fibrin-rich clots and RBCs-rich clots. Receiver-operator
characteristic curve (ROC) is used to determine the area under
the curve (AUC). All the statistics were calculated using SPSS
version 25 (SPSS Inc., Chicago, IL, USA).

RESULTS AND DISCUSSION

Baseline characteristics for patients included in this pilot study,
and who did not qualify for thrombolytic therapy, are presented
in Table 1. The table includes information on the antithrombotic
medication prior to thrombotic event, time elapsed from the
thrombotic event (when>4.5 h), conditions contraindicating the
thrombolytic therapy, as well as extracted clot characteristics, and
thrombectomy outcome.

Clinical Imaging
Typical CT brain scans, in which arterial occlusion sites can be
seen as hyperdense or isodense, are illustrated in Figures 1, 2.
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Clots ex vivo Examination With Electron
Microscopy
Based on our observations with electron microscopy, we
categorized the clots as RBC-rich or fibrin-rich. RBC-rich clots
are having red blood cells as main volumetric component
(>85%), and core regions composed of compact polyhedrally-
shaped RBCs (Figures 3A,B). Fibrin-rich clots can have the
appearance of a white clot, usually without any red blood
cells content (Figures 3C,D) or the appearance of a clot with
intermediate composition, in which fibrin remains the main
component, as volume fraction, although red blood cells are
encapsulated in occasional pits and/or scattered on the outer
clot surface (Figures 3E,F). The red clots extracted from patients
included in this pilot study have a higher volume compared to the
fibrin-rich clots, white or intermediate, and are associated with

FIGURE 1 | Example of hyperdense artery sign (HAS) in M2 segment

occlusion on the left (arrow), in non-contrast CT scan. The extracted clot was

a RBCs-rich clot.

increased stroke severity, as expressed on the National Institutes
of Health Stroke Scale (NIHSS), compared to fibrin-rich white
clots, and with better recanalization outcomes compared to
fibrin-rich clots (Table 2).

Clots ex vivo Examination With MicroCT
The mean HU values for the clots ex vivo, which are obtained
from segmenting and quantifying the voxels values with Segment
Statistics module in 3D Slicer, were in negative range. SD values
are plotted along with the mean HU values in Figure 4A. Using
two tailed Welch’s t-test, a statistically significant difference was
found between themeans of fibrin-rich clots and RBCs-rich clots,
where t = −2.784059, and p = 0.0173484. The receiver-operator
characteristic curve (ROC) is plotted in Figure 4B. Based on
these plotted values, the calculated area under the curve (AUC)
is 0.84. The mean HU values measured ex vivo are plotted against
the mean HU values measured in clinical imaging in Figure 5.
Using the average value of the mean HU ex vivo as cut-off,
we calculate a sensitivity of 30% and specificity of 100% for
identifying with ex vivo microCT the clots that display HAS in
clinical imaging. However, no statistically significant association
was found between the clots ex vivo or those measured on the
clinical CT.

Ex vivo Characterization of Clots
Embedded on Stent Retrievers
We employed microCT along with electron microscopy to
characterize the modality through which clots embed along the
stent retrievers. A typical microCT depiction of a clot embedded
along a stent retriever is illustrated in Figure 6. Both microCT
and electron microscopy are useful at identifying the clot volume
and the length of the stent covered by the clot. For each patient,
we examined the various fragments of clots attached to the
stent retriever, and we found that there is a linear correlation
(R2 = 0.9236) between the contact surface (calculated as clot
volume-to-stent length covered by clot ratio) and the clot volume
(Figure 7A). We found that RBC-rich clots tend to embed
through sites at which the stent struts are protruding (Figure 7B).
We also found that fibrin-rich clots are embedded along the stent

FIGURE 2 | Example of isodense clot. (A,B) Non-contrast CT. (C) contrast enhanced CT, illustrating the basilar artery tip occlusion. The extracted clot was a

fibrin-rich clot.
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through wrapping around the strut or by wetting the stent surface
(Figure 7C). In general, the contact points with the stent are less
compact than the core regions, situated between the stent struts.

DISCUSSION

Characterization of the clot, for example, volume, length (4,
9–11, 39, 40), shape (12), composition, and permeability, are
known to be linked to the treatment outcome. More recently,
antithrombotic therapy, which is used to prevent thrombus
formation, was identified as an important variable in thrombus

FIGURE 3 | Cross sectional view of clots, recorded with Scanning Electron

Microscopy (SEM) showing: (A) Periphery of a red blood clot, with biconcave

red blood cells in a loose fibrin mesh, (B)—The core of the same RBCs-rich

clot as in (A), with polyhedrocites as a marker of intravital contraction. (C)—A

white clot, with fibrin mesh, platelets and white blood cells, (D)—Another

section of the same white clot as in (C), with dense fibrin and structures with

crystalline appearance. (E)—A fibrin-rich clot, with scattered red blood cells on

the outer surface, and inclusions of biconcave red blood cells, (F)—Higher

magnification view of the red blood cells and fibrin walls.

research (41). In our pilot study, red clots were extracted
mainly from patients who received anticoagulant medications
prior to the thrombotic event. However, studying the effect
of antithrombotic medication onto the thrombus composition
can encounter several limitations, and must be cautiously
interpreted even when larger sample sizes are studied (41).
Polyhedrocites, often found in core regions of red clots, are
recognized as markers of intravital contraction (42–44), and
potential contributors to stiffness (45). Polyhedrocites were
previously found to be the prevailing cell type in red clots,

FIGURE 4 | (A)—Mean Hounsfield Unit (HU) values and the standard deviation

(SD), as measured with microCT for clots extracted from patients by

mechanical thrombectomy. The average values for the group of fibrin-rich clots

and for the group of red blood cells rich clots are marked with blue bar,

respectively red bar on the graph. (B)—The ROC curve plotted for the

samples shown in (A).

TABLE 2 | Extracted clots and clinical features.

RBCs-rich clots Fibrin-rich clots—intermediate Fibrin-rich clots—white

Patients from which the clot was extracted, n 9 4 3

Volume of extracted clot (mm3 ), mean (min, max) 48 (18, 110) 24 (12, 30) 8 (4, 15)

NIHSS at admission, mean (min, max) 19 (9, 27) 20 (17, 22) 4 (2,7)

Endovascular treatment, no. of passages, mean (min, max) 2.4 (1, 8) 3.2 (1, 6) 1 (1, 1)

Patients with final TICI score ≥ 2c, n (TICI min, TICI max) 9 (2c, 3) 2 (0, 3) 2 (2b, 3)
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FIGURE 5 | The mean HU values measured ex vivo with microCT, for the same samples as in Figure 4, plotted against the values measured in patient, with clinical

imaging.

FIGURE 6 | Characterization of a clot on stent: (A)—Non-contrast clinical imaging showing HAS, (B)—Contrast enhanced CT showing the catheter and the stent

deployed at the arterial occlusion site, (C)—Optical micrograph of the retrieved clot attached to the stent, (D)—MicroCT image of the retrieved clot attached to stent.

and can be related with clinical features such as stroke
severity (44). The findings of our pilot study, mainly focused
on patients who did not receive thrombolytic therapy prior
to endovascular treatment, are in agreement with previous
literature reports (44) and highlight that RBCs-rich clots
are more amenable to endovascular treatment, compared to
fibrin-rich clots.

Information obtained from clinical data is currently used
to make treatment decisions. The composition of the clot,
in particular, plays a role in its response to thrombolysis,
thrombectomy, and, if recognized in clinical imaging, may
even be helpful in deciding which kind of thrombectomy
device should be used. It is important to find characterization
techniques that better depict clot properties in relation to
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FIGURE 7 | (A)—Variation of clot-stent contact surface with the clot volume (the arrows indicate clots retrieved with Solitaire stent retriever, the non-marked clots

being retrieved with Trevo stent retrievers). (B)—Attachment of a RBCs-rich clot to the stent: the stent struts are protruding through the non-compact region.

(C)—Attachment of a fibrin-rich clot onto the stent by conforming to the stent strut surface.

clinical imaging. In this study, we examined the biophysical
properties of the clots in relation to the clinical imaging data.
We showed, in a pilot experiment, that clot density, as observed
in microCT, is specific for clots with HAS. This finding can
be used in designing experiments with larger sample sizes, in
which segmentation methods can be used to delineate the clot
appearance on clinical CT, and the significance of radiological
signs of the clot can be better understood across the various
scales. For example, statistically significant associations can
be explored between various radiomic features extracted from
clinical imaging and those features observed in terms of density
(HU) in microCT, along with characteristics related to clot
compactness, structure, and composition observed with sub-
micron resolution with microscopy techniques. While not yet
fully practical, further developments in CT imaging with the
use of different scanning techniques, and eventually artificial
intelligence, could help determine the clot composition before
treatment has started, thereby helping the physician to optimize
the choice of therapeutic tools.

CONCLUSION

Clots can be successfully imaged at various levels of resolution
using microCT and electron microscopy as complementary
techniques. Meaningful information regarding the clot
composition and modalities of embedding along the stent
retrievers can be obtained from these techniques. In perspective,
exploration of clots structure and composition with high
resolution microCT, using clots in dried state, will improve the
sensitivity of this technique. The study of larger sample sizes
with high resolution characterization techniques will allow
correlative links with clinical imaging, which will be useful for
harvesting the underlying information necessary for designing
personalized treatment.
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