
REVIEW
published: 11 January 2022

doi: 10.3389/fneur.2021.763018

Frontiers in Neurology | www.frontiersin.org 1 January 2022 | Volume 12 | Article 763018

Edited by:

Volker Rasche,

University of Ulm, Germany

Reviewed by:

J. Marc Simard,

University of Maryland, Baltimore,

United States

Qi Li,

The First Affiliated Hospital of

Chongqing Medical University, China

*Correspondence:

Ruiting Zhang

zhangruiting@zju.edu.cn

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 23 August 2021

Accepted: 06 December 2021

Published: 11 January 2022

Citation:

Zhang X, Huang P and Zhang R

(2022) Evaluation and Prediction of

Post-stroke Cerebral Edema Based

on Neuroimaging.

Front. Neurol. 12:763018.

doi: 10.3389/fneur.2021.763018

Evaluation and Prediction of
Post-stroke Cerebral Edema Based
on Neuroimaging
Xiaocheng Zhang, Peiyu Huang and Ruiting Zhang*

Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China

Cerebral edema is a common complication of acute ischemic stroke that leads to poorer

functional outcomes and substantially increases the mortality rate. Given that its negative

effects can be reduced by more intensive monitoring and evidence-based interventions,

the early identification of patients with a high risk of severe edema is crucial. Neuroimaging

is essential for the assessment and prediction of edema. Simple markers, such as midline

shift and hypodensity volume on computed tomography, have been used to evaluate

edema in clinical trials; however, advanced techniques can be applied to examine the

underlying mechanisms. In this study, we aimed to review current imaging tools in

the assessment and prediction of cerebral edema to provide guidance for using these

methods in clinical practice.

Keywords: ischemic stroke, edema, mechanism, imaging evaluation, predictors

INTRODUCTION

Cerebral edema is a severe complication of acute ischemic stroke; it results in poorer functional
outcomes and significantly increases the rate of mortality. During ischemia, excessive fluid
accumulates in the intracellular or extracellular spaces of the brain because of the failure of energy-
dependent ion transport (1–3) and the destruction of the blood–brain barrier (BBB) (4–6), which
leads to tissue swelling and the elevation of intracranial pressure. Cerebral edema can appear several
hours after ischemia and may progress over the first few days of stroke onset (7).

Patients with mild to moderate edema can be treated with medication (3, 8, 9). However, for
those with malignant edema (ME), the mortality rate can increase up to 80% with conservative
treatment (10–12). Timely surgical treatment by early decompressive craniectomy is recommended
to reduce mortality (9, 13–15). Thus, the accurate assessment and early prediction of edema can
benefit patients by more intensive monitoring and evidence-based interventions.

Neuroimaging examination is essential for the assessment of edema. Midline shift (MLS)
has long been established as a marker of severe edema and is known to correlate with clinical
deterioration (16–18). However, MLS is insensitive to mild to moderate edema and is thus
an unsuitable index for monitoring the condition of patients. Recently, new methods, such as
cerebrospinal fluid (CSF) displacement (19, 20) and net water uptake (NWU) (12, 21), have been
developed to quantify brain edema at an early stage. Furthermore, magnetic resonance imaging
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FIGURE 1 | Cerebral edema grades. (A) Left frontal lobe and basal ganglia

brain swelling, <1/3 of the hemisphere. (B) Right frontal and parietal lobe brain

swelling, >1/3 of the hemisphere and without midline shift (MLS). (C) Left

cerebral hemisphere swelling, >1/3 of the hemisphere with MLS.

(MRI) can distinguish cytotoxic edema from ionic edema and
vasogenic edema (22, 23), and advanced MRI techniques, such as
diffusion tensor imaging, can detect subtle structural changes in
brain edema (24). These new methods can be used to quantify
less severe edema and may serve as early imaging markers in
clinical practice.

Imaging is important in the prediction of edema. Previous
research has shown that infarct volume, collateral status, and CSF
volume (CSV), among other factors, are closely related to the
development of edema (11, 18, 25, 26). However, the predictive
values of these indicators often vary across studies (18, 27);
moreover, the optimal timing and modality of imaging exams are
also under debate.

There have been numerous reviews on post-stroke edema,
of which most have focused on the mechanisms of edema with
an emphasis on scientific discoveries rather than on clinical
applications. In this review, we briefly discuss the mechanisms of
post-stroke edema and focus more on current edema assessment
methods and neuroimaging predictors.

Our aim was to provide a comprehensive review of imaging
tools for the management of edema and provide guidance for
clinical practice.

MECHANISM OF EDEMA

Traditionally, cerebral edema after an ischemic stroke includes
cytotoxic edema, ionic edema, and vasogenic edema (7).
These three processes occur in sequence and are closely
interrelated. Cytotoxic edema is the earliest manifestation of
brain hydromineral disturbance as a result of changes in ion
channel and transporter (e.g., Na+-K+-2Cl− cotransporter and
Na-H exchangers) activity during a stroke event (3, 28–31).
It attracts ions and water into neurons or astrocytes, which
causes intracellular water accumulation and extracellular space
reduction without increasing brain tissue volume. Because of
the changes in ion concentrations on both sides of the BBB,
new gradients are formed; this generates a driving force for an
influx of water and ion across the intact BBB into the depleted
extracellular space, resulting in ionic edema (32–34). Ischemia
can also activate inflammatory mediators and increase oxidative
stress (35, 36), both of which lead to BBB disruption. This

event allows plasma proteins and other macromolecules to pass
through the BBB from the intravascular space into brain tissue,
which further aggravates water influx and results in vasogenic
edema. Recently, studies have shown that post-stroke cerebral
edema can also be driven by CSF influx through perivascular
spaces (37, 38). Although this has not been confirmed clinically,
the related mechanisms underlying the structural and functional
abnormalities of the brain’s glymphatic system following stroke
have gathered the interest of researchers.

IMAGING EVALUATION OF CEREBRAL
EDEMA

Computed Tomography
Computed tomography (CT) is the most frequently used
diagnostic procedure in acute stroke. It is sensitive to net water
changes but not fluid shifts among tissue compartments within
the brain parenchyma. Therefore, CT is sensitive to ionic and
vasogenic edema but not cytotoxic edema because fluid shifts
from the vascular to interstitial spaces during the first two
processes (22, 39, 40). Experimental models have demonstrated
a linear relationship between CT attenuation and hemispheric
tissue water content (39–41). Within the first few hours following
stroke onset, CT shows attenuation of gray matter, which results
in the loss of gray/white matter contrast in the cortex, indistinct
basal ganglia, and an insular ribbon. With the development
of edema, cortical sulci may disappear, and hypoattenuation
develops in white matter. During the late stages, ventricles
may shrink because of increased parenchymal volume, and
MLS occurs.

Midline Shift and Volume of Infarct-Related

Hypodensity
MLS and the volume of infarct-related hypodensity are two
commonly used imaging markers of edema based on CT images
(16–18). MLS describes the degree of displacement of the septum
pellucidum, which is a thin membrane between the frontal
horns of the lateral ventricles, relative to the ideal midline
on CT images. An MLS of over 5mm is usually considered
malignant cerebral edema (18, 42). Edema in a temporal lobe
infarction can cause uncal herniation with severe symptoms
despite minimal MLS.

The volume of infarct-related hypodensity has also been
widely used to evaluate edema (22, 25), and it can be manually
outlined on each CT slice. However, quantifying hypodensity
on CT during the acute phase when infarcts are subtle can
sometimes be difficult; moreover, distinguishing edema from
infarct growth in follow-up studies is also challenging.

At present, several comprehensive scores are based on the
above methods, such as cerebral edema grading (grade 1 = focal
brain swelling of ≤1/3 of the hemisphere, grade 2 = >1/3 of the
hemisphere, grade 3 = edema with MLS; Figure 1). These scores
are used widely in clinical studies (43–45). However, this semi-
quantitative method can only be applied to roughly assess the
degree of edema, and it is insufficient for evaluating patients with
mild edema.
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FIGURE 2 | Quantitative cerebrospinal fluid (CSF) shifts. Baseline (A) and 24 h (C) follow-up CTs after ischemic stroke, respectively. CSF spaces are outlined on a CT

scan slice at baseline (B) and follow-up (D). Supratentorial CSF and basal cisterns were outlined on each slice, and 1CSF was subsequently calculated.

FIGURE 3 | Measurement of % net water uptake (NWU) per volume on

admission. (A) The initial ischemic core is identified by the initial relative

cerebral blood flow (CBF) volume using a threshold of <30% in CBF maps. (B)

Non-enhanced computed tomography shows a slight decrease in the density

of the right basal ganglia region. (C) The mean density of the initial core

(Dischemic ) (red) was calculated in relation to the normal density (Dnormal) (green)

in the homotopic contralateral region. NWU = 1 – DIschemic/DNormal.

Displacement of Cerebrospinal Fluid
To quantify the severity of edema more accurately, Dhar et al.
proposed a CT-based volumetric measure of CSF shifts over
time (19). As ionic and vasogenic edemas develop, the CSF
is progressively displaced from the sulci and ventricles of the
cerebral hemispheres to compensate for the increased brain tissue
volume in the fixed cranial cavity. Supratentorial CSF spaces
(sulci and ventricles ipsilateral and contralateral to the stroke and
the third ventricle) and basal cisterns are outlined on each slice,
and the volume of CSF is quantified (Figure 2). The CSF can
be pushed out of the hemispheric sulci, cerebral ventricles, and
basal cisterns as edema develops in the hours or days following
the stroke. Studies have shown that, compared with MLS, the
reduction in CSV (1CSF) from baseline to follow-up CT is an
earlier and more sensitive indicator of edema severity across
a broader dynamic range (46, 47). Furthermore, the authors
developed an automated algorithm to segment the CSF from
the CT scans of stroke patients (46) to facilitate and scale up
such approaches. However, their methodmeasures changes in the
brain volume (BV); thus, it cannot distinguish edema from infarct
growth or hemorrhagic transformation. Moreover, it is not
suitable for patients with stroke in the brainstem or cerebellum.

Net Water Uptake
Recent studies have proposed the use of NWU within the lesion
area to determine the volume of edema (12, 48–50). NWU is

calculated using the equation NWU = 1 – DIschemic/DNormal,
where DIschemic (Hounsfield Unit, HU) is the density of the
ischemic core with hypoattenuation, and DNormal is the density
of the same area in the contralateral normal tissue (21, 49, 51)
(Figure 3). This quantitative method is based on a physical
principle in which the product between the volume of a body and
its mean CT density remains constant, regardless of the volume
of water uptake (49). Therefore, the increased water content
is proportional to the NWU, and the edematous component
of the infarct lesion can be quantified using CT densitometry
according to the following equation: edema volume = lesion
volume× NWU.

CT-based NWU quantification has been described as a precise
method to determine the individual volume of edema (21). A
previous study demonstrated that it is related to histopathological
measurements of the volume of water uptake (52). Fu et
al. proposed a new image patch-based NWU procedure that
only uses non-enhanced admission CT without the need for
lesion segmentation (53). However, this approach has other
limitations; for example, patients with pre-existing stroke or
significant carotid stenosis may have hypodense lesions, which
affect NWUmeasurement.

Magnetic Resonance Imaging
Similar to CT, cerebral edema can also be assessed by MLS
and change in CSV on MRI because BV increases as edema
progresses. Moreover, the intensity characteristics of MRI reflect
the tissue composition, and some sequences are particularly
sensitive to changes in water content.

T2 and T2 Fluid-Attenuated Inversion Recovery
T2 prolongation is commonly observed hours after stroke and is
considered to be related to increased water content in ischemic
tissue, which represents ionic and vasogenic edema (54, 55).
Gerriets et al. found that a significant T2 signal increase is
detectable as early as 20–45min following middle cerebral artery
occlusion in rats (56). However, in the early phase of stroke, a
slightly increased T2 signal intensity may be masked by high
CSF signal. Therefore, T2-weighted fluid-attenuated inversion
recovery (FLAIR) sequences can be more sensitive because
of the inhibition of CSF signals. In several studies, FLAIR
hyperintensity has been measured by calculating the intensity
ratio between the stroke lesion and the corresponding normal
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FIGURE 4 | Time course of the signal intensities in T2-weighted imaging

(T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient

(ADC) maps of a patient with a right paraventricular infarct.

FIGURE 5 | Cytotoxic edema, ionic edema, and vasogenic edema on MRI and

CT. A 69-year-old male underwent MRI and CT on day 5 post-stroke. (A) DWI

shows hyperintensity in the left frontal and parietal lobes. (B) ADC map shows

hypointensity in the marginal area of the lesion, indicating cytotoxic edema,

and hyperintensity in the lesion center, indicating ionic and vasogenic edema.

(C) CT image shows hypodensity in the left frontal and parietal lobes, especially

in the area of ionic and vasogenic edema (i.e., ADC hyperintensity area).

contralateral hemisphere as a marker to quantify vasogenic
edema (57–59).

Diffusion Magnetic Resonance Imaging
Diffusion MRI is sensitive to the diffusion of water molecules
in biological tissue and plays a critical role in the research
and clinical management of acute stroke. Diffusion-weighted
imaging (DWI) is the most frequently used technique to detect
cytotoxic edema. An increase in DWI and a decrease in apparent
diffusion coefficient (ADC) can be observed several hours after
acute ischemia because of extracellular fluid loss and swelling of
various cellular compartments, which are proportionate to the
degree of intracellular water accumulation (60, 61). ADC declines
immediately when the cerebral blood flow (CBF) falls below 20
to 40 ml/100 g/min in animals and humans (22), and the most
dominant decay occurs within the first hours (1–1.5 h) (57, 61,
62). Subsequently, ADC values increase in the days following

stroke because of progressive ionic and vasogenic edema and
cell lysis, which results in a phenomenon called ADC pseudo-
normalization (63) (Figures 4, 5). Therefore, timely imaging (24–
48 h after stroke onset) is essential to evaluate the process of
cytotoxic edema.

However, DWI provides relatively limited quantitative
information regarding the microstructural features of brain
tissue. Recently, several advanced diffusion techniques have been
proposed, such as the ball-and-stick model, q-ball imaging,
diffusion spectrum imaging, composite hindered and restricted
models of diffusion, and neurite orientation dispersion and
density imaging (NODDI) (64–67). Among these, NODDI
provides quantification of the relative contribution of the three
diffusion compartments (CSF-like, extra-neurite, and intra-
neurite) to the total diffusion signal in each voxel (65). NODDI
parameters can be used to further elaborate microstructural
changes within ischemic tissue and may disentangle the
confounding factors behind cerebral edema.

NEUROIMAGING PREDICTORS OF EDEMA

The measurement methods of edema have been described above.
Because edema strongly influences patient prognoses, predicting
its occurrence in the early stages is vital to provide timely
intervention. To date, various clinical and imaging markers have
been developed to predict edema. In this review, we focus on
neuroimaging predictors.

Infarction Volume
A large ischemic core is considered a key risk factor for ME.
Occlusion of both the middle cerebral (MCA) and internal
carotid arteries (ICA) is a strong predictor ofMLS (11, 18, 68, 69).
For patients with MCA occlusion, over 50% of the MCA territory
infarction on initial CT predicts ME (18, 70), whereas an acute
DWI volume of >80ml on MRI acquired within 6 h of stroke
onset and that of >145ml when imaged 14 h from stroke onset
have been shown to predict rapid early neurological deterioration
and the need for neurosurgery (11, 71–74).

A large cerebellar hemisphere infarction is the major cause
of severe edema in infra-tentorial infarcts and results in
acute obstructive hydrocephalus and potentially fatal tonsillar
herniation. Decompressive suboccipital craniectomy with
dural expansion with or without ventriculostomy leads to
acceptable functional outcomes in most patients. However,
cerebellar infarction volume that is predictive of the need for
decompression has not yet been established (75, 76).

The early development of a large ischemic area
suggests extensive cytotoxic edema. Because this may be
associated with a proximal clot, in combination with a poor
leptomeningeal collateral status, it can further lead to prominent
vasogenic edema.

Intracranial Volume Reserve
Intracranial volume reserve is represented by the space occupied
by the CSF, which is mainly determined by pre-existing brain
atrophy. A larger intracranial volume reserve provides space
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to compensate for the increased BV and can alleviate early
neurological deterioration.

The assessment of BV and/or CSV can quantify the degree of
brain atrophy (72, 77, 78). The DWI high-intensity volume/BV
ratio and cerebral blood volume lesion volume/CSV ratio have
been demonstrated as reliable predictive markers for malignant
MCA infarction, with a cut-off value of 0.078 (sensitivity 86%,
specificity 87%) and 0.92 (sensitivity 96.2%, specificity 96.2%),
respectively (72, 79). However, BV information is not readily
available to clinicians during the management of acute stroke
patients because traditional image processing methods involve
sophisticated post-processing steps and are thus relatively slow.
However, the application of deep learning-based segmentation
methods can provide fast and accurate results (47), which offers
great potential for future clinical practice.

Intercaudate distance (ICD) is considered a convenient and
practical marker for brain atrophy (80), and a higher ICD has
been shown to be a protective factor against malignant infarction
(74, 78, 80). Lee et al. demonstrated that an ICD ≥ 20mm
in the non-infarcted hemisphere has an independent protective
effect against malignant clinical outcomes during admission to
hospital. However, it is also negatively associated with a modified
Rankin Scale score of<4 at 6 months (80). These studies indicate
that although intracranial volume reserve can compensate for the
space-occupying edema during the early phase of stroke, it also
represents a pre-existing neurodegenerative process that affects
patients’ long-term outcomes.

Blood–Brain Barrier Permeability
The BBB is the interface between blood circulation and brain
tissue; it consists of a continuous endothelial membrane within
brain microvessels and is sheathed by mural vascular cells
and perivascular astrocyte end-feet. During ischemia, several
pathological mechanisms, such as inflammation and oxidative
stress, can disrupt BBB integrity and increase paracellular
permeability, which contributes to vasogenic edema (81, 82).

In clinical studies, the permeability of the BBB (BBBP) is
usually measured by the amount of contrast agent that leaks
into the extravascular space (83, 84). Hom et al. analyzed
32 patients with acute anterior circulation stroke within 12 h
of stroke onset and found that BBBP > 7 ml/100 g/min at
admission is 100% sensitive and 79% specific in predicting
symptomatic hemorrhagic transformation and ME. Moreover,
specificity further increases to 100% after adding age (≥65
years) and tissue plasminogen activator (tPA) administration
(81). Compared with cerebral hemorrhage, cerebral edema may
have a lesser degree of BBB disruption because it only needs
to be permeable to small molecules, such as albumin, rather
than blood cells. Unfortunately, the clinical application of BBBP
measurement is limited by the use of contrast agents. Recently,
a new MRI method based on diffusion-weighted arterial spin
labeling (ASL) was proposed as a method to quantify the rate
of water exchange across the BBB; it has the advantages of
repeatable measurement for longitudinal monitoring and being
exempt from the need for a contrast agent (85, 86).

Collateral Status
Robust pial arterial collaterals may temporarily preserve blood
flow during stroke, and collateral status has been shown to be
related to post-stroke cerebral edema. Various methods have
been proposed to evaluate collateral status based on different
imaging models, such as the American Society of Interventional
and Therapeutic Neuroradiology or Thrombolysis in Cerebral
Infarction grades on digital subtraction angiography (87), as
well as the Alberta Stroke Program Early CT Score based on
CT angiography (88) or CT perfusion (89). Additionally, new
methods, such as ASL, have also been introduced (90).

Collateral status has been demonstrated to be a predictor of
cerebral edema in ischemic stroke (91, 92). Jo et al. reported that a
collateral status score of <2 strongly predicts malignant cerebral
edema [odds ratio (OR): 0.165, 95% confidence interval (CI):
0.064–0.426] (92). Poor collateral status is known to augment
the progression of the infarct core and induce more proximal
vascular occlusion, which are both associated with brain edema
(93, 94).

In patients undergoing recanalization, those with initially
poor collaterals may develop greater early brain edema and have
a higher early edema progression rate (EPR) (1.6% EPR per
one collateral status point) 24 h after acute ischemic stroke (25,
95). This may result in elevated interstitial pressure, increased
resistance of collateral arterioles, and downstream perforating
arterioles in the hypoperfused area. Subsequently, ischemic
edema may be further aggravated, which results in adverse
functional outcomes. Huang et al. found that a low collateral
score may be an independent risk factor for the development
of malignant cerebral edema after mechanical thrombectomy,
especially in patients with successful reperfusion (93).

Therefore, collateral status could be used for the early
stratification of adjuvant treatment options after successful vessel
recanalization, especially anti-edematous treatment.

Cerebral Veins
Venous changes in the affected hemisphere after acute ischemic
stroke may play a crucial role in determining clinical outcomes
(94, 96), given that the venous system is responsible for ∼70–
80% of the cerebral blood volume. Zhang et al. suggested that
a lack of superficial middle cerebral vein filling contributes to
poor outcomes following thrombolysis and that this indicator
predicts edema progression within 24 h in non-reperfusion
patients (97, 98). Xia et al. assessed cortical veins (Labbe,
sphenoparietal sinus, and the superficial middle cerebral vein)
and found that the absence of cortical venous filling is associated
with increased brain edema and a higher risk of malignant
cerebral edema (OR, 14.68; 95% CI, 4.03–53.45) (94) regardless
of whether patients received reperfusion therapy. The likely
pathophysiologic mechanism of these signs is the elevation
of venous pressure caused by micro-thrombotic occlusion in
venules or endothelium swelling after ischemia (99, 100), which
may increase fluid leakage into the perivascular space, resulting
in brain edema (101).
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Recanalization and Reperfusion
Recanalization therapies in the hyperacute phase following
ischemic stroke, such as intravenous thrombolysis with tPA
and endovascular thrombectomy, aim to reopen the occluded
artery, which has been unequivocally shown to restore CBF
in salvageable ischemic tissue and reduce patient disability
(102, 103). However, pre-clinical data using rodent and primate
models have indicated that tPA facilitates the development
of BBB damage in acute ischemic stroke by inducing phasic
secretion of matrix metalloproteinase-9, and reperfusion
injury is observed after the restoration of vascular supply
to ischemic lesions. Both of these conditions may augment
the development of edema following recanalization therapy
(104, 105). On the contrary, several studies have demonstrated
that thrombolytic therapy and recanalization in the hyperacute
phase reduce brain edema by arresting infarct growth and
rescuing at-risk ischemic tissue (18, 45, 93, 106, 107). Thorén
et al. analyzed 22,184 patients who underwent recanalization
therapies (intravenous thrombolysis and thrombectomy
with or without intravenous thrombolysis) and found that
patients who had successful recanalization had a lower
cerebral edema grade at 24–36 h than that of those who did
not undergo recanalization (13 vs. 23.6%; OR: 0.52) (45).
Additionally, post-hoc analysis of the Echoplanar Imaging
Thrombolytic Evaluation Trial and Mechanical Retrieval and
Recanalization of Stroke Clots Using Embolectomy cohorts
found that increasing reperfusion is associated with and
independently predicts less MLS and a lower swelling volume
3–8 days after stroke onset (107). However, downstream
reperfusion is not always achieved even after complete
recanalization (called futile recanalization), which is likely
related to microvascular obstruction. Nawabi et al. reported
that futile recanalization after receiving successful endovascular
recanalization (thrombolysis in cerebral infarction scale 2b/3) is
associated with an elevated edema volume in the follow-up CT
24 h later (12).

ARTIFICIAL INTELLIGENCE IN THE
ASSESSMENT AND PREDICTION OF
EDEMA

Artificial intelligence has been widely used in the segmentation of
intracranial tissues. Following the theory that CSF displacement
reflects the extent of edema, Chen et al. developed a computer
algorithm capable of automatically segmenting CSF from
standard clinical CT images to evaluate edema and further

refined this algorithm by training a fully convolutional neural
network. This newmethod automatically performs segmentation
of clinical CT images with high concordance to manually
obtained measurements and takes <1min per scan (108).

Different types of neural network algorithms have been
introduced in the past several decades to predict cerebral
edema (109, 110). Compared with traditional regression models,
these new methods have higher accuracy. However, studies that
investigated these models are often conducted in a single center
with relatively small sample sizes. Thus, further research is
needed to validate these methods.

CONCLUSION

Severe cerebral edema following ischemic stroke is associated
with a poor prognosis if timely intervention is not provided.
Neuroimaging is important in the assessment of edema and can
be used to evaluate the degree of cerebral edema and quantify
edema volume. Using different imaging modalities, a range of
neuroimaging indicators to predict edema progression have been
offered, although their predictive value varies between studies.
Therefore, further research is required to establish evaluation
and prediction models of cerebral edema and improve their
clinical applicability.
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