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INTRODUCTION

The recovery of the patient is the goal of the neuroscientists after a stroke. To achieve this recovery,
there is a crucial need for increasing the understanding of the pathophysiological mechanisms that
spontaneously engage early after stroke, which involve excitotoxicity, free radical damage, increased
glutamate concentrations, and inflammation, leading to cell death. To assume that only neurons are
vulnerable to these pathophysiological responses is simplistic. Stroke affects all components of the
neurovascular unit, which consists of endothelial cells, pericytes, neurons, glial cells, white matter
fiber tracts, myelin, and extracellular matrix proteins. It is, therefore, important to focus on brain
protection as a whole rather than neuroprotection in isolation (1).

In the last 50 years, we have gained significant insights into the molecular mechanisms of
recovery after stroke, in addition to the damage mechanisms. Due to its plasticity, the brain has the
ability to reorganize its function and structure, which involves processes of self-protection and self-
repair. Brain plasticity is a very complex process that involves adaptive structural and functional
changes in the brain, including neurogenesis, synaptogenesis, angiogenesis, oligodendrogenesis,
and astrogliosis modulation, and promotes collateral circulation, processes that begin immediately
after stroke (2–4). Such is the self-repair ability brain that the stroke-induced neurogenesis is not
only limited to the subventricular zone and hippocampal dentate gyrus. It has also been revealed
that several additional areas of the brain promote mammalian adult neurogenesis, which include
the hypothalamus, striatum, substantia nigra, cortex, and amygdala (5). The neural stem cells of
the neurogenic areas generate new neural cells that migrate to the lesion site and become mature
neurons, orchestrating neurological repair through nerve repair, neuron polarization, axonal
sprouting and pruning, neurite outgrowth, and myelin repair, promoting post-stroke recovery (4).
However, in the unfavorable microenvironment that occurs in the lesion, most new cells do not
survive (4). Given that this self-repair capacity is limited, there has been a growing interest in
the potential for brain plasticity-inducing interventions to enhance post-stroke recovery through
rehabilitation, trophic factors, cell therapy, and extracellular vesicles. These therapeutic approaches
currently hold great promise by targeting the mechanisms involved in brain plasticity (2, 6–8)
(Figure 1). The beneficial effects of rehabilitation therapies in stroke recovery are well-known (9),
although there are still certain aspects to be clarified, such as the optimal time to start rehabilitation,
as well as its intensity and duration. Other approaches that involve brain stimulation, such as
transcranial magnetic and electrical stimulation, can enhance recovery and post-stroke plasticity
(10), and innovations with exoskeletons and brain-machine interfaces (11) have opened up new
research lines. However, we would like to focus on other novel and promising strategies, such as
the administration of trophic factors, stem cells, and extracellular vesicles.
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FIGURE 1 | Mesenchymal stem cell and extracellular vesicles-induced brain repair process after stroke. Mesenchymal stem cells and extracellular vesicles

administration-induced brain plasticity that involves adaptive structural and functional changes, including angiogenesis, axonal sprouting, synaptogenesis,

neurogenesis, oligodendrogenesis, and inflammation modulation after stroke. SYP, synaptophysin; DCX, doublecortin; NeuN, neuronal nuclear protein; MOG,

myelin-oligodendrocyte glycoprotein; MBP, myelin basic protein; IL, interleukin; GFAP, glial fibrillary acidic protein; IBA, ionized calcium-binding adapter molecule; TNF,

tumor necrosis factor; VEGF, vascular endothelial growth factor.

TROPHIC FACTORS AS THERAPEUTIC
STRATEGY TO PROMOTE BRAIN
PLASTICITY

In recent years, trophic factors have generated a great deal of
interest in the clinical context, given that their administration
is not restricted to a narrow therapeutic window. Several
trophic factors, including erythropoietin, brain-derived
neurotrophic factor, granulocyte-colony-stimulating factor,
vascular endothelial growth factor, fibroblast growth factor,
epidermal growth factor, and heparin-binding epidermal growth
factor, have anti-inflammatory and anti-excitotoxic protective

properties and have demonstrated efficacy in promoting

neurogenesis and angiogenesis, stimulating progenitor cell

proliferation, preventing blood-brain barrier (BBB) disruption

and ultimately promoting functional recovery in experimental

stroke models (12–15). However, a number of these approaches

were lost in translation from a bench to a bedside (14, 15), while
others have not yet been tested in clinical trials.

CELL THERAPY: THE FACTORY OF
TROPHIC FACTORS AND KEY
MOLECULES TO IMPROVE RECOVERY

But why settle for administering a single factor when we can
administer the whole arsenal? This is where stem cell therapy
plays an important role. Stem cells can secrete various trophic
factors and key molecules, promote brain plasticity, and reduce
overall inflammation. In particular, mesenchymal stem cells
(MSCs) from bone marrow or adipose tissue have demonstrated
efficacy in experimental animal stroke models (16–23). These
positive findings are translated to clinical trials, where MSCs
and other cells (such as bone marrow mononuclear cells) have
demonstrated safety in patients with stroke (24–30) and even
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efficacy in promoting improvement in white matter injuries at
1 year (31). Perhaps, one of the most stimulating findings in
stem cell translational research is the discovery of an abundant
quantity of MSCs within adipose tissue. Adipose tissue-derived
MSCs (AD-MSCs) are of special interest, not only due to their
abundance but also their relative ease of obtention through
procedures such as liposuction and abdominoplasty, which
obviate the ethical concerns with embryonic MSCs. Due to
immunoprivileged characteristics of this cell type, allogeneic
administration is possible, in our opinion (32). Treatment can,
therefore, be administered at an early stage, which is crucial for a
disease where delays result in irrevocable loss of brain function.
The administration of AD-MSCs in the acute phase could inhibit
the aforementioned pathophysiological mechanisms that are
activated early after stroke, thereby participating not only in
the repair processes of the neurovascular unit but also in its
protection. In terms of clinical feasibility, the intravenous route
for delivering AD-MSCs is attractive, given its low invasiveness,
low risk, and greater comfort for the patient. Using this route,
AD-MSCs are unable to reach the brain due to their lack of
ability in crossing the BBB; however, they exert their beneficial
therapeutic actions by delivering their secretome from the
peripheral organs where they are confined (19). MSCs exert
their action by the release of key molecules or extracellular
vesicles (EVs) by paracrine effects (33), rather than through
differentiation to replace damaged neurons (16, 18).

EXTRACELLULAR VESICLES: THE NOVEL
STRATEGY TO ENHANCE BRAIN
RECOVERY

Extracellular vesicles are released from all cell types, harbor
important molecules such as proteins, DNA, lipids, mRNAs, and
microRNAs, and participate in cell-to-cell communication. EVs
can act as an active principle promoting several mechanisms
of recovery after stroke, including brain plasticity. It has been
shown that the intravenous administration of MSC-derived EVs
promotes functional recovery and brain plasticity in an ischemic
stroke rat model (34–37). Moreover, our group found that
an intravenous administration of EVs-improved outcomes by
promoting the processes involved in white matter repair in
subcortical stroke in rats (35). Other authors have also shown
that EVs induce higher axonal density and neurite remodeling
(34), new formation of endothelial cells (36), sprouting of new
capillaries, and higher endothelial integrity (37). MSC-derived
EVs are, therefore, a promising approach for repairing the
components of the neurovascular unit to promote overall post-
stroke recovery (38, 39).

MSC-derived EVs are able to go one step farther than MSCs
as a therapeutic strategy, given that MSC-EVs can cross the BBB,
resolve cell-related problems, such as immune compatibility,
tumor formation, and vascular occlusion, and can be stored
in hospital settings without the need for toxic cryopreservative
agents, offering an approach for acute ischemic stroke. Due to
their small size, MSC-EVs can be saved from phagocytosis by
macrophages. In addition, selective manipulation of their cargo

by bioengineering can lead to individualized medicine (40, 41).
There is, currently, only one ongoing clinical trial aimed at
assaying the efficacy of the allogeneic administration of MSC-
derived EVs enriched by miR-124 for improving the recovery of
patients with acute ischemic stroke, registered in clinicaltrials.gov
(Identifier: NCT03384433). A previous study using an animal
model of stroke demonstrated that the administration of EVs
loaded with miR-124 promoted cortical neural progenitors and
neurogenesis (42). These functions of the microRNA content
of EVs make them important not only as treatment but also
as biomarkers. We showed that circulating EVs from patients
with stroke contain miRNA and proteins related to risk factors
and etiology, post-ischemic immune response, endogenous
protection, and angiogenesis (43). We also observed differences
in the levels of the microRNA content of EVs according to the
topography of the stroke (subcortical and cortical-subcortical
ischemic stroke) and related to improved recovery after stroke
(44). Given the progress of research on EVs, further information
on brain-derived EVs under stroke conditions is necessary (45).
The content of EVs can be used as biomarkers that improve our
understanding of the mechanisms by which EVs act in stroke to
help develop new therapeutic strategies and find new molecular
targets for this neurological disease.

DISCUSSION

The experimental studies in animal model and clinical trials have
indicated that intravenously administered MSC therapy seems
to be a promising therapeutic strategy after stroke (16–23, 26–
28, 30). However, there are still some unresolved issues that have
to be investigated such as the most appropriate administration
timing, the doses required for successful recovery (46), and the
dose regimen (single-dose or repeat-doses) that reach the higher
threshold of brain repair after stroke. Likewise, the limitations of
cell therapy will be determined by the results of clinical trials.

Moreover, MSC-derived EVs have some important advantages
that can be exploited when translating a therapeutic strategy
for stroke. EVs provide a great feature as a drug delivery
system, given their ability to cross the BBB (40). Thanks to the
development of delivery system technologies, MSC-derived EVs
can be engineered and designed to carry specific therapeutic
molecules (47) according to brain tissue repair needs, avoiding
molecules that could induce adverse effects, moving toward
personalized medicine.

Beyond the proven beneficial outcomes with the MSC-
derived EV treatment in experimental animal models of stroke
(34–39), many aspects are yet to be resolved about the
production of EVs for their use in clinical practice, such us
large-scale production, conditions in different physiologically
environments, and standardized experimental protocol for
extracting EVs to provide batch uniformity according to GMP
regulations (40, 48, 49).

In conclusion, we are facing a disease that has a high incidence
and prevalence and results in major disability. However, we
are also finding new and promising therapeutic options, such
as trophic factors, cell therapy, and EVs that can positively
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contribute to stroke recovery by improving brain plasticity. For
EVs, their ability to cross the BBB and their editable cargo
provide live information on molecules that participate in damage
and post-stroke repair, which could lead to personalized and
precision medicine.
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