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Background: Strokes represent a leading cause of mortality globally. The evolution of
developing new therapies is subject to safety and efficacy testing in clinical trials, which
operate in a limited timeframe. To maximize the impact of these trials, patient cohorts
for whom ischemic stroke is likely during that designated timeframe should be identified.
Machine learning may improve upon existing candidate identification methods in order
to maximize the impact of clinical trials for stroke prevention and treatment and improve
patient safety.

Methods: A retrospective study was performed using 41,970 qualifying patient
encounters with ischemic stroke from inpatient visits recorded from over 700 inpatient
and ambulatory care sites. Patient data were extracted from electronic health records and
used to train and test a gradient boosted machine learning algorithm (MLA) to predict
the patients’ risk of experiencing ischemic stroke from the period of 1 day up to 1 year
following the patient encounter. The primary outcome of interest was the occurrence of
ischemic stroke.

Results: After training for optimization, XGBoost obtained a specificity of 0.793, a
positive predictive value (PPV) of 0.194, and a negative predictive value (NPV) of 0.985.
The MLA further obtained an area under the receiver operating characteristic (AUROC) of
0.88. The Logistic Regression and multilayer perceptron models both achieved AUROCs
of 0.862. Among features that significantly impacted the prediction of ischemic stroke
were previous stroke history, age, and mean systolic blood pressure.

Conclusion: MLAs have the potential to more accurately predict the near risk of
ischemic stroke within a 1-year prediction window for individuals who have been
hospitalized. This risk stratification tool can be used to design clinical trials to test stroke
prevention treatments in high-risk populations by identifying subjects who would be more
likely to benefit from treatment.
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INTRODUCTION

As the second most common cause of mortality globally, stroke
poses a significant health burden (1). It is associated with
long term disabilities, increased healthcare expenditures, and an
overall decline in quality of life for individuals who have suffered
a stroke (1, 2). In the U.S., over 795,000 strokes occur per year,
putting this disease in the top five causes of mortality (3). It is
estimated that over $34 billion in healthcare expenditures in the
U.S. are directly related to stroke, including lost income, costs
associated with management of comorbidities, and use of health
services (1, 3). Risk factors for stroke include those that are non-
modifiable and modifiable (1). Non-modifiable factors include
individual demographics, such as being female, being older than
55, or being a racial-ethnic minority (3-5). Modifiable risk
factors include inadequate physical activity, obesity, smoking,
and isolation (6, 7).

Ischemic strokes, the most common type of stroke, result
from the sudden shortage of blood supply to the brain and
account for 80% of strokes in the U.S. and 87% globally (1, 3).
Complications can be permanent and pose a range of challenges
for stroke survivors, both physically and psychologically (1). For
example, a study by Crichton et al. found that nearly 40% of
stroke survivors had diagnosed depression following the event
and approximately one-third experienced a decline in cognitive
abilities (8).

Clinical trials have focused on secondary stroke prevention
to influence modifiable risk factors and examine the efficacy of
various therapeutic interventions for limiting the recurrence of
stroke (9, 10). Anticoagulant therapy has been shown to be an
effective tool for primary prevention to reduce stroke risk in
patients with comorbidities that put them at a high risk for stroke,
such as atrial fibrillation (AF) (11, 12). Given the continued
high prevalence of stroke and its lethality, clinical trials are
needed to explore the effective use of various therapeutics as
both primary and secondary prevention of ischemic strokes in
both high risk populations and populations without traditional
risk factors. However, clinical trials often stall due to patient
attrition or other factors. Per a study by Herrer et al. over
one third of all Phase III clinical trials fail due to poor subject
selection, resulting in lost expenditures and time for research and
development (13).

Artificial intelligence (AI) and machine learning (ML) may
serve as tools to supplement the patient selection process for
clinical trials by identifying individuals at a high risk for
stroke within the window of the study, versus other stroke risk
assessments that provide a longer window of prediction. While
there has been much progress in the prediction of outcomes of
acute stroke using ML-based models (14-17), there is a need for
research regarding the utilization of ML tools for the prediction
of future stroke. The goal of this study was to examine the ability
of ML models to predict an individual’s 1-year stroke risk in
order to identify individuals for whom preventive interventions,
such as anticoagulant therapies, may mitigate this risk. This
research may enhance clinical study protocols regarding patient
selection, dosage and timing of a study subject’s therapy, as well
as streamlining the process of patient selection (18).

METHODS

Data Sources

Data were obtained from a proprietary longitudinal electronic
health record (EHR) repository that includes over 700 inpatient
and ambulatory care sites located in the U.S. Encounter level
data were extracted from individuals between January 2017 and
December 2020 (Figure 1). Having had these prior encounters
ensured that there was comparison data for these patients in
the EHR system. Patient data became eligible for analysis at the
patient’s second encounter within the same hospital system in
either the intensive care unit (ICU) or inpatient wards. Inputs
for the analysis included patient demographics, diagnoses, and
medication usage both at the time of the first inpatient encounter
as well as any prior medication usage recorded in the EHR during
the data collection period. Data were collected passively, and to
comply with the Health Insurance Portability and Accountability
Act (HIPAA), data were de-identified to maintain patient privacy.
As data were de-identified, this project did not constitute research
using human subjects and approval was not required.

Patient Selection

Patients who experienced an ischemic stroke between 1 day
to 1 year after their first inpatient encounter were identified
using international classification of diseases (ICD) codes
within EHRs to indicate stroke (Table1). All patients who
had an inpatient encounter, did not meet the criteria for
ischemic stroke, and who did not meet the hemorrhagic
stroke exclusion criteria were considered to be the negative
class (Table 1, Supplementary Table S1). The minimum and
maximum timeline for the input window for collecting laboratory
and vital measurements was between 24h and 1,000h during
the patient’s length of stay. We excluded encounters that did
not fall within that window. Wherever applicable, we used
summary statistics (mean value, standard deviation, and last
measurement) of collected feature data at any time within the
visits. Patients with characteristics indicative of high risk of
hemorrhagic stroke at the first encounter were excluded to
further improve the ability of the algorithm to only identify
patients at risk of ischemic stroke. This software feature has
the potential to serve as a tool to reduce the risk of enrolling
patients who are at risk for hemorrhagic stroke as opposed
to ischemic stroke, as anticoagulant therapy may increase the
risk of hemorrhagic stroke (19). Risk factors for hemorrhagic
stroke included patients who were given anticoagulants during
the first inpatient encounter, had a surgery within 30 days of their
first encounter, had a gastrointestinal bleed, amniotic embolism,
intracranial hemorrhage, ulcers, and/or had a high risk of falling,
or were pregnant. Patients with coagulopathy were also excluded,
as these patients were unlikely to be suitable candidates for a
clinical trial.

Algorithm inputs included demographic information, medical
history, and clinical and laboratory data which were identified
from EHRs by the use of clinical measurements, ICD codes,
procedure data, medicine (self-administered prescription or in-
hospital medication) data, and other patient data. An analysis of
the correlation between features used in the study was performed
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FIGURE 1 | Study design timeline. Patients identified in the positive class according to our gold standard had to have been diagnosed with ischemic stroke within the
prediction window, i.e., 1 day after the end of visit to within 1 year from end of visit. The negative class included patients in which no diagnosis of ischemic stroke was
identified within the prediction window and they must have had at least 1 year of data after the end of visit.

TABLE 1 | Inclusion and exclusion details. International classification of diseases
version 10 (ICD-10) codes were used to determine inclusion of ischemic stroke
patients.

Diagnosis of ischemic stroke

® |63, H34.1, H34.2

Fall risk

Bleeding risk (as determined by prior diagnosis of ICH, Gl bleed,
history of ulcers, coagulopathy)

Recent surgery (surgery in the last 30 d)

Patients is on anticoagulants

Patient had a diagnosis of an amniotic fluid embolism

Patient is pregnant

No recorded diagnoses or no recorded procedures

and if two features had a very high magnitude of correlation
(>0.8), then one of the features was removed. This included
the following sets of features: male and female; antihypertensive
medication and antidiabetic medication; white blood cell count
and platelet count, weight and body mass index (BMI). The list
of features used in the model is presented in Table 2.

Machine Learning Model

This research utilized a gradient boosting decision tree classifier
to predict ischemic stroke within a year. The Extreme Gradient
Boosting (XGBoost v1.3.3) method in Python (v3.6.13) (20-
24) was used to implement the decision tree model (25).
In this method, multiple trees are generated based on the
values of the various input features and a prediction score is
generated by combining the results from various trees. During
training, future decision trees are constructed with the goal
of minimizing the error calculated in previous iterations of
tree building. This allows the model to construct targeted trees
which optimize the accuracy of the final output. The training
process iteratively determines the best variables (and respective
thresholds) that can be used to differentiate which patients

TABLE 2 | Features used in the model.

Demographic information

Age

Sex

Race (African American, Asian,
Caucasian, Unknown or Other Race)
Ethnicity (Hispanic, Not Hispanic)
Clinical measurements

Systolic blood pressure

Diastolic blood pressure

Laboratory measurements
Red blood cell (RBC)
Hemoglobin

Platelets

Blood urea nitrogen (BUN)
Potassium

Glucose

Creatinine

Medical history

Heart rate Atrial fibrillation

Temperature Congestive heart failure

Body Mass Index (BMI) Diabetes

Medications Hypertension

Antihypertensive medication Vascular diseases
Stroke

Current smoker

will have an ischemic stroke within 12 months, and which
patients will not. The result of this process is a decision tree
that uses a patient’s data to predict if they are likely to have a
stroke. In handling missing data, we did not include features
that had a missing rate of >50%. Furthermore, the XGBoost
model was also chosen as it is particularly robust in handling
missing data (26, 27) and often outperforms simpler ML models
(22, 23). Supplementary Figure S3A shows the missingness of
non-categorical features that were used as inputs.

No more than five branching levels were permitted in each
tree in the final model. The XGBoost parameter for learning
rate was set to 0.2 with no more than 100 total trees to avoid
a computational burden. Patients were assigned one of the two
groups (predicted ischemic stroke or not predicted ischemic
stroke) based on whether or not the final score from the model
exceeds a predefined threshold.

Other hyperparameters of the model including the learning
rate and the total number trees were selected using a cross-
validated grid search. To ensure that model overfitting did
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FIGURE 2 | Patient encounter inclusion diagram. Initially, more than 28 million inpatient visits were included in the analysis, then patient encounters were filtered by the
exclusion criteria and the prediction window requirements. Forty-one thousand nine hundred seventy patients were identified as positive for ischemic stroke based on
our gold standard. The prevalence of ischemic stroke encounters was 5.9% in the training set, 5.8% in the hold-out test set and 6.7% in the external validation set.

Visits with length of
stay between 24
and 1000 hrs
(n=715,836)

I

Patients with no
stroke (Control)
(n =673,866)

Visits with ischemic
stroke only
(n =41,970)

—

not occur, a hyperparameter to prevent iterative tree-addition
was built into the training algorithm and optimized across this
hyperparameter through the process of 3-fold cross-validation.
Another parameter “scale_pos_weight” was introduced and set
to a value equivalent to the ratio of negative class examples
to positive class examples in order to tackle the imbalance in
the dataset. This parameter was optimized as it is useful for
unbalanced classes in that it controls the balance of positive
and negative weights. This was followed by further optimization
of hyperparameters across a sparse parameter grid and cross-
validation across a grid search to ensure that an optimal
combination of candidate hyperparameters was included in
the algorithm.

The final XGBoost model was calibrated post training
using the method of isotonic regression (28). Calibration was
implemented using the scikit learn package in Python (23).
When a model is well-calibrated, the probability associated with
the predicted label reflects the likelihood of the correctness
of the actual label (29). The reliability curves showing the
true probability vs. the predicted probability of the XGBoost
model before and after calibration are presented in the
Supplementary Figure S4.

Statistical Analysis

Model performance was determined using a 80-20 train-test split
assessed through area under the receiver operating characteristic
(AUROCQ), equivalent to the c-statistic. We reported performance
of the model on the test data and an additional external validation
dataset (see Supplementary Information). The external
validation data comes from a healthcare site and patients
separate from those included during model training and testing.
The performance of the model against the comparator, the
CHA;,DS;-VASc Score (Congestive heart failure, Hypertension,
Age > 75, Diabetes Mellitus, Prior Stroke or transient ischemic
attack (TIA) or thromboembolism, Vascular disease, Age 65-74
years, Sex category), was assessed by comparing the AUROCs
of the model against the comparator on the 20% hold out test
set. The 95% confidence intervals of the AUROC curves were
calculated by bootstrapping the AUROC curves. The CHA,DS,-
VASc Score was compared in a binary manner (low risk vs. high
risk) rather than using risk stratification.

RESULTS

In total, 28 million inpatient encounters were initially included
in our analysis and 715,836 adult patients were included after
applying exclusion criteria and the prediction window condition
requirements (Figure 2). Of these encounters, 41,970 patients
were identified as positive for ischemic stroke based on our
gold standard and 673,866 patients with no stroke diagnosis
were classified as the control group. The external validation set
consisted of 813,107 total inpatient visits, 56,143 of which were
included after applying exclusion filters. Of the 56,143 encounters
in the external validation set, 3,790 were identified as positive for
ischemic stroke and 52,353 remained in the control group.

Patients who experienced an ischemic stroke were, on average,
likely to be older and were more likely to have hypertension,
a history or stroke, diabetes or cardiovascular comorbidities
(Tables 3, 4).

A total of 41,970 patients with ischemic stroke were included
in training and testing of the prediction model. In the test
set, XGBoost achieved an area under the receiving operating
characteristic (AUROC) curve of 0.880 (95% CI [0.873-0.879])
for prediction of ischemic stroke (Table 5). Logistic Regression
and multilayer perceptron (MLP) both achieved comparable
AUROC:s of 0.862. Though XGBoost and Logistic Regression
both performed well, XGBoost may have achieved a slightly
higher AUROC for this task because Logistic Regression does not
process null values. Logistic Regression imputation of missing
data must be done manually, which is not the case for XGBoost.
The XGBoost model had a higher specificity than the Logistic
Regression model on the hold out test set. Also of note, several
prior studies have utilized the XGBoost algorithm to construct
models that have superior predictive capacity over existing risk-
scoring systems, across a wide range of indications (30-32). The
comparator, CHA,DS;-VASc risk score, achieved an AUROC of
0.7565 (95% CI [0.7531-0.7569]) (Figure 3).

Feature importance was also assessed using SHAP (SHapley
Additive exPlanations: v0.39.0) (33) analysis to determine
model features that most significantly impacted ischemic stroke
predictions. The SHAP analysis of feature correlation and
distribution identified the three most significant features for
prediction of ischemic stroke- history of stroke, age, and systolic
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TABLE 3 | Demographic information for the study population sample in the training and testing of the algorithm.

Demographic information Positive (N = 41,970) Negative (N = 673,866) P-value
Age 18-40 1,705 (4.1%) 163,566 (24.3%) < 0.0001
40-60 10,620 (25.3%) 205,509 (30.5%) < 0.0001
60-75 15,489 (36.9%) 191,351 (28.4%) < 0.0001
75-100 14,156 (33.7%) 113,440 (16.8%) < 0.0001
Sex Male 21,499 (51.2%) 307,425 (45.6%) < 0.0001
Female 20,397 (48.6%) 364,875 (54.1%) < 0.0001
Unknown sex 74 (0.2%) 1,566 (0.2%) 0.0204
Race African American 7,193 (17.1%) 88,415 (13.1%) < 0.0001
Asian 569 (1.4%) 7,050 (1.0%) < 0.0001
Caucasian 31,189 (74.3%) 530,059 (78.7%) < 0.0001
Unknown or other race 3,019 (7.2%) 48,342 (7.2%) 0.8841
Ethnicity Hispanic 2,600 (6.2%) 41,696 (6.2%) 0.9501
Non-hispanic 36,946 (88.0%) 587,308 (87.2%) 0.1747
Unknown ethnicity 2,424 (5.8%) 44,862 (6.7%) < 0.0001
Comorbidities Atrial fibrillation 6,879 (16.4%) 44,382 (6.6%) < 0.0001
Diabetes mellitus 15,902 (37.9%) 139,044 (20.6%) < 0.0001
Congestive heart failure 8,235 (19.6%) 59,028 (8.8%) < 0.0001
History of stroke 24,693 (58.8%) 38,066 (5.6%) < 0.0001
Hypertension 31,8083 (75.8%) 303,664 (45.1%) < 0.0001
Peripheral vascular disease 5,610 (13.4%) 31,981 (4.7%) < 0.0001
COPD 8,831 (21.0%) 99,652 (14.8%) < 0.0001
Renal (CKD) 9,217 (22.0%) 70,550 (10.5%) < 0.0001
Cancer (Leukemia and Lymphoma) 894 (2.1%) 13,946 (2.1%) 0.4069
Cancer (Solid Tumor) 4,850 (11.6%) 59,280 (8.8%) < 0.0001

blood pressure (Figure 4). Important features also identified in
the analysis include hypertension, mean hemoglobin, blood urea
nitrogen, and temperature. A feature correlation plot is also
presented as Supplementary Figure S3B.

DISCUSSION
Study Summary

This study describes the development of a machine learning
algorithm to accurately predict the onset of ischemic stroke from
the period of 1 day up to 1 year following the patient encounter
using only data automatically collected from the patient EHR.
Although there are existing tools for stroke risk assessment over
longer windows of prediction (34, 35), the goal of this study was
to develop an MLA tool to aid in the patient selection process for
clinical trials by identifying patients at a high risk for ischemic
stroke within the time period of a study. The XGBoost algorithm
obtained AUROC, PPV, NPV, sensitivity and specificity of 0.864,
0.188, 0.981, 0.800, and 0.749, respectively, on the external test
set, indicating the tool’s ability to maintain high performance in
stroke predictions up to 1 year after an initial inpatient encounter.
The use of EHR-based machine learning allows for fast and
cost-effective means to identify patients at higher risk of stroke
and may potentially improve patient cohorts for clinical trials
by accurately predicting shorter term stroke risk. The ability to
classify patients as high risk or low risk may guide inclusion and
exclusion criteria to ensure that individuals included may have an

improved quality of life and decreased incidence of stroke from
successful therapies. Importantly, the high negative predictive
value of 98.1% indicates the ability of the algorithm to assist
researchers to exclude patients who may have otherwise qualified
for a clinical trial based on qualitative assessments or patient
disclosure of factors that indicated a higher risk for stroke.

The MLA developed and validated in this study outperformed
the CHA,DS,-VASc scoring system, which has been shown to be
an effective clinical tool in predicting the 1-year risk of stroke and
thromboembolism (TE) in patients both with and without AF
(34-36). While the gold standard scoring system that is in wide
use for stroke risk assessment is the Framingham Stroke Risk
Profile (FSRP) (34, 35), the FSRP tool predicts stroke risk between
5 and 10 years prior to the occurrence of stroke and partially
relies on subjective information received directly from patients by
a technician-administered questionnaire and a self-administered
questionnaire (37). The ability to predict stroke within 1 year
may identify patients who have a more immediate risk than
those identified in the FRPS, making them viable participants
for clinical trials, which occur over limited timeframes. For this
study, we chose to use the CHA,;DS;,-VASc score as a comparator
in order to compare the MLA in this study with a similarly
objective risk score that can provide 1-year predictions (36).

Significant Features
ML methods can provide insight into the importance of
individual variables in predicting stroke. The abc (age, biomarker,
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TABLE 4 | Demographic information for the study population sample in the external validation dataset.

Demographic information Positive (N = 3,790) Negative (N = 52,353) P-value
Age 18-40 93 (2.5%) 7,004 (13.4%) < 0.0001
40-60 810 (21.4%) 14,972 (28.6%) < 0.0001
60-75 1,405 (37.1%) 17,868 (34.1%) < 0.0001
75-100 1,482 (39.1%) 12,509 (23.9%) < 0.0001
Sex Male 1,858 (49.0%) 23,740 (45.4%) < 0.0001
Female 1,932 (51.0%) 28,603 (54.6%) < 0.0001
Unknown sex 0(0.0%) 10 (0.0%) 1
Race African American 1,060 (28.0%) 10,475 (20.0%) < 0.0001
Asian 52 (1.4%) 619 (1.2%) < 0.0001
Caucasian 2,551 (67.3%) 39,500 (75.4%) < 0.0001
Unknown or other race 127 (8.4%) 1,759 (3.4%) 1
Ethnicity Hispanic 218 (56.8%) 3,137 (6.0%) 0.5949
Non-hispanic 3,557 (93.9%) 48,808 (93.2%) 0.7903
Unknown ethnicity 15 (0.4%) 408 (0.8%) 0.0062
Comorbidities Atrial fibrillation 839 (22.1%) 7,315 (14.0%) < 0.0001
Diabetes mellitus 1,678 (44.3%) 15,709 (30.0%) < 0.0001
Congestive heart failure 986 (26.0%) 8,736 (16.7%) < 0.0001
History of stroke 2,393 (63.1%) 3,704 (7.1%) < 0.0001
Hypertension 3,259 (86.0%) 3,40283 (65.0%) < 0.0001
Peripheral Vascular Disease 665 (17.5%) 4,649 (8.9%) < 0.0001
COPD 951 (25.1%) 11,759 (22.5%) < 0.0001
Renal (CKD) 1,200 (31.7%) 10,054 (19.2%) < 0.0001
Cancer (Leukemia and Lymphoma) 71 (1.9%) 964 (1.8%) 0.8514
Cancer (Solid Tumor) 442 (11.7%) 5,163 (9.9%) < 0.0001

TABLE 5 | Performance metrics for XGBoost, logistic regression, and multilayer perceptron (MLP) machine learning algorithms (MLAS) on the testing set and external
validation set in comparison to the CHA,DS,-VASC risk score.

Hold out test set

AUROC Sensitivity Specificity PPV NPV LR+ LR- DOR
(95% ClI) (95% CI) (95% Cl) (95% ClI) (95% CI)
XGBoost 0.880 0.8 0.793 0.194 0.985 3.87 0.25 15.37
(0.877-0.883) (0.791-0.809) (0.791-0.796) (0.189-0.198) (0.984-0.985)
Logistic regression (All Inputs) 0.862 0.8 0.754 0.168 0.984 3.25 0.27 12.24
(0.858-0.865) (0.791-0.809) (0.751-0.756) (0.164-0.171) (0.983-0.985)
MLP classifier 0.862 0.8 0.772 0.179 0.984 3.50 0.26 13.54
(0.863-0.870) (0.791-0.809) (0.77-0.774) (0.175-0.182) (0.983-0.985)
CHA,DS,-VASCc Score 0.754 0.871 0.479 0.094 0.984 1.67 0.27 6.22
(0.749-0.759) (0.864-0.878) (0.476-0.481) (0.092-0.096) (0.983-0.985)
External validation set
XGBoost 0.864 0.8 0.749 0.188 0.981 3.19 0.27 11.97
(0.859-0.869) (0.787-0.813) (0.746-0.753) (0.182-0.194) (0.98-0.982)
Logistic regression (All Inputs) 0.858 0.8 0.745 0.185 0.981 3.14 0.27 11.68
(0.852-0.864) (0.787-0.813) (0.741-0.749) (0.179-0.191) (0.98-0.982)
MLP classifier 0.835 0.8 0.703 0.163 0.98 2.70 0.28 9.49
(0.830-0.841) (0.787-0.813) (0.7-0.707) (0.158-0.169) (0.978-0.981)
CHA,DS,-VASC Score 0.728 0.812 0.519 0.109 0.974 1.69 0.36 4.68
(0.722-0.735) (0.8-0.825) (0.515-0.523) (0.105-0.113) (0.973-0.976)

The testing set included 203,237 total patient encounters with 11,789 patients identified in the positive class. Area under the receiver operating characteristic (AUROC) curve, sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), likelihood ratios (LR), and diagnostic odds ratio (DOR) are shown for the MLAs. Supplementary Table S2
shows performance metrics for our XGBoost, logistic regression, and MLP MLAs on the hold out test set and external validation test set using the same inputs as the CHA>DS»-VASc

risk score.
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and clinical history) stroke score was recently shown to provide
short-term stroke risk assessment in AF patients (38). In line
with these previous findings, history of prior stroke and age were
identified as the two most important ML features in our study
(Figure 4). Further experimentation was done to examine the
performance of the MLAs when stroke history was removed,
results for which are presented in Supplementary Table S3,
Supplementary Figure S2. Epidemiological studies continue to
support the benefits of blood pressure reduction for lowering the
risk of stroke (39) as elevated blood pressure levels (>115/75 mm
Hg) contribute to almost two-thirds of the global stroke burden.
Additionally, both systolic and diastolic blood pressure were
ranked among the most important features (top 20), with higher
values indicating a higher risk of stroke onset. While diabetes
is a known independent risk factor for stroke onset, recent
studies have shown that elevated glucose levels and glucose
fluctuations (variance) can increase stroke risk, even among
individuals without diabetes (40). Similarly, we found that a
high variance in glucose level correlated positively with stroke
onset. Although the diagnosis of diabetes increased the risk of
stroke, the association between mean glucose level (the least
important feature on the SHAP plot) and stroke onset was not
straightforward. It is plausible that the fluctuation in glucose
level is more informative than the mean glucose measurement,
particularly in non-diabetic subjects. Fluctuations, as measured
by standard deviation, in BMI were positively correlated with
stroke risk. These findings are consistent with several previous
studies showing that the risk of stroke increases in individuals
who lose or gain weight (41). The associations between BMI
and stroke risk were inconclusive, possibly reflecting a previously
observed weight paradox in stroke outcomes, particularly in the
elderly (>75% of our study participants were over 60 years) (42,
43). We also found that a higher potassium concentration was
associated with a lower risk of stroke, whereas lower potassium
level was associated with a higher stroke risk. These findings are
consistent with previous studies reporting associations between
low serum potassium and stroke in healthy populations (44) and
in adults with hypertension (45).

Comparison to Other Al Studies

Several studies have examined the use of ML and artificial
intelligence (AI) based tools for patient care related to stroke.
Ding et al. broadly discuss the role of AI and ML in stroke
care and its implications for future stroke management (46).
This includes the use of AI to analyze electrocardiogram
and ultrasound data for risk stratification and projection of
stroke outcomes in patients with known risk factors and to
aid with stroke diagnosis using imaging data (46). Sailasya
et al. describe the performance of six classification-based MLAs
to predict stroke, with the decision-tree model yielding the
lowest performance and the Naive Bayes model yielding the
best performance (receiver operating curves 0.66 and 0.82,
respectively) (47). A 2019 study by Li et al. examined the use of
ML for the purpose of filling in gaps in data that were collected as
part of China’s national stroke screening and prevention program
(48). Two of their models identified an additional ~5,400
high risk individuals who would not have met the country’s
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FIGURE 3 | Receiver operating characteristic (ROC) curve for prediction of
ischemic stroke for up to 1 year after first inpatient encounter on the test set
data.

standard risk criteria as being high risk. This study indicates the
potential for ML to aid with patient selection for clinical trials by
identifying individuals who are truly high risk. Patients who have
been diagnosed with ischemic stroke are typically only treated
with intravenous (IV) thrombolytics if they are within the 4.5h
window of the onset of symptoms (49, 50). However, nearly 25%
of patients with acute stroke are unaware of the time of onset
of symptoms and are therefore excluded from IV thrombolytic
treatment (51, 52). In an effort to determine the time of onset
of acute ischemic stroke, Lee et al. applied ML methods on
multiparametric MRI scans of patients diagnosed with stroke
to retrospectively estimate the time of onset of symptoms (53).
This could potentially assist clinicians with determining the best
treatment options for patients as well as selecting appropriate
candidates for clinical trials for thrombolytics. Ni et al. have
suggested that the use of ML may streamline the process of
patient selection for clinical trials (18). Ni developed a machine
learning algorithm to compare its effectiveness with standard
procedures for subject screening and selection for a clinical trial.
The results of the study indicated a 34% reduction in time
spent by clinical staff for patient recruitment when using the
algorithm (18).

Study Limitations

This study has several limitations. First, the performance of
the stroke prediction algorithm was not assessed in prospective
settings due to the retrospective nature of the study. To
determine how clinicians may respond to predictions of stroke
risk, prospective validation is necessary. Prospective validation
is also required to determine the extent to which algorithm
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standard deviation, respectively. BMI, body mass index; BUN, blood urea nitrogen; CHF, congestive heart failure; DBP, diastolic blood pressure; RBC, red blood cells;
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predictions may affect resource allocation or patient outcomes.
Second, stroke risk factors were identified solely via EHR data
and healthcare providers may not properly code stroke risk
factors or relevant inputs in the EHR (54). Previous studies
have reported limited accuracy associated with the ICD-9 stroke
codes in identifying ischemic strokes (55, 56). However, ICD-
10 stroke codes, as used in this study, are more specific; for
instance, ICD-10 codes specify the hemorrhage locations and
distinguish between thrombotic and embolic ischemic stroke.
Moreover, recent studies have validated the performance of ICD-
10 codes for identifying acute ischemic stroke (57). Finally, it
is important to note that while the CHA,;DS;,-VASc score is a
widely-used clinical risk scoring tool for predicting stroke in
AF patients (36, 58-60), the cohort utilized in the current study
included both AF and non-AF patients. Although the CHA,DS,-
VASc score has been validated for use in non-AF patients, and
several clinical studies that have demonstrated the effectiveness
of the CHA;DS,-VASc score in predicting stroke incidence in
non-AF patients (61-64), these validation studies are all based
on retrospective datasets. The incidence of stroke was predicted
by the combination of a large number of EHR features, including
several vital signs. While the variation of individual vital signs
and lab measures within the normal range are not informative

for disease prediction, the ML algorithm can use the variation of
a large number of variables to capture a latent pattern for disease
prediction. Nevertheless, the biological basis for the contribution
of individual vital signs to the ML prediction model is not
readily interpretable.

CONCLUSION

Clinical trials ensure the safety and efficacy of therapeutics as
they transition from development to human testing. However,
the success of these measures rely upon a well-identified study
cohort. The machine learning algorithm presented in this paper
can be successfully utilized to more accurately identify patient
cohorts at risk for ischemic stroke within 1 year that are
appropriate candidates for anticoagulant therapy studies. This
may enable more effective clinical trials of potential ischemic
stroke preventative therapies.

DATA AVAILABILITY STATEMENT

The data analyzed in this study was obtained from a proprietary
longitudinal electronic health record (EHR) repository that
includes over 700 inpatient and ambulatory care sites

Frontiers in Neurology | www.frontiersin.org

January 2022 | Volume 12 | Article 784250


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Maharjan et al.

Machine-Learning Based Ischemic Stroke Prediction

located in the U.S. Requests to access the processed data
and statistical information should be directed to Qingging
Mao, gqmao@dascena.com.

AUTHOR CONTRIBUTIONS

RD, QM, and JC contributed to conception and design of the
study. JM, YE, and LR assembled the dataset, performed the
experiments, and performed the statistical analysis. JM, YE, LR,
GB, SS, and AG-S wrote the manuscript. All authors contributed
to the article and approved the submitted version.

REFERENCES

1. Donkor ES. Stroke in the 21st century: a snapshot of the burden,
epidemiology, and quality of life. Stroke Res Treat. (2018) 2018:3238165.
doi: 10.1155/2018/3238165

2. Abdo RR, Abboud HM, Salameh PG, Jomaa NA, Rizk RG, Hosseini
HH. Direct medical cost of hospitalization for acute stroke in lebanon:
a prospective incidence-based multicenter cost-of-illness study. Ing
] Med Care Organ Provis Financ. (2018) 55:0046958018792975.
doi: 10.1177/0046958018792975

3. cdc.gov. Stroke Facts. (2020). Available online at: https://www.cdc.gov/stroke/
facts.htm (accessed January 12, 2021)

4. Benjamin EJ, Blaha M], Chiuve SE, Cushman M, Das SR, Deo R,
et al. Heart disease and stroke statistics—2017 update: a report from
the American Heart Association. Circulation. (2017) 135:e146-603.
doi: 10.1161/CIR.0000000000000491

5. Yousufuddin M, Young N. Aging and ischemic stroke. Aging. (2019) 11:2542—
4. doi: 10.18632/aging.101931

6. Boehme AK, Esenwa C, Elkind MSV. Stroke Risk Factors, Genetics, and
Prevention | Circulation Research. (2017). Available online at: https://www.
ahajournals.org/ (accessed July 20, 2021)

7. Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B. Loneliness and
social isolation as risk factors for coronary heart disease and stroke: systematic
review and meta-analysis of longitudinal observational studies. Heart. (2016)
102:1009-16. doi: 10.1136/heartjnl-2015-308790

8. Crichton SL, Bray BD, McKevitt C, Rudd AG, Wolfe CDA. Patient
outcomes up to 15 years after stroke: survival, disability, quality of life,
cognition and mental health. ] Neurol Neurosurg Psychiatry. (2016) 87:1091-8.
doi: 10.1136/jnnp-2016-313361

9. clinicaltrials.gov. Recurrent Stroke Prevention Clinical Outcome Study.
(2012). Available online at: https://clinicaltrials.gov/ct2/show/NCT01198496
(accessed July 19, 2021)

10. Stroke Clinical Trials-Mayo Clinic Research. Available online at: https://
www.mayo.edu/research/clinical-trials/diseases- conditions/stroke/ (accessed
July 20, 2021)

11. Abbas M, Malicke DT, Schramski JT. Stroke Anticoagulation.
Treasure Island, FL: StatPearls Publishing (2020). Available online at:
http://www.ncbi.nlm.nih.gov/books/NBK549826/ (accessed January 6, 2021)

12. Amin A. Oral anticoagulation to reduce risk of stroke in patients with atrial
fibrillation: current and future therapies. Clin Interv Aging. (2013) 8:75-84.
doi: 10.2147/CIA.S37818

13. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design.
Trends Pharmacol Sci. (2019) 40:577-91. doi: 10.1016/j.tips.2019.05.005

14. Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome
prediction of acute ischemic stroke post intra-arterial therapy. PloS One.
(2014) 9:¢88225. doi: 10.1371/journal.pone.0088225

15. Heo ], Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based
model for prediction of outcomes in acute stroke. Stroke. (2019) 50:1263-5.
doi: 10.1161/STROKEAHA.118.024293

ACKNOWLEDGMENTS

We would like to thank LR and SM for their
assistance with study design and Jana Hoffman and
Anna Siefkas for their contributions to the writing of
this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2021.784250/full#supplementary-material

16. Bentley P, Ganesalingam J, Jones ALC, Mahady K, Epton S, Rinne P, et al.
Prediction of stroke thrombolysis outcome using CT brain machine learning.
NeuroImage Clin. (2014) 4:635-40. doi: 10.1016/j.nicl.2014.02.003

17. Monteiro M, Fonseca AC, Freitas AT, e Melo TP, Francisco AP, Ferro JM,
et al. Using machine learning to improve the prediction of functional outcome
in ischemic stroke patients. IEEE/ACM Trans Comput Biol Bioinform. (2018)
15:1953-9. doi: 10.1109/TCBB.2018.2811471

18. Ni Y, Bermudez M, Kennebeck S, Liddy-Hicks S, Dexheimer J. A real-
time automated patient screening system for clinical trials eligibility in an
emergency department: design and evaluation. JMIR Med Inform. (2019)
7:¢14185. doi: 10.2196/14185

19. FDA. Have Atrial Fibrillation? Blood Thinners Can Prevent Strokes, Save Lives.
FDA. (2020). Available online at: https://www.fda.gov/consumers/consumer-
updates/have-atrial-fibrillation-blood- thinners- can- prevent- strokes- save-
lives (accessed July 21, 2021).

20. Van Rossum G. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace
(2009). Available online at: https://www.python.org/

21. Research. Apache Spark. Available online at:
https://spark.apache.org/research.html (accessed November 19, 2021).

22. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. (2020) 17:261-72. doi: 10.1038/s41592-020-0772-5

23. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: Machine Learning in Python. ] Mach Learn Res. (2011).
12:2825-30.

24. Sundararajan M, Najmi A. The many shapley values for model explanation. In:
Proceedings of the 37th International Conference on Machine Learning. (2020).
Available online at: http://proceedings.mlr.press/v119/sundararajan20b/
sundararajan20b.pdf

25. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. New York, NY, USA: Association for Computing
Machinery. (2016) p. 785-94. doi: 10.1145/2939672.2939785

26. Rusdah DA, Murfi H. XGBoost in handling missing values for life insurance
risk prediction. SN Appl Sci. (2020) 2:1336. doi: 10.1007/s42452-020-3128-y

27. Rahmani K, Garikipati A, Barnes G, Hoffman J, Calvert ], Mao Q, et al. Early
prediction of central line associated bloodstream infection using machine
learning. Am J Infect Control. (2021). doi: 10.1016/j.ajic.2021.08.017

28. Guo C, Pleiss G, Sun Y, Weinberger KQ. On calibration of modern neural
networks. In: Proceedings of the 34th International Conference on Machine
Learning. Sydney. (2017). p. 1321-30.

29. Zadrozny B, Elkan C. Transforming Classifier Scores into Accurate Multiclass
Probability Estimates. (2002).

30. Barton C, Chettipally U, Zhou Y, Jiang Z, Lynn-Palevsky A, Le S, et al.
Evaluation of a machine learning algorithm for up to 48-hour advance
prediction of sepsis using six vital signs. Comput Biol Med. (2019) 109:79-84.
doi: 10.1016/j.compbiomed.2019.04.027

31. Burdick H, Lam C, Mataraso S, Siefkas A, Braden G, Dellinger RP,
et al. Prediction of respiratory decompensation in Covid-19 patients using

Frontiers in Neurology | www.frontiersin.org

January 2022 | Volume 12 | Article 784250


mailto:qmao@dascena.com
https://www.frontiersin.org/articles/10.3389/fneur.2021.784250/full#supplementary-material
https://doi.org/10.1155/2018/3238165
https://doi.org/10.1177/0046958018792975
https://cdc.gov
https://www.cdc.gov/stroke/facts.htm
https://www.cdc.gov/stroke/facts.htm
https://doi.org/10.1161/CIR.0000000000000491
https://doi.org/10.18632/aging.101931
https://www.ahajournals.org/
https://www.ahajournals.org/
https://doi.org/10.1136/heartjnl-2015-308790
https://doi.org/10.1136/jnnp-2016-313361
https://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT01198496
https://www.mayo.edu/research/clinical-trials/diseases-conditions/stroke/
https://www.mayo.edu/research/clinical-trials/diseases-conditions/stroke/
http://www.ncbi.nlm.nih.gov/books/NBK549826/
https://doi.org/10.2147/CIA.S37818
https://doi.org/10.1016/j.tips.2019.05.005
https://doi.org/10.1371/journal.pone.0088225
https://doi.org/10.1161/STROKEAHA.118.024293
https://doi.org/10.1016/j.nicl.2014.02.003
https://doi.org/10.1109/TCBB.2018.2811471
https://doi.org/10.2196/14185
https://www.fda.gov/consumers/consumer-updates/have-atrial-fibrillation-blood-thinners-can-prevent-strokes-save-lives
https://www.fda.gov/consumers/consumer-updates/have-atrial-fibrillation-blood-thinners-can-prevent-strokes-save-lives
https://www.fda.gov/consumers/consumer-updates/have-atrial-fibrillation-blood-thinners-can-prevent-strokes-save-lives
https://www.python.org/
https://spark.apache.org/research.html
https://doi.org/10.1038/s41592-020-0772-5
http://proceedings.mlr.press/v119/sundararajan20b/sundararajan20b.pdf
http://proceedings.mlr.press/v119/sundararajan20b/sundararajan20b.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s42452-020-3128-y
https://doi.org/10.1016/j.ajic.2021.08.017
https://doi.org/10.1016/j.compbiomed.2019.04.027
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Maharjan et al.

Machine-Learning Based Ischemic Stroke Prediction

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

machine learning: the READY trial. Comput Biol Med. (2020) 124:103949.
doi: 10.1016/j.compbiomed.2020.103949

Ryan L, Lam C, Mataraso S, Allen A, Green-Saxena A, Pellegrini E, et al.
Mortality prediction model for the triage of COVID-19, pneumonia, and
mechanically ventilated ICU patients: A retrospective study. Ann Med Surg.
(2012) 59:207-16.

Lundberg SM, Allen PG, Lee S-1. A Unified Approach to Interpreting Model
Predictions. 31st Conference on Neural Information Processing Systems, Long
Beach, CA. (2017). Available online at: https://github.com/slundberg/shap
Flueckiger P, Longstreth W, Herrington D, Yeboah J]. Revised
framingham  stroke score, risk markers, and
incident stroke in a multiethnic cohort. Stroke. (2018) 49:363-9.
doi: 10.1161/STROKEAHA.117.018928

Zhou X-H, Wang X, Duncan A, Hu G, ZhengJ. Statistical evaluation of adding
multiple risk factors improves Framingham stroke risk score. BMC Med Res
Methodol. (2017) 17:58. doi: 10.1186/s12874-017-0330-8

Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk
stratification for predicting stroke and thromboembolism in atrial fibrillation
using a novel risk factor-based approach: the euro heart survey on atrial
fibrillation. Chest. (2010) 137:263-72.

Manuals of Procedures. Framingham Heart Study. Available online at: https://
framinghamheartstudy.org/fhs-for-researchers/manuals- of- procedures/
(accessed July 21, 2021)

Hijazi Z, Lindahl B, Oldgren ], Andersson U, Lindbick J, Granger CB,
et al. Repeated Measurements of cardiac biomarkers in atrial fibrillation and
validation of the ABC stroke score over time. ] Am Heart Assoc. (2017)
6:€004851. doi: 10.1161/JAHA.116.004851

Lawes CMM, Bennett DA, Feigin VL, Rodgers A. Blood pressure
and stroke. Stroke. (2004) 35:776-85. doi: 10.1161/01.STR.0000116869.
64771.5A

Peng X, Ge J, Wang C, Sun H, Ma Q, Xu Y, et al. Longitudinal average glucose
levels and variance and risk of stroke: a chinese cohort study. Int ] Hypertens.
(2020) 2020:8953058.

Cho J-H, Rhee E-], Park SE, Kwon H, Jung J-H, Han K-D, et al. Maintenance
of body weight is an important determinant for the risk of ischemic
stroke: a nationwide population-based cohort study. PLoS ONE. (2019)
14:€0210153.

Hainer V, Aldhoon-Hainerova I. Obesity paradox does exist. Diabetes Care.
(2013) 36(Suppl 2):5276-81.

Oesch L, Tatlisumak T, Arnold M, Sarikaya H. Obesity paradox in stroke-
Myth or reality? A systematic review. PloS One. (2017) 12:e0171334.
doi: 10.1371/journal.pone.0171334

Johnson LS, Mattsson N, Sajadieh A, Wollmer P, Séderholm M. Serum
potassium is positively associated with stroke and mortality in the large,
population-based malmé preventive project cohort. Stroke. (2017) 48:2973-8.
doi: 10.1161/STROKEAHA.117.018148

Smith NL, Lemaitre RN, Heckbert SR, Kaplan RC, Tirschwell DL,
Longstreth  WT, et al. Serum potassium and stroke risk among
treated hypertensive adults*. Am ] Hypertens. (2003) 16:806-13.
doi: 10.1016/50895-7061(03)00983-X

Ding L, Liu C, Li Z, Wang Y. Incorporating artificial intelligence
Stroke.  (2020)  51:e351-4.

risk nontraditional

into  stroke care and  research.
doi: 10.1161/STROKEAHA.120.031295
Sailasya G, Kumari GLA. Analyzing the performance of stroke prediction
using ML classification algorithms. Int ] Adv Comput Sci Appl. (2021) 12:531-
538. doi: 10.14569/IJACSA.2021.0120662

Li X, Bian D, Yu ], Li M, Zhao D. Using machine learning models to improve
stroke risk level classification methods of China national stroke screening.
BMC Med Inform Decis Mak. (2019) 19:261. doi: 10.1186/s12911-019-0998-2
Barreto AD. Intravenous Thrombolytics for Ischemic  Stroke.
Neurotherapeutics. (2011) 8:388-99. doi: 10.1007/s13311-011-0049-x

Cheng NT, Kim AS. Intravenous thrombolysis for acute ischemic stroke
within 3 hours versus between 3 and 4.5 hours of symptom onset.
Neurohospitalist. (2015) 5:101-9. doi: 10.1177/1941874415583116

Kim Y-J, Joon Kim B, Kwon SU, Kim JS, Kang D-W. Unclear-onset stroke:
daytime-unwitnessed stroke vs. wake-up stroke. Int J Stroke. (2016) 11:212—
20. doi: 10.1177/1747493015616513

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Rimmele D, Thomalla G. Wake-up stroke: clinical characteristics, imaging
findings, and treatment option-an update. Front Neurol. (2014) 5:35.
doi: 10.3389/fneur.2014.00035

Lee H, Lee E-J, Ham S, Lee H-B, Lee JS, Kwon SU, et al. Machine learning
approach to identify stroke within 4.5 hours. Stroke. (2020) 51:860-6.
doi: 10.1161/STROKEAHA.119.027611

Horsky ], Drucker EA, Ramelson HZ. Accuracy and completeness of
clinical coding using ICD-10 for ambulatory visits. AMIA Annu Symp Proc.
(2018) 2017:912-20.

Goldstein LB. Accuracy of ICD-9-CM coding for the identification
of patients with acute ischemic Stroke. (1998) 29:1602-4.
doi: 10.1161/01.STR.29.8.1602

Rinaldi R, Vignatelli L, Galeotti M, Azzimondi G, de Carolis P. Accuracy of
ICD-9 codes in identifying ischemic stroke in the General Hospital of Lugo di
Romagna (Italy). Neurol Sci. (2003) 24:65-9. doi: 10.1007/s100720300074
Hsieh M-T, Hsieh C-Y, Tsai T-T, Wang Y-C, Sung S-F. Performance of
ICD-10-CM diagnosis codes for identifying acute ischemic stroke in a
national health insurance claims database. Clin Epidemiol. (2020) 12:1007-13.
doi: 10.2147/CLEP.S273853

GaZova A, Leddy JJ, Rexova M, Hlivék P, Hatala R, Kyselovi¢ J. Predictive
value of CHA2DS2-VASc scores regarding the risk of stroke and all-cause
mortality in patients with atrial fibrillation (CONSORT compliant). Medicine.
(2019) 98:e16560. doi: 10.1097/MD.0000000000016560

Chen LY, Norby FL, Chamberlain AM, MacLehose RE, Bengtson LGS,
Lutsey PL, et al. CHA , DS , -VASc score and stroke prediction in
atrial fibrillation in whites, blacks, and hispanics. Stroke. (2019) 50:28-33.
doi: 10.1161/STROKEAHA.118.021453

Kaplan RM, Koehler J, Ziegler PD, Sarkar S, Zweibel S, Passman
RS. Stroke risk as a function of fibrillation ~ duration
and CHA, DS,-VASc Score. Circulation. (2019) 140:1639-46.
doi: 10.1161/CIRCULATIONAHA.119.041303

Yuan Z, Voss EA, DeFalco FJ, Pan G, Ryan PB, Yannicelli D, et al.
Risk prediction for ischemic stroke and transient ischemic attack in
patients without atrial fibrillation: a retrospective cohort study. J Stroke
Cerebrovasc Dis. (2017) 26:1721-31. doi: 10.1016/j.jstrokecerebrovasdis.2017.
03.036

Lip GYH, Lin H-J, Chien K-L, Hsu H-C, Su T-C, Chen M-E, et al. Comparative
assessment of published atrial fibrillation stroke
schemes for predicting stroke, in a non-atrial fibrillation population: the
Chin-Shan Community Cohort Study. Int ] Cardiol. (2013) 168:414-9.
doi: 10.1016/j.ijcard.2012.09.148

Mitchell LB, Southern DA, Galbraith D, Ghali WA, Knudtson M, Wilton
SB. Prediction of stroke or TIA in patients without atrial fibrillation
using CHADS2 and CHA2DS2-VASc scores. Heart. (2014) 100:1524-30.
doi: 10.1136/heartjnl-2013-305303

Senoo K, Lip GYH. Prediction of stroke in patients without atrial
fibrillation using the CHADS, and CHA; DS, -VASc scores: a justification
for more widespread thromboprophylaxis? Heart. (2014) 100:1485-6.
doi: 10.1136/heartjnl-2014-306161

stroke.

atrial

risk stratification

Conflict of Interest: All authors are or were employed by Dascena, Inc. (Houston,
Texas, U.S.A).

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Maharjan, Ektefaie, Ryan, Mataraso, Barnes, Shokouhi, Green-
Saxena, Calvert, Mao and Das. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org

January 2022 | Volume 12 | Article 784250


https://doi.org/10.1016/j.compbiomed.2020.103949
https://github.com/slundberg/shap
https://doi.org/10.1161/STROKEAHA.117.018928
https://doi.org/10.1186/s12874-017-0330-8
https://framinghamheartstudy.org/fhs-for-researchers/manuals-of-procedures/
https://framinghamheartstudy.org/fhs-for-researchers/manuals-of-procedures/
https://doi.org/10.1161/JAHA.116.004851
https://doi.org/10.1161/01.STR.0000116869.64771.5A
https://doi.org/10.1371/journal.pone.0171334
https://doi.org/10.1161/STROKEAHA.117.018148
https://doi.org/10.1016/S0895-7061(03)00983-X
https://doi.org/10.1161/STROKEAHA.120.031295
https://doi.org/10.14569/IJACSA.2021.0120662
https://doi.org/10.1186/s12911-019-0998-2
https://doi.org/10.1007/s13311-011-0049-x
https://doi.org/10.1177/1941874415583116
https://doi.org/10.1177/1747493015616513
https://doi.org/10.3389/fneur.2014.00035
https://doi.org/10.1161/STROKEAHA.119.027611
https://doi.org/10.1161/01.STR.29.8.1602
https://doi.org/10.1007/s100720300074
https://doi.org/10.2147/CLEP.S273853
https://doi.org/10.1097/MD.0000000000016560
https://doi.org/10.1161/STROKEAHA.118.021453
https://doi.org/10.1161/CIRCULATIONAHA.119.041303
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.03.036
https://doi.org/10.1016/j.ijcard.2012.09.148
https://doi.org/10.1136/heartjnl-2013-305303
https://doi.org/10.1136/heartjnl-2014-306161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Enriching the Study Population for Ischemic Stroke Therapeutic Trials Using a Machine Learning Algorithm
	Introduction
	Methods
	Data Sources
	Patient Selection
	Machine Learning Model
	Statistical Analysis

	Results
	Discussion
	Study Summary
	Significant Features
	Comparison to Other AI Studies
	Study Limitations

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


