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Parkinson’s disease (PD) is a progressive, neurodegenerative disorder characterized

by motor and non-motor symptoms. To date, no specific treatment to halt disease

progression is available, only medication to alleviate symptoms can be prescribed.

The main pathological hallmark of PD is the development of neuronal inclusions,

positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites.

However, the cause of the inclusion formation and the loss of neurons remain largely

elusive. Various genetic determinants were reported to be involved in PD etiology,

including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into

pathophysiology of PD critically depend on appropriate models. However, conventional

model organisms fall short to faithfully recapitulate some features of this complex disease

and as a matter-of-fact access to physiological tissue is limiting. The development

of disease models replicating PD that are close to human physiology and dynamic

enough to analyze the underlying molecular mechanisms of disease initiation and

progression, as well as the generation of new treatment options, is an important and

overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived

neural models, particularly from genetic PD-variants, developed into a promising

strategy to investigate the molecular mechanisms regarding formation of inclusions and

neurodegeneration. As these iPSC-derived neurons can be generated from accessible

biopsied samples of PD patients, they carry pathological alterations and enable the

possibility to analyze the differences compared to healthy neurons. This review focuses

on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in

elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how

iPSC models can be instrumental in identifying cellular targets, potentially leading to the

development of new therapeutic treatments. We will outline the enormous potential, but

also discuss the limitations of iPSC-based α-syn models.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common progressive
neurodegenerative disorder worldwide, affecting 0.3% of
the global population (1), with the majority of the cases
manifesting among patients over 70 years of age (2). The main
neuropathological hallmarks of PD are the loss of dopaminergic
(DA) neurons in the pars compacta of the substantia nigra
(SNpc) and DA terminals in the striatum (3), along with
the occurrence of neuronal (4, 5) and glial (6) cytoplasmic
aggregations of the misfolded protein α-synuclein (α-syn). The
neuronal α-syn inclusions prevail compared to glial inclusions in
PD and they are termed as Lewy bodies (LBs) and Lewy neurites
(LNs) (7). PD belongs to the so-called α-synucleinopathies
(ASP), also including dementia with Lewy bodies (DLB) and
multiple system atrophy (MSA) [reviewed in Arnaoutoglou et al.
(8) and Krismer andWenning (9)]. In the current review, we will
discuss studies employing iPSC-derived PD models, focusing
especially on SNCA mutations. We will explain the generation
of human neuronal cell and organoid models and furthermore
discuss the advantages as well as the limitations of iPSC-derived
human models.

Features and Pathology of Parkinson’s
Disease
The first clinical observations of the disorder were reported by
James Parkinson in 1817, describing the disease as “shaking
palsy,” a combination of the loss of muscular power of
the limbs and their involuntarily shaking (10). Nowadays,
it is well-established that the disease is characterized by
a combination of both motor and non-motor symptoms.
The cardinal motor symptoms are tremor, rigidity, postural
instability and bradykinesia (11–16) while the non-motor
features include sleep disturbances (10, 17), cognitive and
neuropsychiatric abnormalities (18, 19) and dysfunctions of
the autonomic nervous system (20, 21). Diagnosis of PD is
challenging, especially in its early stage, as it is based on clinical
symptoms only.

The degeneration of the SNpc DA neurons together with
the loss of DA neuronal terminals in the striatum can lead
to a decrease of dopamine of around 80%, resulting in the
prominent motor symptoms typical for PD (22, 23) [for a more
thorough characterization on midbrain DA neurons consult (24,
25)]. Though the exact mechanisms leading to PD still remain
elusive, recent studies indicate the involvement of processes
such as oxidative stress, mitochondrial dysfunction, dysregulated
autophagic and proteasomal degradation of α-syn, as well
as neuroinflammation (26–30). Especially, neuroinflammation
driven by over-activated glial cells is considered to play a crucial
role in the loss of DA cells (31). Studies using PD animal models
and human post-mortem brain tissue suggest the involvement
of microglial and also astroglial neuroinflammatory responses
that contribute to the disease initiation and progression (32–
34). Other studies proposed neuronal loss in PD to be caused
by the development of α-syn aggregates following a prion-
like mechanism (35–40). Kordower et al. and Li et al. report
LB propagation from the PD host to grafted neurons in

patients after transplantation (41, 42), indicating a prion-
like, “infectious” propagation of α-syn. However, Hallet et al.
report healthy and unaffected morphology of DA neurons after
transplantation (43). Moreover, the prion hypothesis fails to
explain the pathological findings of many post-mortem PD brain
specimens, which show distinct areas where different cell types
are not equally affected, indicating a selective mechanism behind
the pathology (44–46). Recently, a cortical pathogenic theory
was proposed by Foffani and Obeso (47). According to this
hypothesis the corticostriatal activity could act as a stressor on
the nigrostriatal terminals, leading to neuronal degeneration and
eventually to PD onset (47). Another hypothesis suggests the
involvement of the gut-brain axis in PD onset and propagation,
revealing consistent alterations between the microbiome of
healthy and PD individuals (48–52). Despite studies supporting
all the different hypotheses described above, none of the
aforementioned theories is able to explain all pathophysiological
PD hallmarks.

PD is classified into idiopathic and familial forms of the
disease. The cause of idiopathic PD remains unknown, even
though it is assumed that it is caused by a combination
of genetic and environmental factors. Several studies link
exposure to different pesticides, like rotenone and paraquat
(53) or the chemical compound 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (54, 55) to the onset of PD. Moreover,
other parameters like the patients’ diet (56), metabolism (57),
inflammation (58) and exercise (59) has been suggested to be
involved in the manifestation of PD.

The Pathophysiological Role of
α-Synuclein
Familial PD is linked to genetic variants of PD-related risk
genes, following an autosomal dominant or recessive inheritance
pattern. One of the first genes identified to be connected with
PD pathology was the α-syn gene (SNCA) (4). Other PD-relevant
genetic mutations include variants of DJ-1, LRRK2 and PINK1
amongst others [for details see (60)]. The present review will
focus on the SNCA genetic variants. The genetic PD-related
risk variants of α-syn are characterized at protein level by point
mutations in the N-terminal α-helices, like A30P (61, 62), A53T
(63), H50Q (64), and E46K (65). In these cases, it has been
reported that the mutant α-syn favors a faster formation of fibrils,
which are thought to be more toxic, compared to the wild-type
protein (66–69). Moreover, duplications (70) and triplications,
respectively, of the SNCA gene (71) have been described in PD
patients. These multiplications lead to increased levels of α-
syn that subsequently result in the emergence of the disease
pathology (71–73).

Mutations of the α-syn gene as well as different forms of
α-syn, like protofibrils and oligomers, are considered as key
players in PD pathogenesis (74, 75). α-syn, also known as the
precursor protein of non-amyloid beta/A4 protein (NACP), is
encoded by the SNCA gene and is a member of the synuclein
protein family, together with β-synuclein (β-syn), γ-synuclein
(γ-syn), also known as synoretin (76–78). At the protein level,
human α-syn is 140 amino acids in length and consists of 3
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FIGURE 1 | Structure of human α-synuclein. The protein consists of 3 main structural elements: (1) an amphiphilic N-terminus characterized by KTKEGV conserved

motifs, important for binding to membranes; (2) an internal hydrophobic NAC domain that is involved in α-syn aggregation; and (3) an acidic C-terminus, which is

important for Ca2+ binding. Gray boxes represent the KTKEGV motifs, and the arrows designate some of the common point mutations that are connected to PD

pathology.

structural elements, a highly conserved amphiphilic N-terminus
characterized by KTKEGV motif repetitions (76, 79), the non-
amyloid beta component (NAC) region, which is a hydrophobic

internal region and an acidic C-terminus (80) (Figure 1). In

vitro the wild-type protein does not show a fixed secondary

conformation (81–84). However, the protein has the capacity to

form fibrillar aggregates both in vitro and in vivo. The N-terminal

domain favors an α-helical conformation, which is expected

to hinder the appearance of the toxic, fibril-related β-sheet
formations of the NAC region (85–87). Truncated C-terminal α-
syn variants are found to be prone to fibrilization both in vitro
(88–90) and in vivo (91–94) indicating a potential fibril inhibitory
role of the C-terminal domain. α-syn aggregations can also be
enhanced by a variety of other parameters, like phosphorylation
(95), nitration and oxidation (96, 97), ionic strength (98) or acidic
pH (99).

The physiological role of the α-syn protein is still unclear.
It has been reported that α-syn is involved in the synaptic
regulation and maturation (74, 100, 101). Moreover, α-syn
knockout mice exhibit a DA reduction in the striatum,
indicating a potential role of α-syn in DA neurotransmission
(101). Decreased synaptic levels of α-syn in primary neurons
led to a decrease in the levels of presynaptic proteins,
like synaptophysin and synapsin I, that are important for
vesicle formation (102). The protein appears to also be
implicated in vesicle endocytosis and degradation (103–105).
It has been shown that α-syn interacts with mitochondrial
and lysosomal membranes (106, 107). Elevated levels of α-
syn has been reported to lead to increased mitochondrial
fragmentation in ESC-derived neurons (108). Several studies
also reported the influence of α-syn in mitochondrial fusion/
fission (109, 110). The protein has also been detected in the
nucleus, with recent studies reporting the effect of nuclear
α-syn on transcriptional regulation (111, 112) and epigenetic
modifications (113). It is apparent that despite the numerous
studies in the field, the actual physiological role of α-syn
remains elusive.

Generation of Midbrain DA Cells From
iPSCs
Recently, induced pluripotent stem cells (iPSCs) emerged as
novel tools to study human pathology in general and PD
in particular. Human iPSCs were first reported by in vitro
reprogramming of adult human fibroblasts, as published by
Takahashi et al. (114). Like embryonic stem cells (ESCs), iPSCs
are pluripotent stem cells that are able to self-renew indefinitely
and differentiate into the three germ layers, endoderm,
mesoderm and ectoderm (114, 115). However, in contrast to
ESCs the origin of iPSCs is not the embryonic blastocyst, hence
their use bypasses a major bioethical concern associated with
the use of human ESCs (116). The major advantage of iPSC-
derivedmodels is that they allow the recapitulation of the patient-
specific genetic background, offering a model of human origin.
iPSCs are also eligible for the generation of isogenic control lines
with the use of genome editing tools, like CRISPR (clustered
regularly interspaced short palindromic repeats)/Cas9 (117, 118).
Since iPSCs can be differentiated into any cell type of interest,
they allow the study of complex human disorders where patients’
material is difficult to access, particularly for pathologies affecting
the human brain (119–121).

The generation of iPSC-derived midbrain DA neurons is
highly desired as ameaningful in vitro PDmodel. A human iPSC-
DA model could help to study α-syn-driven neurodegeneration
which is predominantly occurring in DA neurons in the SNpc
in PD. Prior to the establishment of the iPSC technology, ESCs
were the main source of DA neurons of human origin to study
DA function and get transplantablematerial. The evolvement and
refinement of DA differentiation methods resulted in protocols
that can be classified into three main techniques, feeder-
dependent methods (122), two-dimensional (2D) monolayer
cultures with dual SMAD inhibition [with the use of the small
molecules Noggin and SB431542 (123)], and methods that
generate embryoid bodies (EBs) (124–126). First differentiation
attempts involved the co-culture of ESCs with stromal feeder cells
that induce ESC neuronal DA differentiation (122). However,
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FIGURE 2 | Derivation of in vitro iPSC-derived 2D dopaminergic neuronal cell cultures and 3D midbrain organoids. Neural induction of iPSCs is promoted via dual

SMAD inhibition. Pluripotent cells form neural rosettes or embryoid bodies (EBs), that subsequently are patterned toward ventral midbrain identity. After the initial

patterning the neurons are further cultured with chemically defined media in order to give rise to mature midbrain neuronal cultures. In the case of the midbrain

organoid cultures, first the iPSCs are forming EBs and then get embedded into an extracellular matrix that supports the 3D growth of these organoids. The illustration

was created using images from https://smart.servier.com/.

co-culture of ESCs with feeder cells is a rather undefined process
as it is difficult to recapitulate how much, and which factors the
feeder cells release into the medium. Lee et al. first described a
feeder-free, EB-based differentiation protocol. EBs are aggregates
developing from self-assembly of iPSC that undergo gastrulation-
like processes. Lee and coworkers initially obtained∼7% tyrosine
hydroxylase positive (TH+) neurons, a marker indicating DA
generation. After including sonic hedgehog (SHH), ascorbic
acid (AA) and fibroblast growth factor 8 (FGF8) into the
media, they were able to increase the yield of TH+ neurons to
∼34% (124). Kawasaki et al. described a feeder-dependent DA
differentiation protocol, that leads to a similar TH+ yield but
is significantly simpler compared to the protocol from Lee et al.
Using PA6 stromal cells they report emergence of∼30%TH+DA
neurons in a neuron-specific class III beta-tubulin (TuJ)-positive
neuronal population, which comprises around 52% of total cells
(122). Moreover, the differentiated neurons have been shown to
integrate into the striatum of mice after implantation. Still, these
co-culture systems resulted in highly heterogeneous neuronal
populations, including GABAergic, cholinergic, and serotonergic
neurons in TuJ-positive neuronal population, resulting in low
percentages of DA neurons (122).

The increasing need for obtaining more homogeneous DA
neuronal cultures was met by exposing the iPSCs in chemically
defined media compositions that mimic the physiological

developmental cues. One of the first approaches, developed in
2009 by Chambers et al., comprised the differentiation of iPSCs
by blocking SMAD signaling with the use of two small molecule
inhibitors, Noggin and SB31542 (123). A year later Fasano et al.
described the derivation of floor plate (FP) origin DA neurons
and proposed an early high dose SHH exposure resulting in
the generation of forkhead box A2 positive (FOXA2+) cells
(127). The combination of early SHH activation along with the
activation of the canonical Wnt pathway, through the use of
CHIR99021, a glycogen synthase kinase 3 (GSK3B) inhibitor, led
to the generation of neuronal cells that were expressing various
FP markers, like TH, FOXA2, LIM homeobox transcription
factor 1 alpha (LMX1A), nuclear receptor NURR1 (also known as
NR4A2), and paired like homeodomain 3 (PITX3) (128). Further
improvements were reported by the additional supplementation
of BMP5/7 that robustly increases the in vitro differentiation of
human iPSCs to midbrain DA neurons up to 3-fold (129). By
using further optimized DA differentiation protocols the groups
of Parmar (126), Takahashi (130, 131), Barker (132), and Studer
(123) were able to provide preclinical evidence that hESC-derived
DA neurons are functionally equivalent to those derived from
fetal tissue, supporting continued development of hESC-derived
cells as a clinical approach for cell replacement treatment of
PD (133). The main strategy for the generation of iPSC-derived
midbrain DA neurons is illustrated in Figure 2.
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Generation of Midbrain Organoids From
iPSCs
Recently, a new era of iPSC-modeling was initiated by the
possibility of generating three-dimensional (3D), self-organizing
cerebral organoids (134). These in vitro “mini-brains” are
originally generated from iPSCs that first organize into EBs
and later get embedded into an extracellular matrix hydrogel
(e.g., matrigel) and differentiate toward the neuroectodermal
lineage. The organoids recapitulate many key structures of the
human brain, like the cortical “inside-out” architecture, including
a lumen, a subventricular zone (SVZ), a cortical plate (CP)
and choroid plexus-like structures. These 3D in vitro brain-like
structures consist of a variety of cell types, showing also the
ones found in the developing human brain. The organoid cellular
composition contains neural progenitors, glial cells, intermediate
progenitors as well as deep- and upper-layer neurons (135).
Further developments on the organoid technology have resulted
in region-specific organoids, recapitulating neuroanatomical
structural features of various human brain regions including
forebrain (136, 137), pallium and subpallium (138), choroid
plexus (139), cerebellum (140), retina (141), hypothalamus (142),
and finally midbrain (143–145). Especially, the later ones are
of high relevance in the PD research field and can constitute a
promising novel in vitro tool providing new insights into the early
neurodevelopmental stages of the disorder (Figure 3).

Different protocols have been developed for the creation
of homogeneous midbrain-like organoids (MOs). Tieng et al.
described a “neurosphere” mediated method, where first the
iPSCs form EBs that then get exposed to a FP-inducing
medium, containing LDN193189, SB431542, SHH, FGF8,
purmorphamine, and CHIR99021 and finally to a neural
maturation medium. This protocol yields organoids that contain
around 60% of DA neurons, in around 3 weeks (146). Alternative
protocols similarly follow the EB formation method and e.g.,
employ the exposure of the cells to several morphogens, like
Wnt activators, dual SMAD inhibitors and SHH activators (143,
147, 148). Similarly, to Tieng et al. these protocols also report
high proportion of DA neurons, >60%, together with functional
glial cells, astrocytes and oligodendrocytes. All protocols also
result in electrophysiologically active neurons, however the
protocol developed by Jo et al. was the only one that reported
the identification of SNpc DA neuron-like electrophysiological
patterns (149). Interestingly, Kwak et al. observed DA specific
cell death after the treatment with 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine, indicating this 3D system as a relevant PD
model (148). Even though there is a variety of protocols for
deriving midbrain organoids, the usage for PD modeling is still
in its infancy.

iPSC-Derived Neuronal Models to Mimic
PD
Copy Number Variations of SNCA
With the establishment of DA neuronal differentiation protocols,
researchers started to employ them in order to generate DA
neurons with PD-related genetic backgrounds. Some of the
first studies focused on the generation of DA neurons from

iPSCs carrying a SNCA triplication (SNCA-tri) genetic variant.
These studies revealed further insight into the occurrence of
PD pathological hallmark features, like α-syn aggregation (150–
157), mitochondrial dysfunction and elevated oxidative stress
(150, 156, 158), as well as ER stress (154, 159).

Byers et al. report that PD midbrain DA neurons
overexpressed oxidative stress related markers, like heme
oxygenase 2 (HMOX2), when compared to healthy controls.
The disease related neurons appeared to be more vulnerable
to oxidative stress and they showed increased cell death (150).
Mitochondrial dysfunction accompanied by increased oxidative
stress was also observed by Zambon et al. The group reported
decreased cellular respiration accompanied by abnormalities in
the mitochondrial membrane potential that could be induced
by the reduced phosphorylation of Dynamin-related protein
1 (DRP1Ser616), a GTPase important for the mitochondrial
morphology (156). Along the same lines, Ludtmann et al.
observed mitochondrial accumulation of α-syn oligomers. The
oligomers selectively oxidized mitochondrial proteins, e.g.,
the ATP synthase among others, an event that induced the
early opening of the mitochondrial permeability transition
pore (MPTP) that eventually led to mitochondrial swelling and
increased cell death. These pathological effects were reversed
after the inhibition of MPTP with the use of cyclosporin A (158).

It is considered that lysosomal function plays a crucial
role in PD pathology. There is substantial evidence of an
association between synucleinopathies and Gaucher disease,
a lysosomal storage disorder (LSD) that is characterized by
mutations in the glucocerebrosidase (GBA) gene (160, 161). In
fact, mutations in the GBA gene in mice have been reported to
result in accumulation of α-syn and finally lead to neurotoxicity.
Moreover, the aggregations result in further inhibition of the
normal GBA lysosomal function (161). This connection indicates
that the impairment in the physiological lysosomal function
reinforces the accumulation of α-syn, and thus contributes to
the PD pathology (162). Mazzulli et al. confirmed in an in
vitro cell culture model that iPSC-derived midbrain DA neurons,
carrying a SNCA triplication or an A53T point mutation,
exhibited reduced lysosomal function leading to elevated α-
syn accumulation. Furthermore, a disruption in the subcellular
protein sorting of the Rab1a protein, a GTPase with important
ER-Golgi vesicular transport function, was reported, resulting in
reduced hydrolase trafficking and eventually fragmentation of the
Golgi apparatus. These pathological findings could be reversed
with the overexpression of Rab1a in DA neurons (154). In a later
study the same group showed the restoration of the lysosomal
activity and the subsequent reduction of α-syn accumulation
using a small molecule modulating the function of the lysosomal
β-glucocerebrosidase enzyme (GCase) (163).

In the nuclei of SNCA-tri neurons perturbations of the normal
cellular morphology were reported. Impairments of the nuclear
envelope in PD neurons were shown along with abnormalities in
the nuclear protein transport after the interaction of α-syn with
Ras-related nuclear protein (RAN) (164). Similar findings were
also described by Vasquez et al. in a study that employed SNCA-
tri neural progenitor cells (NPCs). The group confirmed the
nuclear localization of α-syn and its association with chromatin.
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FIGURE 3 | Modeling PD employing iPSC-derived in vitro systems. Adult differentiated cells, either from PD patients carrying a mutation in the SNCA, GBA, PINK1, or

LRRK2 gene amongst others, or CRISPR-edited isogenic controls, are reprogrammed into induced pluripotent stem cells (iPSCs). These cells can be further

differentiated into 2D or 3D neuronal in vitro cultures for investigating PD pathology. The illustration was created using images from https://smart.servier.com/.

The aggregates induced DNA damage and ultimately, increased
cell death was reported (165).

Following the general developmental impairment that
characterize pathological features of PD, studies reported a
maturation delay of diseased neurons after comparing their
transcriptomic profile with either healthy controls or primary
midbrain DA neurons. Oliveira et al. reported the decreased
expression of many genes that are implicated in neuronal
differentiation processes (152). A year later, Xia et al. confirmed
this finding. Among others, they described the downregulation
of 37 genes in the PD midbrain DA neuronal cohort. The list
included genes that are important for the DA neuronal identity,
like TH and LMX1B, genes that are involved in neuronal
maturation, as well as genes that are considered as risk genes
for neurological pathologies (166). Further studies described
developmental and morphological neuronal abnormalities, such
as aberrant neurite morphologies showing reduced lengths
and irregularities of the membrane integrity. Furthermore, Lin
et al. reported that the SNCA-tri neurons exhibited decreased
firing rates and complete absence of synchronized neuronal
firing, indicating a decline in normal neuronal activity and
connectivity (153). SNCA-tri neurons with impaired neurites
were also reported by a study of Siddu et al. The number
of healthy neurites was ameliorated after treatment with
cysteamine that additionally reduced the levels of the α-syn
aggregates (157). Cysteamine is an aminothiol derivative that is
physiologically produced from the degradation of coenzyme A

(167, 168). Notably, cysteamine exhibits a protective role against
DNA damage when induced by irradiation since it acts as a
reactive oxygen species (ROS) scavenger (169). Moreover, the
compound has been used in multiple Huntington’s disease (HD)
preclinical studies with promising results, including prolonged
mice survival (170–172). Siddu et al., after having additional
encouraging results on mouse studies, proposed that cysteamine
could be considered as a potential future drug candidate for
PD (157).

Since PD is an age-related neurodegenerative disorder,
mimicking the aging aspect plays a crucial role in the disease
modeling. One of the limitations of the iPSC models is the
rejuvenation of the cells during their reprogramming. In an
auspicious study led by Chiba-Falek, the scientists bypassed
this drawback with the generation of aged NPCs without the
ectopic expression of genes or the use of toxins. In detail,
the aged NPCs were derived after extensive passaging, 14–16
times. The aging phenotype was confirmed by assessing the
expression of heterochromatin markers (e.g., histone 3 lysine 9
trimethylation, H3K9me3), by evaluating the nuclear membrane
structure (e.g., stainings with lamin A/C), DNA damage (with
cellular stainings of heterochromatin protein 1 γ, HP1γ) and the
evaluation of the global methylation. The aged NPCs expressed
age-related markers and gave rise to midbrain DA neurons that
attained the aged phenotype. Notably, even the young SNCA-tri
neurons, derived from young NPCs, showed increased aging-
related markers when compared to control neurons (173).
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The transfer of α-syn aggregates from SNCA-tri neurons to
neighboring wild type neurons has been reported by Reyes et al.,
indicating a potential proof of the prion hypothesis for PD
pathogenesis (174). Prions are defined by their “protein-only”
composition that is—though devoid of nucleic acids—able to
carry infectivity by direct protein-protein contact (175). This co-
culture system can also be used as a small molecule screening
system (174).

Besides iPSC models that are based on the triplication of
the α-syn gene, some others carry SNCA duplications. This
genetic background also led to the generation of neurons that
exhibited hallmark pathological PD features, in a lesser extent
compared to the triplications, like α-syn aggregations that
specifically accumulated in midbrain DA neurons, mitochondrial
dysfunction and energy deficits, synaptic loss, ROS accumulation,
protein nitration and ultimately increased cell death (155, 176).

Taken together, multiplication of the SNCA locus, either
triplication or duplication, appears adequate to initiate PD
pathology (177, 178). The SNCA copy number variation (CNV)
leads to PD symptom manifestation, like α-syn aggregation,
lysosomal and mitochondrial impairments and accelerated
neuronal cell death. Therefore, the SNCA multiplication iPSC-
derived neuronal models appear to be useful in mimicking PD
pathology. They offer valuable, new insights into the pathological
pathways of PD initiation and progression and can also be used
as drug screening platforms. The relevant studies and their main
findings are summarized in Table 1.

SNCA Point Mutations
PD is also associated with various point mutations in the SNCA
gene, with A53T and E46K being the most extensively studied
ones. Like for CNVs iPSC-derived neuronal models based on
SNCA point mutations do also result in α-syn aggregation
(155, 156, 179, 180). Fernandes et al. showed in A53T-mutant
midbrain DA neurons dysregulated expression of genes, related
to chromatin organization and histone modifications. They also
demonstrated a repression of oxidative phosphorylation and
a reduction in the cholesterol biosynthesis (182). Studies of
multiple research groups also report ER and mitochondrial
stress linked to these point mutations. Interestingly, Ryan
et al. described impaired and fragmented mitochondria that
were also observed in control neurons after co-culture with
SNCA-A53T neurons, indicating the transfer of α-syn fibrils
of the pathogenic neurons to the isogenic control. This
cell-to-cell transfer was inhibited by a monoclonal antibody
directed against α-syn. Moreover, the same study identified
that treatment with cardiolipin, a group of phospholipids
that account for around 20% of the inner mitochondria
membrane phospholipid mass, reduces α-syn accumulation at
the mitochondrial outer membrane (180). A study on A53T-
NPCs revealed lysosomal storage of α-syn aggregations and cell-
to-cell transfer. The aggregates were found to be accumulated
in tunneling nanotubule (TNT)-like structures (187). Kouroupi
et al. described synaptic impairments that were reversed after
treatment with a de novo designed small molecule, inhibiting
the accumulation of α-syn (179). Khurana et al. developed an in
silico tool, the so-called TransposeNet, a computational method

that can interchange molecular interactions across species. It
allows the generation of genome-scale maps of α-syn toxicity in
yeast that then could reveal links to PD-relevant genes and to
candidates targeting α-syn toxicity in humans. These then can be
tested in vitro e.g., in patient-derived neurons (184).

PD is considered a complex disorder, influenced by a
combination of both genetic and environmental factors.
Recently, an intriguing study performed by Stykel et al.
proved a genetic-environmental interaction by inhibiting the
anterograde mitochondrial transport in SNCA-A53T harboring
DA neurons. When exposed to the agrochemicals rotenone,
or paraquat and manet, the mutated DA neurons showed a
change in the nitration of α-tubulin (α-Tub), which led to
altered microtubule architecture and eventually to the arrest
of the anterograde mitochondrial transport toward the axon
terminal (181). In contrast, the isogenic control neurons showed
only minor effects to the exposure. As shown before, defects in
mitochondrial transport are critical for the neuronal physiology
(188). Therefore, Stykel et al. showed an additive effect of the
environmental toxins, paraquat, manet and rotenone with the
PD susceptible genetic background, that could lead to an earlier
PD onset. The use of the nitric oxide biosynthesis inhibitor,
Nω-nitro-L-arginine methyl ester, reversed these effects (181).

In conclusion, like the SNCA CNV models, point mutations
also lead to the manifestation of PD hallmarks, ranging from
α-syn aggregation to ER and mitochondrial stress. Though, a
particular characteristic of the point mutation models is the wide
variety of pathological observations. The relevant studies and
their main findings are summarized in Table 1.

Notably, all 2D DA midbrain models involving SNCA
triplication, duplication, or point mutations (A53T and E46K)
reproduced the ability to aggregate α-syn (150–153, 155–
157, 163, 176, 179, 180), which further led to mitochondrial
impairment (150, 155, 156, 158, 176). Furthermore, DAmidbrain
neuronal cells showing the SNCA triplication and the point
mutation A53T genetic background revealed oxidative stress,
ER stress and lipid dysregulation (150, 156, 158, 182), whereas
increased cell death was found in the SNCA triplication and
duplication DAmidbrain neuronal cell lines (150, 176). Neuronal
maturation delay in iPSC-derived DA midbrain neurons was
shown in two separate studies using the SNCA triplication
background (152, 166). Additional features or impairments
were found in the different models, yet most of them need
further verification.

The generation of 3D iPSC derived in vitro models allowed
to bypass many of the limitations of the 2D counterpart. More
specifically, the organoid models recapitulate more precisely the
in vivo physiology and development, features that are not possible
to be modeled in a simpler 2D cell culture model. Furthermore,
organoids offer a higher cellular complexity, they allow complex
cell-to-cell interactions and recapitulate the spatial architectural
features of human development (189, 190). Nevertheless, 2D
models are still useful and well-established providing easier and
less complicated data interpretation.

Given the recent development of the 3D neuronal organoid
technology, not many studies employed organoids derived
from iPSC lines expressing SNCA mutations, so far. Based
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TABLE 1 | Summary on 2D models using iPSC and iPSC-generated neuronal cells having a PD-SNCA-related genetic background.

Gene Mutation Cell type Main findings

SNCA Triplication Midbrain

DA neurons

• α-syn aggregations (150–157)

• Neuron to neuron α-syn transfer (174)

• Mitochondrial impairment, oxidative stress, ER stress (150, 153, 154, 156, 158)

• Lipid regulation impairment (156)

• Neuronal maturation delay (152, 166)

• Nuclear envelope perturbations (164)

• Lysosomal dysfunction (154)

• Increased cell death (150)

SNCA Triplication Aged NPCs, DA and

cholinergic neurons

• α-syn aggregations (173)

• Extensive passaging of NPCs lead to aged neurons (173)

• SNCA-Tri neurons derived from young NPCs show accelerated nuclear aging (173)

SNCA Triplication NPCs • α-syn aggregations (165)

• α-syn nuclear localization (165)

• DNA damage (165)

SNCA Duplication Midbrain

DA neurons

• α-syn aggregations (155, 176)

• Mitochondrial impairment (155, 176)

• Energy deficits (155)

• Increased cell death (176)

SNCA A53T Midbrain

DA neurons

• α-syn aggregations (156, 179, 180)

• Mitochondrial impairment, oxidative stress (155, 156, 180–182)

• nitrosative and ER stress (156, 182, 183)

• Synaptic impairment (179)

• Lipid regulation impairment (156)

SNCA A53T Midbrain

DA neurons

• Generation of the computational tool TransposeNet (184)

• Generation of a genome-scale “humanized” map of α-syn toxicity (184)

SNCA A53T iPSCs • Correction of the A53T mutation with BAC targeting vectors (185)

• Generation of PD iPS lines by ZNF editing (186)

SNCA A53T DA NPCs • α-syn fibril uptake (187)

• α-syn transfer (187)

SNCA E46K Midbrain

DA neurons

• α-syn aggregations (155)

• Mitochondrial impairment (155)

• Reduced axonal density (155)

• Synaptic impairment (155)

on previous studies Jo et al. generated SNCA-triplication
and GBA1 knock-out midbrain organoids that successfully
exhibited α-syn aggregation, LB generation and DA neuronal
loss (149). A very recent study focuses on the establishment of
SNCA-triplication midbrain organoids employing CRISPR/Cas9
edited isogenic controls. This study also stated the neuronal
and glial accumulation of α-syn aggregates that interestingly
increased in organoids of higher age, recapitulating the
physiological age-dependency of PD pathology (191). Smits
et al. focused on the establishment of LRRK2-G2019S midbrain
organoids. These PD midbrain organoids exhibit disease-
related phenotypes, like impaired neuronal complexity and
interestingly, they showed a decreased number of DA neurons,
even though there was an excess of FOXA2+ progenitors,
indicating a developmental impairment in the DA neuronal
differentiation (147).

Aside from the SNCA gene variants, PD GWAS studies
identified a plethora of disease-associated risk variants that still
need further functional studies, focusing on the underlying
pathological mechanisms (192). Therefore, the generation of
different disease-relevant 3D models, but also 2D models,
recapitulating the genetic background of PD, will be of great

significance in order to get more insights into PD initiation
and progression.

DISCUSSION AND CONCLUSION

PD is a neurodegenerative disorder affecting a substantial
fraction of the global population. The disease is both, devastating
for the patients’ life quality, and also a big burden for the global
healthcare system. Due to the restricted access to PD-affected
human brain tissue there is a fundamental need for reliable in
vivo and in vitro models. The current in vivo models employ
a wide range of animals including rodents, non-mammalian
species and non-human primates (NHP). Transgenic animal
models, especially mice, have been extensively used for studying
PD, since they do not only enable insights into the pathogenesis of
PD, but also can be employed for the identification and validation
of new potential therapeutics (193, 194). Reported mouse models
include transgenic α-syn models and transgenic animals with
mutations in the LRRK, PINK1 and DJ-1 gene (194). In vitro
PD cellular models include the use of various cells lines, both
primary and immortalized. Among themost widely used lines for
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PD modeling are the neuroblastoma immortalized cell line SH-
SY5Y (195), the Lund human mesencephalic immortalized cell
line (LUHMES) (196), the rat N27 immortalized mesencephalic
cells and primary DA cells (197). The dopamine synthesis and
metabolism machinery of these lines turns them into suitable
PD models.

Here, we highlighted the importance of developing
complementary in vitro iPSC-derived neuronal models for
studying particularly the involvement of α-syn in PD pathology.
These models can offer valuable insights into the pathology
mechanisms, but they could also serve as platforms for drug
screening. The iPSC technology allows the generation of models
of human origin, carrying the patient’s genetic background,
which makes them a useful tool for getting insights into the
pathological disease mechanisms. Furthermore, these systems
are readily available, for instance through various biobanks
[among others the Corriel (https://www.coriell.org/1/Browse/
Biobanks) and the European Bank for induced pluripotent Stem
Cells (EBiSC)], as well as through various commercial sources,
and well-established for disease modeling, as it is apparent from
the numerous studies employing iPSCs for this purpose (120).

PD is a complex multifactorial disorder. iPSCs can be
employed for addressing several pathophysiological mechanisms
and life-style parameters that are implicated in the disorder.
For example, there are studies deciphering the implication of
inflammation in PD, employing iPSC-derivedmacrophages (198)
and microglial cells (199). The influence of metabolism and diet
were addressed in metabolomic studies (200–202) and studies
that control the nutrient composition of the culture medium
(203). However, other aspects, like the effect of exercise in disease
progression are hard to be modeled in an in vitro system and
therefore an in vivo mouse model would be the appropriate
system for this scientific question.

However, though iPSC are powerful tools in generating
patient-specific diseased cells, they exhibit several limitations.
Genomic instability and epigenetic aberrations potentially
induced by reprogramming need to be carefully monitored
(204, 205). Moreover, iPSC reprogramming involves a global
epigenetic reset representing an undesired cell rejuvenation
process if it comes to study age-related disorders (206).
Furthermore, for a clinical application of iPSC-derived cells
the potential tumorigenicity and immunogenicity need to be
addressed (207–209). Finally, since iPSCs carry the patient’s
genetic background, special attention needs to be dedicated into
the proper handling of the personal, genomic data (210, 211).

To sum up, iPSC-derived SNCA neuronal models are either
focusing on SNCA gene multiplications or mimic the SNCA
disease-related point mutations. Even though these models
partly enable the recapitulation of PD hallmark pathological
features, like α-syn aggregation, mitochondrial stress, lysosomal
dysfunction, ER stress, DNA damage and accelerated cell death,
none of them managed to demonstrate the combination of
all these pathological characteristics. Additionally, some of the
studies confirmed the transfer of α-syn fibrils from SNCA-tri
neurons to healthy controls. Despite the lack of an ultimate iPSC-
derived PD model that demonstrates holistically the pathological
PD hallmarks, these studies using iPSC-derived PD models

identified significant findings regarding the pathological pathway
involved in PD initiation and progression.

However, iPSC-derived PD models are poor in modeling
aging, due to the rejuvenation of the cells during the
reprogramming (206, 212, 213). In fact, PD is an age-related
pathology that manifests mostly in patients with higher age.
Some studies addressed this issue by artificial aging, e.g., by
extensive NPC passaging initiating the expression of age-related
markers and later differentiating them into neurons (173). The
iPSC rejuvenation could also be bypassed by transdifferentiation,
also known as direct conversion, a technique that differentiates
the adult cells into the cell type of interest, without passing
through the reprogrammed state. This way, the cells retain
their age and could provide a better suited model for studying
late onset disorders (214). In the context of PD, adult dermal
fibroblasts have been directly converted intoDAneurons through
the overexpression of a cocktail of transcriptional factors (215,
216). Another study, has also generated DA neurons by directly
converting astrocytes (217).

Even though, direct conversion into DA neurons is a
great tool, the generated neuronal population is post-mitotic.
Therefore, there are several concerns about the efficacy and the
survival of the neuronal populations in cases of transplantation
for therapeutic purposes. Another promising alternative is the
use of NPCs. NPCs are multipotent progenitor cells that can
give rise to neurons, oligodendrocytes and astrocytes (218–221)
and novel reprogramming paradigms allow direct conversion
of patient-specific cells into NPCs (221–223). NPCs combine a
series of interesting features, like the partial maintenance of their
aging signatures, such as induced neurons. They are also safer for
cell therapy since they are not tumorigenic, in contrast to iPSCs.
More importantly they are expandable, making them ultimately
a promising therapeutical approach.

The exogenous administration of α-syn pre-formed fibrils is
another alternative approach in PD modeling. There is extensive
use of this approach in animal models, including mice and non-
human primates (224). Although, many insights were gained
from these in vivo studies, the animal models do not recapitulate
the full spectrum of the human PD pathology. Therefore,
translating the results of the neuronal reactions to extracellular
human α-syn from animals to humans is a difficult task. The
same approach has recently been used in an iPSC-derived
neuronal system. The study established 2D cortical neuronal
networks using microfluidic devices. The healthy neurons of the
one side of the microfluidic device were incubated with α-syn
fibrils and the researchers assessed the uptake, the intracellular
fibril transfer, and the cell-to-cell fibril transfer. They reported
a prion-like α-syn fibril transfer between the two neuronal
populations. Moreover, the α-syn aggregates led progressively to
the appearance of PD pathological features (225).

Conclusively, it is apparent that there are exciting new
developments regarding the PD research field, both in basic
research and in the applied clinical field. Many emerging
new technologies, e.g., midbrain organoids and multi-omics
data, promise to give invaluable new insights to the research
community. Based on the literature though, it is evident that
there is a need for additional studies employing these new
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models. The upcoming years will bring a great influx of exciting
new data that hopefully will lead to better understanding of the
PD pathology helping to generate new treatment options that
will ameliorate the patients’ lives or even stop the progression of
the disease.
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