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Proteomics and metabolomics are two emerging fields that hold promise to shine light

on the molecular mechanisms causing neurodegenerative diseases. Research in this

area may reveal and quantify specific metabolites and proteins that can be targeted by

therapeutic interventions intended at halting or reversing the neurodegenerative process.

This review aims at providing a general overview on the current status of proteomic and

metabolomic profiling in neurodegenerative diseases. We focus on the most common

neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and

amyotrophic lateral sclerosis. We discuss the relevance of state-of-the-art metabolomics

and proteomics approaches and their potential for biomarker discovery. We critically

review advancements made so far, highlighting how metabolomics and proteomics may

have a significant impact in future therapeutic and biomarker development. Finally, we

further outline technologies used so far as well as challenges and limitations, placing the

current information in a future-facing context.

Keywords: proteomics, metabolomics, Alzheimer’s disease, AD, Parkinson’s disease, PD, amyotrophic lateral
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INTRODUCTION

The diagnosis of neurodegenerative diseases mostly relies on clinical presentation, sometimes aided
by neuroimaging interpretation. Amajor caveat is that these conditions are clinically heterogeneous
and often reflect a spectrum of neurodegenerative processes with intra- and inter-patient variation
and complex pathologies. A growing body of evidence suggests that the neurobiological basis of
distinct pathologies may share the same clinical phenotype. Thus, an accurate diagnosis is even
more challenging due to the inability to access brain tissue in vivo and to the fact that peripheral
tissues often do not reflect early stages of brain pathology.

Despite progress being made in the fields of genetics and transcriptomics (1), additional
evidence of biological patterns indicative of the presence of pathology is needed. Proteomics
(large-scale study of proteins) and metabolomics (large-scale study of small molecules, commonly
known as metabolites) are two growing and emerging fields holding promise to investigate changes
within cells, biofluids, or tissues that could give us further insight into the disease process.
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The progress made in “omics” research combining multiple
layers of high-throughput sources of biological information is
critical in our continued effort toward a better understanding of
neurodegenerative conditions.

Both metabolites and proteins reflect the physiological and
pathological status of an individual. Profiling these data types
could be useful to identify sensitive and effective markers
for early disease detection and potentially effective therapeutic
interventions. Research in the context of neurodegenerative
diseases may reveal and quantify specific metabolites and
proteins playing a role on cellular pathways suitable for
therapeutic interventions aimed at halting or reversing the
neurodegenerative process (Figure 1).

METABOLOMIC STUDIES

Our metabolome represents the interaction between genome and
environment. Ametabolomic intermediate can link genetics with
environmental factors to influence clinical outcomes and drug
responses (2). It includes both endogenous metabolites that are

FIGURE 1 | Metabolites and Proteins across Neurodegenerative Diseases. Green, red, and blue circles highlight major metabolites and proteins nominated by

research studies as implicated in amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s disease etiology.

naturally produced in an organism such as amino acids, organic
acids, nucleic acids, fatty acids, amines, sugars, vitamins, co-
factors, and pigments, as well as exogenous chemicals such as
drugs, environmental contaminants, food additives, toxins and
other xenobiotics that are not naturally produced by an organism
(3). Current technologies allow rapid screening of metabolites
in an unprecedented manner, including high-resolution methods
such as nuclear magnetic resonance spectroscopy and mass
spectrometry (4). The advancement of these technologies
has facilitated and promoted the creation of freely available
metabolome databases such as the HumanMetabolomeDatabase
or HMDB (containing detailed information about over 40,000
metabolites that have already been identified or are likely to
be found in the human body) (5), the Urine Metabolome
Database (https://urinemetabolome.ca/), the Cerebrospinal Fluid
Metabolome Database (https://csfmetabolome.ca/) and the
Serum Metabolome Database (https://serummetabolome.ca/),
among others.

As metabolites usually constitute the final stage of biological
processes, studying them simultaneously may be particularly
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beneficial in multifactorial neurodegenerative conditions, where
dysfunction in multiple processes play a role. Ultimately, several
studies have used metabolomics in different biological substrates
to search for less invasive and more accurate biomarkers across
many diseases, and small molecules show promise in this regard.
Despite the fact that these studies provide exciting new findings,
they frequently use small sample sizes, carry sources of bias or
variable selection criteria, and lack uniformity in the collection
and analysis of samples, precluding their immediate use in
the clinic.

PROTEOMIC STUDIES

It is now widely known that protein toxicity can arise from the
accumulation, mis-localization, post-translational modification
such as phosphorylation, ubiquitination, methylation,
acetylation, glycosylation, oxidation, and nitrosylation
or multimerization of proteins which in turn can lead to
neurodegeneration through mechanisms still being unveiled
(6, 7). These changes result in catastrophic downstream
processes, from inflammation to cell death. Unraveling the
structure and function of each protein in our proteome and
the complexities of protein–protein interactions is crucial for
developing disease-modifying therapies and reliable diagnostic
techniques as we move forward to a deeper understanding of
these diseases. Current technologies to screen our proteome
include mass spectrometry and protein microarrays. In the
context of neurodegenerative diseases, the number of proteomic
studies keep growing.

This review aims at providing a general overview on the
current status of proteomic and metabolomic profiling by
focusing on the most common neurodegenerative diseases,
including Alzheimer’s disease (AD), Parkinson’s disease (PD),
and amyotrophic lateral sclerosis (ALS). We critically review
advancements made so far, highlighting how metabolomics
and proteomics will likely have a significant impact in the
future. We further outline technologies used so far, challenges
and limitations and place the current information in a future
facing context.

TECHNOLOGIES USED TO STUDY
METABOLOMICS AND PROTEOMICS

Metabolomics
Metabolomics holds immense promise in the realm of
personalized medicine for identifying various biological
endpoints for analysis and could therefore be utilized for
diagnosis, monitoring, and identifying novel pathways and
systems involved in a disease as well as therapeutic targets. While
use and sophistication of these tools are ever evolving, there
remain limitations. Metabolomics communicate data that is
highly sensitive, responding to the genetics, gut microbiota, and
environment of an individual. Confounders and overall study
design need to be carefully considered to reduce interindividual
variation. Additionally, though many metabolites are nominated
through research, each must be validated by functional studies.

In fact, many metabolites that are indicated are not replicable or
fail to be validated. The use of small data sets is a key limitation
in metabolomics and combining datasets shows a lot of promise
in resolving some of these false positives.

Metabolomic technologies provide rich data for analyses.
Mass spectrometry (MS) measures mass-to-charge ratio of ions,
identifying and quantifying molecules of a sample. It is often
coupled with gas chromatography (GC), ion chromatography
(IC), or liquid chromatography (LC) and is a high-throughput
process. Nuclear magnetic resonance (NMR) spectroscopy, a
non-destructive analysis, can be used to study intact tissues and
living samples in addition to biofluid or tissue extracts and can
be recorded from multiple nuclei (1H, 13C, 15N, and 31P), the
correlation of which can be achieved through multidimensional
NMR. NMR is, however, less sensitive and selective than LC-MS
and GC-MS (8).

Proteomics
Proteomics holds many of the strengths and limitations
of metabolomics, producing high-throughput data that is
vulnerable to many confounders. While proteomics may not be
able to explain disease development fully, it provides key insights
into potential biomarkers. As with metabolomics, combining
data sets to increase reliability and reproducibility of results
is essential and can identify potential tools for diagnosis
(9). MS is also used frequently in proteomics, with LC-MS
commonly used for complex samples and matrix assisted laser
desorption ionization-time-MS (MALDI-MS) used for simple
protein samples (10). Advances in labeling techniques to improve
identification of least abundant sample proteins have been vital to
creating a full profile of conditions.

Isotope-coded affinity tag (ICAT) is also known for detection
of proteins at low expression levels but cannot detect proteins
without cysteine residues or acidic proteins, leaving an
incomplete picture of the proteome (11). Other technologies,
such as stable isotope labeling with amino acids in cell
culture (SILAC), involve directly isotope labeling cells to reveal
differential expression patterns, but cannot be used in tissue
sample, real-time or in vivomeasurements.

No single technology can provide a complete picture of the
proteome or the metabolome, but advances have shown the
complementary strengths of different technologies. Additionally,
the need for combined datasets has been highlighted in both
proteomics andmetabolomics as a way to createmore robust data
and analyses.

ALZHEIMER’S DISEASE

Alzheimer’s Disease (AD) is the most common form of
neurodegeneration. It is a significant and growing burden,
with prevalence expected to triple worldwide by 2050 (12).
Since its description in the start of the twentieth century,
the diagnosis of AD has evolved, and it now incorporates
biological and clinical features (13). Preclinical stages of the
disease begin with neuronal, glial, and vascular dysfunctions
associated with amyloid beta (Aβ) accumulation in senile
plaques, hyperphosphorylated tau (p-tau) aggregation in
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neurofibrillary tangles, and ultimately cell death (13). Numerous
other biochemical processes are disrupted in AD, including
lipid synthesis, mitochondrial function, inflammation, and
neurotransmitter metabolism. Following these paths allowed
for the development of fluid biomarkers with enough precision
to be used in diagnostic criteria and to facilitate research of
new therapeutic targets (14). However, the present biomarkers
entail invasive procedures (lumbar puncture to retrieve CSF)
or are expensive (PET scans), and while accurate, these could
be substantially improved. Additionally, as Aβ is increasingly
recognized as insufficient to cause neurodegeneration on its
own, the field is constantly pursuing new hypotheses to explain
the starting point of the disease, as well as new diagnostic and
prognostic biomarkers, preferably from less invasive matrices.
Metabolomics and proteomics hold great promise for improving
our understanding of AD mechanisms, identifying novel
biomarkers, monitoring therapy effectiveness, and developing
innovative treatments.

Metabolomics
With most studies focused on protein alterations, metabolome-
driven studies are helping to shed new light into other classes of
molecules putatively involved in AD pathogenesis. Interestingly,
Xu et al. (15) used an unsupervised learning approach to uncover
lipid, protein, and gene expression levels in a cohort of ∼600
individuals and demonstrated integrated networks of lipids and
proteins associated with AD, particularly those implicated in
lipid metabolism and innate immunity. Furthermore, Clark
et al. (16) have recently conducted multi-omics analyses in
the CSF of 120 elderly participants with normal cognition,
mild cognitive impairment (MCI), and mild dementia. Their
results proposed new pathways associated with AD, such as
hemostasis, immune response, and extracellular matrix signaling.
The authors describe a combination of molecules that predict
cognitive decline and dementia, as well as varying multi-omics
signatures associated with neuronal injury, amyloid and tau
pathology (15). In another recent study, Huo et al. (17) used
a targeted multi-omics strategy to evaluate blood and brain
samples from two distinct longitudinal cohorts. The authors
describe a relationship between three serum acylcarnitine levels
and a lower risk of AD and cognitive decline. They report a
total of 13 serum metabolites that predict cognitive decline, and
28 brain metabolites related to neuropathological measurements.
Aside from suggesting potential blood biomarkers for AD,
this study found no substantial overlap between blood and
brain signatures, implying separate metabolic dysfunction in
both tissues.

Considering the expected disruption in the blood-brain
barrier with aging and that AD elicits increased metabolite
exchange between these tissues, blood-based biomarkers have
become an attractive approach (18, 19). Xicota et al. (20)
performed a transcriptomic, metabolomic, and lipidomic
analysis of plasma from 48 individuals with and without
amyloid deposition on PET scans. They identified several
transcripts and metabolites associated with inflammation and
fatty acid metabolism that distinguished those groups, implying
a molecular signature for amyloid deposition that could be

obtained via peripheral blood collection, a less expensive and less
invasive procedure than PET scan or CSF analysis, respectively
(13). Notably, Niedzwiecki et al. (21) performed a high-
resolution screening in blood and CSF from two cohorts and
identified three different compounds in the blood associated with
CSF AD biomarkers. The study also reinforced the technique’s
potential to unveil novel pathways since one of the identified
molecules was an unknown halogenated compound.

Several interesting compounds related to AD have been
identified by lipidomic research, including sphingolipids,
phospholipids, and ceramides (22). Ceramide levels in the serum
and cerebrospinal fluid have been linked to memory impairment,
hippocampal volume loss, and progression of AD (23, 24).
Barupal et al. (25) recently examined coregulated sets of blood
lipids in a total of 806 individuals from the ADNI cohort (http://
adni.loni.usc.edu/) and identified seven sets of lipids linked to
AD and four to cognitive deterioration. Among the screened
metabolites, glucosylceramides, lysophosphatidylcholines, and
triacylglycerides were shown to be associated with CSF Aβ, while
sphingomyelins and ceramides were found to be associated
with CSF total tau and brain atrophy. Similarly, Teitsdottir
et al. (26) examined 60 individuals from an Icelandic memory
clinic and reported that ceramide C18 was a distinguishing
factor between AD patients and controls, a finding previously
described elsewhere. Ceramides are second messengers that are
created via sphingomyelin breakdown or synthesis from serine
and palmitate. These compounds serve various cellular roles,
most notably controlling proliferation, senescence, and cell death
(27). In AD, ceramides have been previously correlated with
insulin resistance and atherosclerosis (28, 29). Additionally, they
are involved in the stability of the amyloid precursor protein
cleavage enzyme beta-secretase 1 and the generation of Aβ (30).
Interestingly, compounds that reduce ceramide levels are being
investigated as possible therapeutic targets in vitro (31).

A recent study targeted metabolomic profiling of primary and
secondary bile salts in the ADNI cohort and compared these
results to the traditional AD CSF and neuroimaging biomarkers
(32). The authors reported distinct bile salts signatures associated
with CSF Aβ 1–42, CSF p-tau, and brain atrophy. Unsurprisingly,
MahmoudianDehkordi et al. (33) conducted a similar approach
in the same cohort, but this time employing clinical data. The
authors identified that AD patients had a lower serum cholic acid
content compared to controls (33). Additionally, they described
bile acid patterns related to cognitive decline, implying changes
in the gut microbiome. These findings were corroborated by
Baloni et al. (34), who performed transcriptome analysis on
2,114 brain tissues and reported that genes involved in taurine
transport, cholesterol metabolism, and bile acid production
were differentially expressed in people with AD. Bile salts are
produced from cholesterol and are involved in lipid breakdown
and vitamin absorption. They are digested by the gut microbiota,
which has been linked to neurodegeneration (35). It is worth
highlighting that certain bile acids, such as taurolithocholic acid
and chenodeoxycholic acid, are suspected to have harmful and
protective effects on the nervous system, respectively (34).

Through metabolomics investigations, other intriguing
chemicals identified in AD are branched-chain amino acids
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(BCAA), composed of an aliphatic side chain connected by
a branch. In humans, the three essential BCAAs for protein
synthesis are valine, leucine, and isoleucine. Tynkkynen et al.
(36) used nuclear magnetic resonance and mass spectrometry
metabolomics to examine 22,623 individuals from 11 separate
cohorts with over 2,000 incident cases of AD. Each of the three
BCAAs were associated with a decreased risk of dementia and
AD. After accounting for the potential confounding effect of
nutritional deficiency in people in pre-dementia stages, the
authors observed that albumin levels were not associated with
dementia in their data. However, they described an inverse
association between creatinine and AD, implying that physical
inactivity and the resulting loss of muscle mass may play a role.
Under these findings, Toledo et al. (37) reported slower cognitive
decline and less brain atrophy associated with increased levels
of valine in the ADNI cohort, and suggested that alteration
in BCAA degradation was associated with AD in a pathway
analysis derived from mass spectrometry (37). Another possible
explanation for these findings is that BCAAs affect glutamate
metabolism, resulting in calcium dysregulation and decreased
plasticity as well as their effect on tau phosphorylation via the
mTOR pathway (38, 39).

Proteomics
Our understanding of the Aβ and tau pathologies and the
subsequent identification of CSF and neuroimaging biomarkers
enabled the designation of AD as a biological entity, leading
to a redefinition of the disease. AD can now be defined as a
biological entity with a decrease in the CSF Aβ and an increase in
p-tau, which opened new avenues for diagnosis, prognosis, and
therapeutics (9, 40, 41). A recent systematic review and meta-
analysis approached the diagnostic accuracy of these molecules
in the blood, which requires less invasive and less expensive
procedures to be acquired (42). PlasmaAβ1–42/Aβ1–40 ratio and
p-tau significantly correlated with Aβ accumulation detected by
PET scans, and the latter also predicted AD progression. A mass
spectrometry assay to detect Aβ1–42/Aβ1–40 ratio demonstrated
strong diagnostic performance to be commercially available (43).
Other studies further depicted these known biomarkers while
analyzing p-tau isoforms based on their specific phosphorylation
patterns and suggested improving accuracy, especially in the
early stages of the disease (44–46). Neurofilament Light Chain
(NfL) has been extensively studied in AD as a marker of
neurodegeneration, with a great potential for clinical practice
despite its low specificity for this disease. A recent network
meta-analysis provided strong evidence for its clinical use to
identify early alterations in AD, among other neurodegenerative
diseases (47). Since astrocytic reactions have been recognized
as a major driver of AD pathology, the glial fibrillary acidic
protein (GFAP) emerges as a potential biomarker (48). Higher
GFAP seems to be an early marker of cognitive decline, with
predictive value for the development of dementia and disease
progression. However, it does not seem to be a specific marker
of AD and further studies are needed to define its clinical
performance (49).

There is a broad number of proteomics studies conducted in
AD, often including methodological heterogeneity and distinct

inclusion criteria, which prevents the generalizability of the
results. Moreover, showing association does not imply causation,
and further functional studies are warranted. Summarizing
the current literature, Pedrero-Prieto et al. (50) conducted a
systematic review and built a database of all CSF proteins
differentially expressed between 2,022 AD patients and 2,562
controls from 47 studies, suggesting a panel of 27 proteins
and 21 peptides as a potential tool aiding AD diagnosis (50).
Similarly, Bai et al. (51) performed a meta-analysis of seven
datasets generated by three different groups that used an ultra-
deep proteome coverage platform. Their results point to several
differentially expressed proteins associated with various cell
types, like neurons, glial and epithelial cells.

Despite our knowledge about the amyloid and tau pathology,
the complete picture of AD pathophysiology remains elusive,
and novel proteomic biomarkers are needed. The application of
next-generation proteomic techniques, such as improvements in
sample processing and high-throughput mass spectrometry, in
conjunction with large cohorts of well-characterized individuals,
hold the prospect of achieving these goals (51). For example,
Tijms et al. (52) used proteomic data from two independent
cohorts in a data-driven clustering analysis. The authors found
three specific protein profiles—hyperplasticity, innate immune
activation, and blood-brain barrier dysfunction, suggesting
different pathophysiologic subtypes for AD (52).

Furthermore, several studies suggest that the use of sensitive
and precise panels of blood biomarkers could be useful,
surpassing CSF proteomic biomarkers and detecting disease
in earlier stages. These studies also provide glimpses for
novel therapeutic targets toward the already established
Aβ accumulation and tau hyperphosphorylation, immune-
inflammatory responses, oxidative stress, energy and
mitochondrial metabolism, synaptic plasticity, vesicle-mediated
transport, lipid metabolism, andmicrovascular homeostasis (53).
Using a non-targeted analysis of plasma proteins and machine
learning, Ashton et al. (54) achieved good performance in a
model that predicted Aβ in cognitively unimpaired individuals,
while highlighting novel candidates for AD pathology among the
12 features utilized in the model. Chen and Xia (55) compared
proteomic data from plasma and brain tissue in AD patients and
in healthy controls, showing that the complement coagulation
cascade and interleukin-6 signaling molecules are linked to
AD, and proposing synchronic immune responses between the
tissues in a chronic inflammatory state.

Beyond CSF and blood, other fluids have also been
explored. Contini et al. (56) analyzed saliva and found that
AD individuals presented increased expression of proteins
involved in homeostasis, ROS scavenging, neuroprotection, and
antimicrobial activity compared to controls, suggesting that the
oral cavity of such patients also establishes a defensive state. In
urine, by contrast, proteins related to lipoprotein metabolism,
complement activation, and gluconeogenesis were altered (57),
while in tear fluid, the eukaryotic translation initiation factor 4E
was present only in AD samples (58). This factor has already
been found to be increased in brain tissues of AD patients
(59), and might be involved in the mechanisms behind tau
hyperphosphorylation (60).
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PARKINSON’S DISEASE

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disease after AD. Recent reports indicate
that both the incidence and prevalence of PD have increased
significantly over the last two decades, making it one of
the fastest-growing neurological disorders globally (61). PD
presents a marked pathophysiological heterogeneous condition
without reliable biomarkers to propose a biological definition
of the disease, therefore its diagnosis relies mainly on clinical
assessment. The most accepted mechanisms for disease onset
involve α-synuclein misfolding and protein degradation
impairment, including dysfunctions in the ubiquitin-proteasome
and lysosomal autophagy pathways. These changes lead to
aggregation of α-synuclein, the main component of Lewy
bodies and Lewy neurites, histological hallmarks of the disease.
Additionally, mitochondrial dysfunction and microglial-
induced inflammatory responses are also implicated in PD
neurodegeneration. Despite this knowledge, the diagnosis
in earlier phases, prognostic markers and disease-modifying
treatments are still missing, and metabolomics and proteomics
studies hold promise for progress in these areas (62).

According to the current diagnostic criteria, PD is diagnosed
when patients exhibit the classical motor features of bradykinesia,
rest tremor and rigidity, but at this time, they already present 80%
of loss of striatal dopamine (63). Accumulating evidence suggests
that there is a prodromal phase before PD motor signs appear
(5–15 years earlier), which represents an opportunity for earlier
diagnosis with biomarkers and a window for disease-modifying
treatments (64). Clinical features of this prodromal phase have
been described, such as hyposmia, REM sleep behavior disorders
(RBD), constipation, and depression, but they are unspecific.
In this scenario, dopaminergic PET/SPECT imaging can detect
preclinical dopamine dysfunction several years before disease
manifestation in individuals at high risk, including those with
RBD or a pathogenic dominantly inherited mutation (65–67).

Metabolomics
PD is a disorder in which several genetic, environmental, and
lifestyle factors play a role, making the study of multi-omics
a promising approach to depict its heterogeneity. There is
growing literature suggesting that a specific metabolic signature
could differentiate patients according to their genetic status.
Recently, Lerche et al. (68) combined the analysis of multiple
metabolites in PD patients with and without GBA mutations
and showed specific differential metabolite profiles regarding
α-synuclein, glucocerebrosidase activity, and glucosylceramides
between the two groups (40). These results suggest that GBA
mutations greatly influence disease pathophysiology and exhibit
a distinctive biomarker profile. Another recent research evaluated
PD patients and unaffected controls with or without the LRRK2
G2019S mutation and evidenced a differential metabolic profile
between PD and controls, highlighting lower hypoxanthine and
metabolites of purine pathway (69). Crotty et al. (70) studied
how metabolomics is affected by LRRK2 mutation status and
performed plasma and CSF analyses in four groups of subjects:
idiopathic PD, PD with a LRRK2 mutation, unaffected controls,

and unaffected controls with a LRRK2 mutation. Interestingly,
they reported caffeine and its metabolites to be decreased among
PD patients, with higher levels in those carrying a LRRK2
mutation, suggesting a protective effect of caffeine and an
environmental interaction in genetic mutation carriers.

Another encouraging approach to uncover potential
biomarkers or biochemical pathways contributing to disease
is the investigation of candidate specific metabolic profiles
in patients. Chang et al. (71) focused on profiling molecules
involved in the kynurenine pathway of tryptophan metabolism,
assessing the role of markers involved in oxidative stress and
excitotoxicity such as plasma kynurenic acid, quinolinic acid, and
kynurenine in PD onset and severity. An additional metabolic
pathway profiled was that of the polyamines, where Saiki et al.
(72) showed that spermine and N1,N8-diacetylspermine was
also altered in PD patients, with increased levels consistent with
disease severity. In a recent study, Shao et al. (73) performed
a comprehensive unbiased metabolic profile using a liquid
chromatography-mass spectrometry approach in 223 PD
patients and 169 controls. The authors reported an extensive list
of amino acids, acylcarnitines, organic acids, steroids, amides,
and lipids from human plasma that might help unveil PD
physiopathology and screen for potential therapeutic targets.

Serum uric acid (SUA) is one of the most studied metabolites
in blood matrices. It has been associated with morbidity, severity,
progression, non-motor symptoms and risk of developing
PD (74) Uric acid (UA) levels are inversely correlated with
development and progression of PD (75). This has been
attributed to a possible neuroprotective role (76) and the
suggested mechanisms implicated in it are: scavenging of free
radicals, iron chelation, modification of genetic variability and
countering apoptosis (75). Recently, van Wamelen et al. (77)
observed a negative association between SUA and non-motor
symptoms. Songsomboon et al. (78) proposed the use of
SUA/serum creatinine as a more sensitive diagnostic tool, and
Bougea et al. (79) suggested that SUA might be a marker specific
for PD patients with a causative LRRK2mutation. In an umbrella
review of risk factors and biomarkers for neurological diseases,
Mentis et al. (80) confirmed that lower SUA levels may be
associated with an increased risk of PD. Even so, UA might be
acting as a confounder not eliciting a causative effect. Studies
looking at the effect of lowering or raising UA levels have
not demonstrated an association or benefit in PD patients. Lai
et al. (81) conducted a case control study to determine the
association between allopurinol, a gout treatment that reduces
UA levels, and PD. Their results were negative, and concluded
that there is no association between allopurinol treatment and
PD (81). These findings are related to those published in a recent
randomized clinical trial (66) that was unsuccessful in slowing
early PD progression with inosine (urate precursor) and had to
be interrupted.

An additional largely studied fluid for metabolomic studies
in PD is CSF, which has shown interesting results. In a meta-
analysis by Adani et al. (82), PD patients displayed higher levels
of copper, iron and selenium in CSF without showing increased
levels of these trace elements in peripheral blood matrices.
This study suggests that PD promotes alterations in metal
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transporters or in the integrity of the blood-brain barrier (82).
Interestingly, ceruloplasmin serum levels, a ferroxidase enzyme
involved in copper and iron metabolism, have been linked to
specific phenotypic PD features, such as impulsivity (82).

Along with metals, catecholamines metabolism in the
central nervous system (CNS) of PD patients seems to be
altered. Goldstein et al. (83) found differential profiles in CSF
catecholamines between PD, multiple systems atrophy and
pure autonomic failure, with a more prominent difference
in markers of central dopaminergic deficiency. D’Andrea
et al. (84) performed ultra-performance chromatography mass
spectrometry analyses of plasma in 21 drug-naive de novo PD
patients and suggested tyramine as a putative marker of early-
stage PD, as well as suggested that tyramine, norepinephrine
and tyrosine together may act as a prognostic marker. Wichit
et al. (85) performed a high-performance liquid chromatography
study of monoamines in the plasma of PD patients and identified
a significantly higher homovanillic acid/dopamine ratio and a
lower 5-hydroxyindoleacetic acid/serotonin ratio, emphasizing
the involvement of multiple neurotransmission systems in
the disease.

To a lesser extent, brain and urine sample studies have been
conducted. In a meta-analysis of copper and iron, Genoud
et al. (86) showed reduced copper and increased iron levels
in postmortem substantia nigra of PD patients, suggesting
further investigation of such metabolites as disease modification
targets. Utilizing iPSC from LRRK2G2019S PD patients, Sonnien
et al. (87) observed increased production of α-synuclein, altered
metabolism and calcium homeostasis, increased release of
cytokines, increased levels of polyamines and their precursors,
and decreased levels of lysophosphatidylethanolamine in the
astrocytes of LRRK2 mutation PD patients. These findings
suggest that astrocytes are likely to contribute to the pathogenesis
of PD. Furthermore, Kumari et al. (88) observed increased
levels of ornithine, phenylalanine, isoleucine, β-hydroxybutyrate,
tyrosine and succinate in urine of PD patients using nuclear
magnetic resonance, showing disturbances in multiple metabolic
pathways. The authors propose the use of such metabolites as
complementary diagnostic markers, considering that urine is a
non-invasive matrix (88).

The gut microbiome has been increasingly recognized as a
critical factor in PD pathophysiology. Tan et al. (89) analyzed
the fecal microbiome and metabolome of 104 patients and
96 controls and found changes in the levels of metabolites
with putative neuroprotective effects, such as short chain
fatty acids, ubiquinones, and salicylate, along with other
compounds previously related to neurodegeneration, such as
ceramides, sphingosine, and trimethylamine N-oxide. Notably,
Hertel et al. (90) performed a multi-omics longitudinal
analysis of 30 de novo PD patients and 30 controls, and
observed longitudinal alterations in methionine and cysteine
levels, along with differences in taurine-conjugated bile acids
and sulfated taurolithocholate. This study suggests different
research routes for understanding the disease, specially at
the sulfur host-microbial interactions and, consequently, bile-
acid metabolism. Unsurprisingly, Vascellari et al. (91) also
associated microbiota composition with metabolomic analyses,

and suggested synergistic relationships between gutmicrobes and
bacterial metabolites in association with PD.

Proteomics
With a less expressive body of knowledge than that of AD,
proteomic approaches in PD have been progressively explored
by researchers. While not fully explaining disease development,
many protein studies focus on biomarkers for diagnosis and
prognosis of patients, such as α-synuclein (92), neurofilament
light chain protein (NfL) (93), or even amyloid beta and
phosphorylated tau in addition to other proteins commonly
associated to AD (94).

A systematic review and meta-analysis showed that total α-
synuclein was reduced in CSF of PD patients compared to
controls, while oligomeric and phosphorylated α-synuclein were
increased (95). Sensitivity and specificity for differentiating PD
from controls were 0.72 and 0.65 for total α-synuclein and 0.71
and 0.64 for oligomeric α-synuclein, respectively. Later in 2019, a
longitudinal analysis of α-synuclein levels in the CSF of patients
with prodromal and early PD revealed that baseline α-synuclein
was lower in patients with manifest and prodromal PD compared
to healthy controls (96). At 24 and 36 months, α-synuclein
levels declined considerably in PD, remained unchanged in
prodromal PD, and trended upward in healthy controls. The
authors concluded that, whereas CSF α-synuclein is related to PD,
it does not correlate with disease progression and hence does not
indicate ongoing dopaminergic deterioration.

With broader understanding of the pathways surrounding
protein alterations, proteomic approaches have raised important
novel molecules to PD development theories. Using liquid
chromatography-tandem mass spectrometry to quantify 341
groups of proteins in the CSF of PD patients and controls,
Rotunno et al. (97) identified several altered proteins and
protein ratios. Specific attention was given to significant
reduction in proteins of the granin family, supporting larger
catecholaminergic alterations in PD. Raghunathan et al. (98)
found proteomic changes in Brodmann area 9 of PD brain tissue
including collagens, proteoglycans, and hemoglobin chains,
the latter ones suggesting defects in iron metabolism. In a
systematic review and meta-analysis, Monti et al. (99) explored
data from proteomic studies of neurodegenerative diseases and
performed a network analysis, raising important differences in
pathways involved in neuronal death and loss of specific neuronal
populations in PD patients.

Additionally, Virreira Winter et al. (100) found specific
proteomic profiles in the urine of PD patients. Examining
protein levels through a machine learning algorithm, the authors
discriminated LRRK2 G2019S mutation status and disease
manifestation in mutation carriers with an AUC of 0.84. As
an alternative matrix, Boerger et al. (101) explored proteins in
tear fluid of PD patients, revealing altered proteins involved in
oxidative stress, immune response, and lipids metabolism. Major
alterations in lipids metabolismwere also found byHu et al. (102)
in a proteomic and metabolomic analysis of fasting plasma from
PD patients. In this study, out of the forty differentially expressed
proteins, seven were apolipoproteins (102).
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Further interest was also raised around protein content
of exosomes and nanometer-sized vesicles. Jiang et al. (103)
performed mass spectrometry analyses of label-free serum
exosome proteins, identifying differential expression in 14
proteins, including complement C1q, apolipoprotein D, pigment
epithelium-derived factor, and gelsolin. In previous work,
Kitamura et al. (104) utilized two-dimensional differential gel
electrophoresis and found alterations in levels of clusterin,
complement C1r, apolipoprotein A1, and fibrinogen gamma
chain in extracellular vesicles from plasma samples of
PD patients.

A recent study (67) suggested that both plasma and CSF levels
of NfL could be a useful prognostic biomarker for PD (67). The
study included 152 PD patients, and showed that NfL levels in
plasma and CSF predicted change in cross-sectional associations
between NfL and the Unified Parkinson’s Disease Rating Scale
Part III (UPDRS-III) and Mattis Dementia Rating Scale (DRS-
2) scores using linear mixed-effects models. This article suggests
that PD individuals with plasma NfL values in the highest tertile
were five times more likely to convert to MCI or dementia
during follow-up.

AMYOTROPHIC LATERAL SCLEROSIS

Primarily affecting the upper and lower motor neurons, ALS
is a dramatically progressive and incurable neurodegenerative
disease (105). To date, the identification of biomarkers has
been less elusive to identify etiological pathways in ALS than
in AD and PD. With an increasing prevalence worldwide, a
massive number of individuals will continuously struggle to
survive this chronic, but severely debilitating disease. Hence, it
is essential that we work to understand the mechanisms of this
devastating disease in order to identify biomarkers and points of
intervention. The “omics” approach may provide unique targets
to develop reliable diagnostic markers.

Currently, the diagnosis of ALS is based on clinical symptoms
and electroneuromyography studies (105). A myriad of different
phenotypes have been identified in the spectrum of ALS, which
involves distinct neuronal topographies, clinical extension and
rate of progression (106). Bulbar, limb-onset and signs of
frontotemporal dementia are the most frequently described
subtypes in ALS with varying progression rate (107). A large
body of research prevails, but a minor number of biomarkers
have been validated accurately (108). Even though studies have
failed at identifying hallmarks of ALS, the future holds promise
(109). For instance, it is well-established that individuals with
ALS present pathological hypermetabolism (110, 111), leading to
early cell dysfunction and worse prognosis.

While fluid biomarkers including plasma and CSF, are
still unavailable in the clinical setting, current efforts are in
uncovering the etiological basis of ALS with different approaches.
ALS-linked genetic mutations have been identified in familial,
but also sporadic ALS (112), and they may indicate specific
pathological pathways. A novel approach using induced iPSC
derived from patients with ALS has opened opportunities to
study ALS in vitro as reviewed elseqhere (112). Integration of

multimodal data with machine learning has also a potential
to change paradigms in the ALS pathway discovery (113).
Furthermore, the omics field presents numerous advantages at
identifying pathological networks in comparison with other
disciplines. The next section details state-of-the-art knowledge of
metabolomics and proteomics studies aimed at uncovering the
mist around biomarkers of ALS.

Metabolomics
The identification of pathway specific alterations has thus
far helped uncover several molecules implicated in ALS, and
suggests a key role for aberrant mechanisms in ALS pathogenesis.
By measuring metabolites such as glutamate, antioxidants, and
lipids, we have gained insights into mechanisms of glutamatergic
excitotoxicity, oxidative stress, and mitochondrial dysfunction
involved in disease etiology (114). Metabolomic studies have
enabled the discovery of a myriad of substances that may be
involved in the etiology of ALS, with the hope that in the future
biomarkers for diagnostics, prognostic and disease progression
may be possible in clinical practice.

Untargeted metabolomics performed on the plasma of ALS
patients and controls have highlighted many known players
in ALS etiology, such as sphingolipids, which are involved
in autophagy and inflammation (115). However, it has also
identified abnormalities in novel pathways, such as benzoate
metabolism, which the authors suggest may be explained by
pesticide exposure, and diacylglycerols, which have roles in
inflammation, immune cell signaling, and apoptosis (115).
Carbohydrates have shown contradictory results, though their
role is still to be uncovered (108).

Lipid metabolite imbalance has been identified in patients
with ALS with promising results. A recent study found a
panel of cholesteryl esters, di- and triglycerides among other
lipids to be associated with ALS pathological pathways (116).
A 20-year follow-up study identified that serum low-density
and high-density lipoprotein cholesterol (LDL-C and HDL-
C), apolipoprotein B and other lipids were associated with
increased incidence of ALS (117, 118). Plasma and CSF
levels of lipids were correlated with disease progression
(119), providing insights into predicting models for worse
prognosis. A CSF lipid signature is also associated with
survival rates (120). Dyslipidemia is also pointed out
as part of the etiological mechanisms involved on ALS,
opening the possibility for implementation of nutritional
changes (121).

As seen in other neurodegenerative diseases, metabolomics
holds significant promise in discovering biological pathways
associated with genetic mutations (122). ALS-linked
genetic mutations such as in TARDBP, encoding TDP-43,
lead to decreased carnitine, increased pyruvate and fatty
acids (112, 123). Besides, ALS individuals with a C9orf72
mutation present lower HDL-C when compared with ALS
non-carriers (112). SOD1 mutations in ALS have also
demonstrated a distinct metabolic phenotype, such as a
decrease in arginine, lysine, ornithine, serine, threonine
and pyroglutamic acid, in patients carrying a D90A SOD1
(122). Additionally, research studies have suggested potential
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for intervention in pathways highlighted by metabolomics
studies (124, 125) highlighting that alterations in pathways
may be associated with risk of ALS before diagnosis
(126). Importantly, though, not all patients may present
with the same metabolic abnormalities (127), reinforcing
the need for determination of compatible subgroups and
personalized medicine.

Proteomics
Several proteins have been implicated in both familial and
sporadic ALS, such as TDP-43 (128) and SOD1 (129), among
others. Whether these inclusions are a symptom or a cause
of cellular degeneration in ALS remains to be elucidated,
but recent advances in proteomics have greatly improved our
understanding of the pathways and mechanisms in which these
proteins are involved.

The protein degradation pathway has been heavily
implicated in ALS pathogenesis, specifically with regard to
the aforementioned inclusions (130). A mutation in CCNF,
the gene encoding cyclin F, found in familial and sporadic
ALS patients, has been examined in Neuro-2A and SH-
SY5Y cells. This study revealed defects in the autophagy
pathway impairing autophagosomal-lysosome fusion (131),
and potentially a mechanism for the accumulation of
substrates such as TDP43 (132) and SOD1 (133). C9orf72
has also been implicated in the autophagy pathway; specifically
through an association with ULK1-type complexes (134, 135)
via stable isotope labeling by amino acids in cell culture
(SILAC). Traditional SILAC, though, is only capable
of cell protein isotope labeling and quantification, not
real-time or in vivo measurements, a potential limitation
going forward.

An analysis of the CSF proteome of ALS patients revealed
a panel of candidate biomarkers implicated in synaptic
activity, inflammation, glial response, axonal damage and
apoptosis (114, 136, 137). Label-free LC-MS analysis showed
NfL, and C3 secretogranin pathways with high sensitivity
and specificity in distinguishing ALS from controls (138).
Many other proteins have also shown promising results,
though further studies are needed to confirm these results,
including CHIT1, GRIA4, and Cystatin C (139, 140). Proteomic
analysis of CSF-derived extracellular vesicles, which aims to
provide novel insights into key processes associated with
ALS pathogenesis, showed downregulation of proteasome
core complex proteins through gene ontology enrichment
analysis (141).

The axonal cytoskeletal protein NfL and its phosphorylated
form pNFH are amongst the most studied proteins associated
with ALS (142). NfL has been validated as a diagnostic
biomarker in plasma for ALS (143), particularly due to its
high accuracy in differentiating ALS to ALS-mimics phenotypes
(144). NfL has demonstrated different levels in distinct
clinical phenotypes, providing key insights into the biological
meaning of this protein (145). Both NfL and pNFH have
been shown to be correlated to shorter life expectancy in

patients with ALS, more rapid progression (145, 146) and
generally worse prognosis. It is also feasible to measure these
proteins in plasma (147), which increases applicability in
clinical practice.

CONCLUSIONS

The advent of high-throughput platforms for the detection of
proteins and metabolites followed by the implementation of
multimodal approaches may shed some light on the biochemical
signatures involved in disease etiology. Research performed
in the proteomics and metabolomics space including large-
scale longitudinally followed and well-characterized case cohorts
will facilitate the identification of biomarkers for prediction,
diagnosis and prognosis of neurodegenerative diseases. It is
our hope that the integration of these data modalities will put
the field on a path toward better therapeutics that target the
most appropriate patients early in their disease course with
effective interventions.

Though promising, metabolomics and proteomics are still
in its early days, with many challenges to overcome. One
of the major caveats is the lack of standardization between
studies, which is particularly challenging in measuring small
substances. Current research has shown panels of metabolites
and proteins that were not replicable, or partially replicable with
almost no overlap across studies (148). To harmonize measures
and mitigate the inter-study heterogeneity, a standardized
operational procedure (SOP) should be applied (148). The ideal
path forward would be integration of these various analyses
through the prioritization of multi-omics. For instance, a multi-
omic analysis that includes transcriptomic, metabolomics, and
proteomic data could be used to understand pathways of selective
vulnerability. Additionally, the increasing prevalence of single
cell metabolomics and proteomics will undoubtedly help to
further elucidate the nuances of neurodegenerative diseases.
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