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Introduction: An increased number of otic capsule dehiscence (OCD) variants

relying on the third window pathomechanism have been reported lately. Therefore,

a characterization of the anatomical structures involved and an accurate radiological

description of the third window (TW) interface location have become essential for

improving the diagnosis and appropriate therapeutic modalities. The purpose of this

article is to propose a classification based on clinical, anatomical, and radiological data of

third mobile window abnormalities (TMWA) and to discuss the alleged pathomechanism

in lesser-known clinical variants.

Materials andMethods: The imaging records of 259 patients who underwent, over the

last 6 years, a high-resolution CT (HRCT) of the petrosal bone for conductive hearing loss

were analyzed retrospectively. Patients with degenerative, traumatic, or chronic infectious

petrosal bone pathology were excluded. As cases with a clinical presentation similar to

those of a TW syndrome have recently been described in the literature but without these

being confirmed radiologically, we thought it necessary to be integrated in a separated

branch of this classification as “CT - TMWA.” The same goes for certain intralabyrinthine

pathologies also recently reported in the literature, which mimic to some extent the

symptoms of a TW pathology. Therefore, we suggest to call them intralabyrinthine

TW-like abnormalities.

Results: Temporal bone HRCT and, in some cases, 3T MRI of 97 patients presenting

symptomatic or pauci-symptomatic, single or multiple, unilateral or bilateral OCD

were used to develop this classification. According to the topography and anatomical

structures involved at the site of the interface of the TW, a third-type classification of

OCD is proposed.

Conclusions: A classification reuniting all types of TMWA as the one proposed in

this article would allow for a better systematization and understanding of this complex

pathology and possibly paves the way for innovative therapeutic approaches. To

encompass all clinical and radiological variants of TMWA reported in the literature so far,
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TMWAs have been conventionally divided into two major subgroups: Extralabyrinthine

(or “true” OCD with three subtypes) and Intralabyrinthine (in which an additional

mobile window-like mechanism is highly suspected) or TMWA-like subtype. Along these

subgroups, clinical forms of OCD with multiple localization (multiple OCD) and those that,

despite the fact that they have obvious characteristics of OCD have a negative CT scan

(or CT – TMWA), were also included.

Keywords: third window lesions, otic capsule dehiscence, classification, endovascular treatment, third window

pathomechanism

INTRODUCTION

History of the Third Window Hypothesis
Therapeutic fenestration is the first technique that emerged
in the history of the development of the third window (TW)
concept, which was implemented in the early twentieth

century by the hearing loss surgeons pioneers. This technique,
reserved for patients with advanced forms of otosclerosis,

aimed at improving hearing status by surgically creating a
new window on the lateral or superior semicircular canal

(SSC) (1–5). Thus, the transmission of acoustic energy through

the inner ear fluids to the cochlear receptors was partially
reestablished. Although this technique did not rely on a

physiological restoration of the cochlear micromechanics,
many patients experienced improved hearing immediately

after surgery. However, they frequently complained about
the appearance of a concomitant vertigo triggered by

loud sounds.
Subsequently, the animal experimental research published

by Tullio proved that, in pigeons, a surgically created window
on the lateral bony SC can generate endolymphatic flow

leading to vestibular disorders when exposed to loud sounds
(6, 7). In addition, a medium-intensity sound exposure
leads to endolymphatic flow and progresses rhythmically
to the crista ampullaris, generating in the experimental
animal a tonic postural movement in the SC plane involved.
Increasing the sound intensity would lead to a reinforced
endolymphatic current, which would deform the crista
in a more consequent manner. Moreover, at some point
following further sound stimulation, the endolymphatic
current ceases to move in an alternating rectilinear manner
and begins to rotate rapidly around the longitudinal axis
of the membranous SC, thus permanently deforming the
crista. At that point in the experiment, Tullio noticed that
the animal stopped making pendulous movements of the
head, which remained fixed due to tetanic contractions of
neck muscles.

As an early observation leading up to the modern period,
Schuknecht reported a “mysterious” conductive deafness
associated with a particular form of otosclerosis with foci
located on the inner part of the round window (8). In a
different setting but with similar clinical characteristics,
Bess et al. proposed another mechanism by which “the
magnitude of inner ear fluid vibrations that should stimulate
the inner hair cells was decreased” (9). Thus, diminishing the

inner ear fluid movement as a response to air conduction
stimuli would only logically generate lower auditory
thresholds and could therefore be interpreted as an inner
ear conductive hearing loss since the bone conduction
remains normal.

In the aftermath of the 1998 article by Minor et al. describing
the first observations of SSC dehiscence (SSCD), the concealed
mechanism of this type of inner ear conductive hearing loss was
hypothesized (10). The term third window (TW) was originally
used by Cawthorne in his personal description of SC fenestration
in patients with otosclerosis and then adopted (4, 11–14);
nowadays, it corresponds to a defect in the bony structure of
the otic capsule, which locally reduces the local hydrodynamic
resistance of the perilymphatic space (PS) (13).

Thereafter, Merchant and Rosowski theorized that an SSCD
acts as a TW between the vestibule and the dura resulting
in pseudo-conductive hearing loss through worsened airway
thresholds and improved bone conduction (12). The labyrinthine
membrane, unprotected by the bony covering at the level
of the dehiscence, has therefore a locally higher compliance
allowing a deviation of the perilymphatic flow toward the
bony defect (10, 12, 15–18). Thus, under some conditions,
depending on the location, size, and shape of the dehiscence,
the normal acoustic energy transported by the PS could be
transmitted to the vestibular compartment of the endolymphatic
system (ES). On the one hand, according to the mechanism
described above, if the TW is located in the anterior part of
the labyrinthine PS, between the oval window and the round
window, the consequences would be generally limited to a
conductive/mixed hearing loss. On the other hand, if the TW
is rather located toward the posterior part of the ES, then a
vestibular co-stimulation by high-intensity sounds is possible,
because the perilymphatic flow would no longer be directed
entirely to the basilar membrane of the cochlea, but also
partially to the vestibular compartment of the labyrinth (10, 12).
As a result, a deformation of the membranous labyrinth will
appear in the dehiscent area, modulated by sound characteristics
(intensity, frequency). Then, due to a local transfer of vibrations
by a resonance phenomenon between the perilymphatic and
endolymphatic spaces, a significant deformation of the crista
ampullaris can be observed (15, 16, 18). This anarchic vestibular
co-stimulation mediated by strong sounds of varying intensities
(15, 16, 18), e.g., the Tullio phenomenon, leads to vertigo or/and
dizziness. This is one of the main clinical signs found in patients
with SSCD as described by Minor in 1998 (10, 13, 15, 19).
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Recent Developments
Since the 2000s, we have witnessed the progressive appearance
of TW variants with similar clinical and audiological features.
The broader concept of “otic capsule dehiscence syndrome”
(OCDS) proposed byWackym et al. refers to all pathologies of the
TW spectrum whose symptoms, clinical signs, and audiometric
aspects correspond to bony defects of the otic capsule confirmed
by high-resolution CT (HRCT) (20, 21). The same authors,
however, reported a series of patients with a clinical presentation
“specific” to an OCDS without corresponding radiodiagnosis
evidence of dehiscence reminding to some degree of the concept
of “mysterious deafnesses”’ mentioned by Schuknecht (8, 21, 22).

Due to this progressive increase in new variants of OCD
reported, the characterization of the anatomical structures
involved, as well as the size and location of the TW on the otic
capsule, has become essential for a better understanding of the
various (or just slightly different) mechanisms associated with
this pathology. This allows not only to systematize the different
known variants and facilitate the diagnosis of “mysterious”
conductive deafness (20–22), but also to propose new, potentially
less invasive or more pathophysiological therapeutic strategies
(23–26). The purpose of this article is: (1) to propose an anatomo-
radiological classification of different OCD abnormalities and
(2) to discuss the alleged pathomechanism of certain variants.
Two case reports with multiple locations of OCD will also be
discussed, including their clinical particularities, as well as the
specific difficulties encountered inmaking a therapeutic decision.

MATERIALS AND METHODS

Population
The clinical and radiological data of 259 patients diagnosed in
our center with OCSD in the last 6 years were retrospectively
reviewed. Patients with degenerative processes or chronic
infection of the petrosal bone, whether they underwent surgery
or not, were excluded.

Vestibular and Audiological Evaluation
A standard neurotological examination, including cranial nerve
evaluation and oto-microscopy, was routinely performed in
all patients. Pure tone audiometry (PTA; Madsen Astera-
Otometrics), middle ear reflexes (Madsen Zodiac 901
tympanometer), videonystagmography including bone vibratory
test (BVT) and Valsalva maneuver (VNG, Ulmer System R©;
Synapsis SA), video head impulse test (VHIT, ICS Impulse R©;
GN Otometrics), cervical vestibular evoked potentials (cVEMPs)
and ocular vestibular evoked potentials (oVEMPS) (Bio-Logic R©

Nav-Pro system) in air conduction with 750Hz stimuli were
systematically performed in all patients.

Radiological Evaluation
High-resolution CT (GE GSI Revolution, GE Healthcare, USA)
of the petrous bone was performed in all patients. Slices were
acquired helically in the axial plane at a nominal thickness of
0.625mm with a 50% overlap of 0.312mm, as recommended
(27–29). Images were obtained in ultra-high resolution at 140 kV
and 200 mAs/section. The primary images were reworked in the

axial and coronal planes of the lateral CSC at a 60mm field of
view with a 512 matrix for an isometric voxel. Pöschl plane (i.e.,
superior SCC plane) using Advantage Workstation (AW) Server
visualization software (GE Healthcare, USA) was also performed.

In addition, 3 Tesla MRI (3T MRI; GE Healthcare,
Philips Ingenia, Philips healthcare) of the petrous bone
and inner ear structures was also performed if associated
pathologies were suspected or when vestibular and/or vascular
structures appeared to be involved at the TW’s interface.
3D T1-weighted contrast enhanced sequences allowed for
confirmation of the vascular nature of the involved structure,
and the HR 3D T2 labyrinth sequence DRIVE (DRIVen
Equilibrium pulse, TE 157, TR 1000, slice thickness 0.4,
Turbo factor 40, Matrix 500 × 500, voxel size: 0.4 × 0.4
isotropic) highlighted, when necessary, the morphology and
permeability of the membranous labyrinth. Fused images
between CT slices in Pöschl plane and 3D T1 weighted contrast
enhanced sequence obtained with post-processing software
(AW Server, GE Healthcare) were performed to assess the
TW interface.

RESULTS

A total of 97 patients (40 men and 57 women) were included.
One hundred and twenty ears with single or multiple (uni
or bilateral) OCD locations were independently analyzed by
a specialist radiologist and an expert otologist. Following this
analysis, a classification of OCD was proposed based on the
anatomic structures and radiological features involved at the TW
partition (Table 1).

Type I: OCD-Meningeal
This type (Figure 1) includes two main subsets that were the first
cases of dehiscence described in the literature.

Type Ia
This type refers to the SSCD described by Minor, in which the
SSC is typically in contact with the dura of the middle cerebral
fossa (Figure 1A). Our series included 52 ears (24 right-sided and
28 left-sided) in 42 patients (21M, 21 F) aged 2–85. Dehiscence
was bilateral in 10 patients (4M, 6 F).

Type Ib
This type of dehiscence involves the posterior SC (PSC) which
can be in contact or very close to the dura of the posterior fossa
(Figure 1B). It was found in 8 ears (5 right-sided, 3 left-sided) in
6 patients (4M, 2F), aged 48–64. Type Ib was present bilaterally
in two patients (1M, 1F).

The pathophysiological mechanism of this type with its
two sub-variants was largely described previously. In air
conduction (sounds frequencies ranging from 500 to 2000Hz)
(15, 16, 18), the perilymph-driven hydraulic acoustic pressure,
which normally reaches the round window, dissipates toward
the dehiscence where a drop in impedance occurs, resulting
in increased audiometric thresholds. According to Iversen
and Rabbit, the resultant biomechanical phenomena in the
membranous SC can lead to an opposite neural vestibular
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TABLE 1 | Third Mobile Window Abnormalities (TMWA): classification and clinical elements.

Interface Type Number of patients Clinical features cVEMP thresholds

Extralabyrinthine TMWA (OCD) OC-Meningeal I 48 Vertigo (42%) Auditory symptoms (35%) Decreased (20%)

OC-Vascular II 28 Vertigo (64%) Auditory symptoms (64%) Decreased (14%)

OC-Petrosal III 17 Vertigo (47%) Auditory symptoms (52%) Decreased (21%)

Intralabyrinthine TMWA -like Vestibular aqueduct -

Posterior SC

4 Vertigo (50%) Auditory symptoms (25%) Decreased (0%)

Multiple OCD Multiple locations (on the

same ear)

/ 11 Vertigo (80%) Auditory symptoms (100%) Decreased (40%)

SC, Semicircular Canal; OCD, Otic capsule dehiscence.

FIGURE 1 | Type I extralabyrinthine otic capsule dehiscence (OCD) (OC-meningeal interface). (A) Superior semicircular canal dehiscence (SSCD); (B) PSCD. (C,D)

Mechanical pressure (e.g., Valsalva against closed glottis) exerted at the dehiscence by the weight of the brain on the denuded membranous SSC inducing an

inhibitory ampullopetal flow (E). Tullio phenomenon: rapid nystagmic jerks in response to sounds at an intensity > 80 dB of frequency varying between 500 and

2,000Hz.

response at the level of the cupula (Figures 1C,D) depending on
the frequency of the stimulus, with a decrease and increase of
the afferent firing rate for low and high frequencies, respectively
(15, 16). In bone conduction, the decrease in impedance favors

the gradient between the vestibular and tympanic ramps and
leads to a lowering of the thresholds. Application of a loud sound
(Tullio phenomenon) (Figures 1D,E) or pressure in the external
auditory canal (EAC) (Hennebert sign) potentially gives rise to an
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FIGURE 2 | Type II extralabyrinthine OCD (OC-vascular interface). (A,B) High-resolution CT (HRCT) in axial plane (right), coronal plane (left): contact between the

denuded VA and the IJV (yellow arrow). (C,D) Another patient: Right: HRCT in the plane of the superior (Poschl) denuded SC, and Left: 3T MRI labyrinthine, fused

image between 3DT1-weighted contrast enhanced sequence and 3DT2 DRIVE sequence; mass effect exerted by the SPS against the membranous SC. (E)

Proposed schematization of the mechanism of vestibulo-vascular TW. Pulsations of the interested vascular wall in intimate contact with the otic capsule membrane

would cause non-physiological stimulation of the cochlea and/or the nearest vestibular sensory organs.

excitatory ampullofugal flow in the SSC. In addition, performing
a Valsalva maneuver by pinching the nostrils classically results in
ampullofugal movement (28). Ampullopetal (inhibitory) flow is
then attained by applying negative pressure in the EAC, or from a
closed glottis Valsalva maneuver (increased intracranial pressure)
(Figure 1D).

Type II: OCD-Vascular
This type (Figure 2) of dehiscence correlates with a contact
between the membranous vestibular or cochlear labyrinth and a

vascular venous or, less frequently, arterial structure. It includes
subclasses IIa, IIb, and IIc.

Type IIa
This type involves vasculo-vestibular contact between the
membranous SSC and the superior petrous sinus (SPS). It was
found in 8 ears (4 OD, 4 OG) in 6 patients (3M, 3F), aged
32–82 (Figures 2C,D). This presentation was found bilaterally
in 2 patients (2F). Interestingly, there was no evidence of a
“true” Tullio phenomenon including nystagmus elicited by loud

Frontiers in Neurology | www.frontiersin.org 5 January 2022 | Volume 12 | Article 792545

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Reynard et al. A Third Window’s Abnormalities Classification

sound stimulation in this group of patients. Moreover, the
Valsalva maneuver against the closed glottis did not cause true
vertigo except slight “dizziness” in a few cases. Instead, during
this maneuver, an increase in the intensity of their pulsatile
tinnitus was constantly reported. This subtype can also integrate
SSCD-subarcuate artery dehiscence, SSCD-superior petrosal vein
dehiscence variants (20).

Type IIb
Concern OCD involving the internal jugular vein (IJV) and
various vestibular structures.

A dehiscence involving the vestibular aqueductus (VA) in
contact with the IJV (Figures 2A,B) was found in 20 ears (14
right-sided, 6 left-sided), in 19 patients (6M, 13F), aged 11–72.
The presentation was bilateral in one patient (1F). A dehiscence
between IJV and PSC was found in 5 temporal bones (3 right-
sided, 2 left-sided) in 4 patients (4F) aged 12–50. A dehiscence
concerning the IJV and the cochlear aqueductus (CA) was found
in 3 ears (left-sided) in 2 patients, age varying from 12 to 53
(1M, 1F).

In this subtype, the second most prevalent in our series as it
was diagnosed in 19 from 97 patients, vertigo and/or pulsatile
tinnitus induced by exertion were also constantly reported.
Positional vertigo was also a commonly reported symptom
with no evidence for a true benign positional paroxysmal
vertigo (BPPV).

Type IIc
A contact between the membranous cochlea and the intrapetrous
carotid artery was encountered in 1 ear (left-sided) in a 63-
year-old female patient. Her main complaint was pulsatile
tinnitus exerted by physical exercise synchronous with the
peripheral pulse.

In this subtype, the pathomechanism of the inner ear
structures stimulation does not seem obvious. However, it
can be hypothesized that, compared to type I dehiscences,
non-physiological audio-vestibular stimulation can be
produced by the vascular structure (30) (Figure 2E).
Thus, the vibrations generated by the vascular wall, in
contact with the PS, will generate symptoms of intensity
(pulsating tinnitus and/or dizziness) depending on the
location, surface, and importance of any mass effect
exerted by the vessel on the labyrinthine structure at
TW (31).

Type III: OCD-Petrosal Bone
Subtype IIIa
It involves a communication between the cochlea and
the facial nerve canal or cochlear-facial dehiscence
(CFD) (Figures 3C,D). This subtype was found in 18
ears (7 right-sided, 11 left-sided) in 15 patients (5M,
10F), aged 12–62. The presentation was bilateral in 3
cases (2M, 1F). In these patients, autophony and slight
conductive hearing loss were predominant. Dizziness
related to loud sounds or physical exercise was also
described (see Table 1).

Subtype IIIb
It includes a dehiscent surface between the membranous
labyrinthine and some hyperpneumatized mastoid air cells
communicating with the tympanic cavity. It was encountered
in one patient (a 60-year-old male, left side). A strong Tullio
phenomenon associated with a typical down-beating nystagmus
indicating a stimulation of the left SSC was highlighted by a left
auditory stimulation at 120 dB between 2 and 4 kHz, although
there was no conductive hearing loss.

Hyperpneumatization of the petrous bone appears to play
an important role in the pathomechanism of this rare OCD.
HRCT showed a significant number of large mastoid air
cells communicating with the tympanic cavity (Figures 3A,B)
and appears to be in intimate contact with the membranous
SSC and the lateral SC (LSC), respectively, via an ampullary
located dehiscence of maximum 1.5mm width. The particular
disposition of these mastoid air cells would act as an
acoustic amplifier similar to the physical principle of a
Helmholtz resonator (Figure 3E). Thus, the sound vibrations
transmitted via the tympanic cavity and amplified at the
mastoid cell/ampullary vestibular membrane interface will
directly stimulate the cupula of the concerned SSC. As this
hypothesis does not imply a significant acoustic energetic shunt
toward the posterior labyrinth, therefore, it could explain the
absence of conductive hearing loss. Although the lateral SC
ampulla also appeared dehiscent (Figures 3A,B), most likely the
air cells adjacent to this structure did not communicate with the
tympanic cavity and, therefore, this SC remained asymptomatic.

Subtype IIIc
It includes cochlear (or labyrinthine) dehiscence over the internal
auditory canal (IAC), a “near” dehiscence of this subtype is
indicated in Figure 5C.

Intralabyrinthine Third Mobile Window-Like
Variants
This subgroup (Figures 4A,B) corresponds to an abnormal
contact between two membranous parts of the same labyrinth
being constantly associated with limited inner ear anomalies.

A dehiscence involving a dilated endolymphatic sac, in contact
with the ampulla of the PSC, was found in 4 ears (2 right-sided, 2
left-sided) in 3 patients (3F), aged 3−30. Another similar case was
noted involving an EVA in contact with the ampulla of the PSC.
It is found in a single case of a left-sided ear in a 5-year-old boy.

As discussed below, some anatomical variants or other forms
of intralabyrinthine TMWA sharing similar symptoms could
be included in this subtype. Pathophysiological mechanisms
including changes in endolymphatic flow caused by the presence
of dilatation of the vestibular organs or the presence of
intralabyrinthine obstacles (fibrosis, tumors) could be proposed.

Case Report 1
A 12-year-old child had a 5 years history of vertigo lasting
for a few minutes associated with transient pulsatile tinnitus
induced by physical effort. The oto-neurological examination
and the audio-vestibular tests, including PTA, cVEMPs, VNG,
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FIGURE 3 | Type III extralabyrinthine OCD (OC-petrosal interface). (A,B) Ampullary dehiscence (white arrow) between the ampullary end of the LSC and the cells

around otic capsule (yellow arrows). Note the hyperpneumatization of the mastoid and that the dehiscence limit extents to the LSC ampullae. (C,D) Right ear

cochleo-facial dehiscence (CFD): the second turn of the cochlea dehiscent on the facial nerve canal in its geniculate zone on axial section (C) or coronal oblique

section (D). (E) Schema of the ampullary dehiscence (similar to a Helmholtz resonator) toward the tympanic cavity with stimulation of the cup by sound waves (red

arrow). T M, tympanic membrane. Modified with permission from Merchant and Rosowski (12) and from Ho (13).
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and VHIT, were normal. The requested MRI for the IAC and
inner ear structures did not reveal any pathological findings;
however, HRCT showed a double OCD. While the first one was
located between the left VA and the IJV (Figure 5A), the second
has a slightly anterior localization, between the left CA and the
same IJV (Figure 5B). Moreover, there was also a very thin bony
lamina between the high-riding IJV and the IAC on the left side
(or a “near” subtype IIIc OCD) white arrow (Figure 5C). This
exceptional pediatric presentation needs close clinical follow-up,
taking into account the limitation for moderate physical exertion
experienced by this young patient.

Case Report 2
A 72-year-old patient suffered from vertigo, and induced by
coughing pulsatile tinnitus. He was complaining of hearing
the movements of his own eyelids blinking in the right
ear. The pure tone audiometry showed a right-sided air-
bone gap; cVEMPs revealed decreased threshold to 70 dB
and oVEMPs revealed high amplitude potentials (100 uV)
(Figure 6D). HRCT showed a right SSCD (type I OCD)
(Figure 6A). As the patient was disabled by his symptoms, a
surgical plugging of the SCC was proposed. Post-operatively,
the patient complained of significant autophony and worsening
of the pulsating tinnitus. PTA confirmed a deterioration of
the audiometric thresholds in both bone and air conduction

FIGURE 4 | Intralabyrinthine TMWA-like. (A,B) Vestibulo-vestibular

dehiscence: between the vestibular aqueduct widened to 3mm (blue arrow)

and the right posterior SC (yellow arrow) at the level of the common crus (B).

although ipsilateral oVEMPs disappeared and the cVEMPs
threshold normalized. A labyrinthineMRI confirmed satisfactory
plugging of the SCC (Figure 6E). While reexamining HRCT
images, an ipsilateral CFD (type IIIa OCD) associated with
the classical SSCD was revealed (Figures 6B,C). It was initially
misdiagnosed by either the radiologist, the ENT surgeon,
or by the neurotological staff as the SSCD was easily
identified as “typical” and thus considered responsible for
all symptoms.

In agreement with the patient, who refused any additional
treatment, a simple audiological follow-up was proposed.

DISCUSSIONS

Although some systematization of TW have been proposed
previously (11–14), we believe that proposing a new classification
that takes into account not only the anatomical structures
involved in the TW interface, but also their precise topographic
location would lead to a better further understanding of the
underlying pathophysiological mechanisms of this pathology. It
is widely accepted that inframilimetric temporal bone HRCT
with coronal or axial reconstructions is the “gold standard”
to confirm the presence of an OCD. To date, labyrinthine
MRI is generally used for post-operative follow-up to verify
the effectiveness of the treatment, allowing signal interpretation
of the residual fluid in the membranous SSC following canal
plugging (32, 33). However, using 3D high-resolution MRI,
a better exploration of anatomical structures involved at the
site of the dehiscence is possible. In our experience, systematic
combination of HRCT with 3T MRI would allow researchers
to better understand some variants of TW’s pathomechanisms,
which appear as slightly different from that of the “well-
known” SSCD. The implementation of this classification could
also bring a potential addition to develop other treatment
methods in the future. As an example, in case of a type
II (vestibular-vascular) OCD showing a mass effect on the
membranous labyrinth highlighted by 3D MRI, performing an
endovascular procedure rather than performing a plugging-type
surgery was simplest and with no expected vestibular or auditory
impairments (24–26).

FIGURE 5 | Multiple localization OCD (case report 1): high-riding left IJV at the origin of two type II of OCD. (A) Procidence of the IJV in the IAC (White arrow), a thin

bone lamina is still remaining, (B) Dehiscence between IJV interface and VA. (C) Dehiscence between IJV interface and CA. IJV, internal jugular vein; IAC, internal

auditory canal; VA, vestibular aqueduct; CA, cochlear aqueduct.
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FIGURE 6 | Multiple localization OCD (case report 2). (A) Fusion between HRCT and 3D T1 weighted contrast enhanced sequence in Poschl plane: right SSCD. (B,C)

Temporal HRCT in axial (B) and coronal (C) plane: right CFD. (D) oVEMPs before surgery with large amplitude on the right side. (E) After surgery: labyrinthine MRI:

partial amputation of the anterior arm and the top of the right SSC.

So far, it appears to be difficult to propose a correlation
between symptoms or signs and each type or subtype of
OCD, since there is a wide spectrum of clinical presentations
that cannot be necessarily systematized (13, 14, 20). Some
topographic classifications for OCD have already been suggested
(11–14), but the involved anatomical structures have not been
systematically taken into account. However, these have drawn
the attention of clinicians to the existence of possible multiple
localizations of OCD, not just the type I (a or b) OCD that is
commonly sought by radiologists.

Extralabyrinthine TMWA: OCD-Meningeal
(Type I)
Type I OCD has been reported as the most common form of
dehiscence (8%), followed by the PSC (1.2%), and less commonly
the LSC (0.4%) (34, 35). Because it was suggested that LSC
dehiscence has been associated with chronic otitis media and
cholesteatoma as well as canal wall downmastoidectomy (36), we
have excluded in our study all patients with otitic lesions or those
with suspicion of perilymphatic fistula (PLF) in relation with this
chronic pathology. The pathophysiological mechanisms of fistulae
have already been mentioned above and have been extensively
described elsewhere (16). Most patients in our series included in
this subtype presented similar symptoms and/or signs as listed by
Naert et al. for the SSCD (36).

Extralabyrinthine TMWA: OCD-Vascular
(Type II)
In this type of OCD, low frequency vascular wall pulses close
to the infrasounds appear to be transmitted through the TW to

the cochlear and/or vestibular sensors more or less efficiently
(37, 38). It is likely that the extent of this acoustic stimulation
depends on the shape and size of the TW, the mass effect exerted
on labyrinthine structures by the vascular structures or factors,
which may strengthen the intracranial blood flow. Therefore, the
intensity of the resulting symptoms (pulsatile tinnitus, exertion-
induced vertigo) seems to be well-correlated with the factors
listed above.

The patients with SSCD by SPS (type IIa) presenting
invalidating pulsatile tinnitus and dizziness exacerbated by
physical exercise have already been reported (31, 39, 40). As
for the dehiscence’s involving the IJV bulb and labyrinthic
membranous structures (VA and the PSC), Thenint et al. had
already proposed in a limited series stenting of the IJV to
limit the transmission of vascular vibrations to the labyrinth
with good results (24). We proposed a similar approach in one
of our patients with SSCD by SPS; a significant improvement
was observed after the endovascular procedure, which consisted
in stenting the SPS (25). Recently, a similar, although slightly
modified, approach was used by another otologic group, since the
SPS was just occluded (26) with a very good result. We recently
emphasized the importance of combining the standard HRCT
with 3TMRI allowing for better visualization of the membranous
SSC and an eventual mass-effect by the adjacent SPS at the
dehiscence level (31).

Interestingly, with a 750Hz auditory tone burst stimulus, in
type IIb dehiscences involving a VA-IJV interface, we did not
find, as we would have expected, even in patients with severe
symptoms, a systematic decrease in the cVEMP threshold. A
possible explanation would be that the stimulation parameters
currently used in the literature (short stimuli, frequency between
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400 and 800Hz) (40) do not allow the diffusion of low frequency
acoustic energy (750Hz) to the VA, which has a very thin
wall (41). Future research could use more adequate frequency
stimuli to ensure better diffusion of perilymph waves to the
presumed VA-IJV interface with lower compliance. Moreover,
Hu et al. proposed to associate HRCT slices with reconstructions
to study the relationship between these two structures (42). These
authors proposed a three-stage classification: no contact, contact
without VA obstruction, and VA obstruction. They used MRI
of the IACs to evaluate the presence of a possible secondary
endolymphatic hydrops. When the VA was not conceived, in
conjunction with a high-riding internal jugular bulb, a secondary
hydrops was evoked.

Otic capsule -vascular involving the cochlea and the carotid
artery (Type IIc) was rarely described in the literature (43). Our
series included one observation.

Extralabyrinthine TMWA: OCD-Petrosal
(Type III)
Following the first description by Blake et al. of cochleo-facial
dehiscence (CFD, subtype IIIa),Wackym et al. published a cohort
of 16 patients with this type of OCD studying outcomes after
surgical repair (20, 44). Surgical management with roundwindow
reinforcement in these patients was associated with improved
symptoms and outcome. However, our findings matched only
partially the clinical features reported in this study.

As stated above, the pathophysiological mechanism of subtype
IIIb OCD seems distinct from the “classic” pathomechanism
of SSCD. In our opinion, sound waves emerging through the
ampullary dehiscence would generate a local perilymphatic
flow directly transmitted to the endolymphatic compartment,
stimulating the crista ampullaris by a local Helmholtz-like
resonance phenomenon. This hypothesis allows, to some extent,
for a similar explanation of TP as with vertigo in patients after
fenestration surgery or in case of idiopathic fistula of the LSC
(45, 46).

Intralabyrinthine TMWA-Like Mechanism
In this type, we can assume there is an association with a
coexisting developmental defect of inner ear structures. Our
series includes several cases of EVA (five cases), associated with
a dilated endolymphatic sac in contact with the VA through a
bony dehiscence of the VA wall. Matsuda et al. recently reported
the case of a congenital dehiscence of the stapes footplate
in a patient presenting a sudden right-sided hearing loss and
severe vertigo that occurred immediately after nose-blowing
(47). These last mentioned variants, associated with challenging
clinical pictures, allow us to insist and emphasize the importance
of careful and collaborative study of audio-vestibular exams
and imagery for the sake of finding the diagnosis in certain
“unexplained” symptoms.

Some authors considered an isolated EVA or enlarged cochlear
aqueduct as a distinct TW since the perilymphatic normal flow
transporting the acoustic energy to the cochlear end receptors
is disrupted (12). We agree with this vision although these
pathological conditions are not generated by a “true” OCD,
but the intimate mechanism seems quite similar to that of a

third mobile window. Therefore, we could include these cases
in the class “intralabyrinthine TMW” or having a TMW-like
mechanism, in addition to intracochlear schwannomas (ICS)
that could induce modifications of the endolymphatic flow.
Indeed, in a cohort of 19 patients with ICS, Fröhlich et al.
measured the cVEMPS thresholds (48). On the affected side,
the threshold was unexpectedly lowered in 21% of patients
mimicking the presence of a TMW. The authors suggested that
individualizing the management of these patients with a detailed
functional evaluation of the labyrinth is paramount to propose
treatment options and predict outcomes. As a physiological
explanation, the authors mentioned changes in endolymphatic
flow secondary to tumor obstruction in a similar manner to
endolymphatic hydrops. It has already been shown that some
cases of endolymphatic hydrops can mimic the TW syndrome
with a similar clinical presentation (49–52). Besides, primary
overpressure in the endolymphatic or perilymphatic spaces could
explain a limited conductive hearing loss as previously reported
(53–55). It is worth adding here that the notion of “inner ear
conductive hearing loss,” considered lately as specific to TW
lesions, was already used by Muchnik et al. to describe the
air bone gap (ABG) observed in some patients with Menière
disease (53).

Other TMWA-like pathologies may include Perilymphatic
fistula (PLF). Although it may appear anatomically similar to
type III extralabyrinthine OCD, clinical evidence indicates the
involvement of other endolymphatic flows generating nystagmus
with different characteristics (56). The explanation for this
difference may lie in the fact that, in PLF, the vestibular
membrane is compromised at this level while in type III, it
remains intact. Some authors have reconciled PLF with OCD
because of similar pathophysiological elements (20, 57). Hence,
PLFs have not been considered in our classification as “true TW”
because they actually involve an opening of the membranous
labyrinth that allows the leakage of perilymph and/or endolymph
with the obvious direct negative impact on the vestibulo-
cochlear micromechanics.

Similarly, Shim et al. published a series of ears with “cavitating
otosclerosis” reaching the anterior wall of the IAC, looking at a
poor correction of the ABG in the aftermath of a “stapedotomy”
(58). The authors suggested an OCD-type mechanism not
corrected by the stapedotomy to explain the lack of improvement
of the ABG.

Not Identified OCD (or CT-TMWA)
As introduced by Shuknecht in the early age of deafness surgery
(8), Wackym et al. reported patients with a group of symptoms
suggestive of OCD, even if the imaging was negative (21, 22).
According to these newly described variants of OCD, performing
temporal bone HRCT with infra-milimetric slice thickness as
recommended can be of great benefit in the diagnostic process
in such symptomatic patients and in search of all possible types
of OCD (28, 59).

Multiple OCD Localizations
When one site of OCD (extralabyrinthine TMWA) is confirmed,
ENT specialists and radiologists should be aware of the risk
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of not diagnosing multiple localization. In our series, 11 of 97
patients presented with confirmed multiple localization OCD
on the symptomatic side. See Table 2 for the most common
symptoms found in multiple localization as well as the most
common associations on the same ear; the most important
audiological and vestibular data are also displayed. Besides an
accurate and complete diagnosis, the main challenge in multiple
OCDs in the same ear is to select an appropriate therapeutic
strategy for patients with disabling symptoms. It also involves
establishing the order in which these dehiscences should be
treated. As per our knowledge, there is no available data in

the literature to council practitioners about the approach of
multiple OCDs.

Case report 1 illustrates a case of multiple type II
dehiscence localization on the same side, involving the
IJV and the VA and the CA. We do not find current
surgical techniques that would be appropriate to treat
this pediatric patient. As the connection between these
anatomical conditions and symptomatology appears evident,
in case of clinical aggravation a reinforcement could be
proposed by stenting the IJV wall as described by Thénint
et al. (24).

TABLE 2 | Clinical characteristics of patients with multiple localization OCD (all OCD were ipsilateral).

Age Ear 1st OCD

dehiscence

2nd OCD

dehiscence

Symptoms Audiometry findings cVEMPs oVEMPs

16 RE PSC-IJV CFD Tinnitus with head

movement

Noise-induced vertigo

Mild Hearing loss ABG

= 5 (RE)

Bilateral threshold (x2) Higher amplitude (RE)

37 RE SSC-SPS CFD Pulsatile tinnitus (RE) Normal Higher amplitude (LE) Absent

48 LE SSC-Meningeal CFD Noise-induced

autophonia

pulsatile tinnitus (LE)

Bilateral low-frequency

hearing loss ABG = 5

bilateral

Higher amplitude (LE)

Threshold 60 dB (LE)

Higher amplitude (LE)

Threshold 60 dB (LE)

73 RE SSC-Meningeal CFD Decreased hearing

Tinnitus

Autophonia

Cough-induced vertigo

ABG = 30 dB (RE) Higher amplitude (RE)

Threshold 60 dB (RE)

Higher amplitude (RE)

Absent (LE)

68 LE SSC-Meningeal Cochlea-Carotid Decreased hearing Mixed HL ABG = 50

dB (RE) SNHL (LE)

NA NA

59 LE IJV-Vestibular

aqueduct

CFD Tinnitus (tapping) (LE)

Instability and vertigo

ABG = 10 dB (RE) 20

dB (LE)

Normal NA

67 LE IJV-Vestibular

aqueduct

IJV-IAC Pulsatile tinnitus (RE) Normal Normal (RE) Absent

(LE)

NA

46 LE SSC-Meningeal CFD Bilateral HL

Tinnitus (RE)

Effort-induced vertigo

ABG = 20 dB (RE)

Bilateral SNHL

Absent (RE) Decreased

threshold 60 dB (LE)

Absent (RE) Decreased

threshold 70 dB (LE)

72 RE SSC-Meningeal IJV-Vestibular

aqueduct

Autophonia

Pulsatile tinnitus

Effort-induced vertigo

Bilateral SNHL Threshold 50 dB (RE)

Normal (LE)

NA

13 LE IJV-Vestibular

aqueduct

IJV-Cochlear

aqueduct

Effort-induced vertigo Normal Normal NA

FIGURE 7 | Algorithm of TMWA classification. IAC, internal auditory canal; IJV, internal jugular vein; LSCD, lateral semi-circular canal; OC, otic capsule; OCD, otic

capsule dehiscence; SSCD, superior semi-circular canal dehiscence; SPS, superior petrosal sinus; PSC, posterior semi-circular canal; SSC, superior semi-circular

canal; TW, third window; TMWA, third mobile window abnormalities.
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In case report 2, HRCT showed a dehiscent right SSC in a
patient with disabling symptoms. A surgical procedure by SSC
plugging was proposed, which led to worsening of autophony,
pulsatile tinnitus, and a significant aggravation of the initial
conductive hearing loss. An ipsilateral CFD (type III), not initially
detected, was secondarily discovered when the petrosal bone
CT was reevaluated. This unexpected post-operatory aggravation
might be due to a reinforcement of perilymphatic flow oriented
toward the CFD level as a result of the membranous SSC
plugging, which led to the exposure of the “fourth window,”
clinically “silent” before surgery. In cases of CFD, reinforcement
of the round window was suggested by Wackym et al. (20),
although these authors do not mention it in case of multiple OCD
localizations. In our opinion, plugging and RW reinforcement
may be proposed in the same surgical intervention in deeply
impaired patients. However, the results could be random, as
the volumes and circulation of the inner ear fluids could be
radically affected by surgery with unpredictable results on the
initial symptoms. Given the apparently high risk of skipping a
multiple localization, our group found it important to include
it as “multiple OCD” (Table 1; Figure 7) in a separate branch of
this classification.

Perspectives
Superior semicircular dehiscence has been the subject of
numerous articles codifying its surgical management (60).
Concomitantly, with a better understanding of the OCD
pathophysiology, new therapeutic procedures have emerged to
diminish operative risks. Creighton et al. described the case
of a patient with a SSCD who benefited from an endoscopic
“underwater” procedure in a balanced salt solution (61). This
attempt aimed at limiting the risk of PLF by injecting fluid
into the mastoid as a counter pressure method during the
plugging procedure.

From our perspective, the major principle to be considered
in the future for the treatment of TW lesions would be to find
the most appropriate methods that aim at reducing the abnormal
transmission of sound vibrations through the abnormal window
to the vestibular and/or to cochlear end organs, without
excluding any highly functional labyrinthine segment. A step
forward would possibly be the manufacturing of a physical
or a numerical semicircular model, which would allow for a
better pathophysiological approach and management of these
challenging pathologies. With the actual constraints and ethical
considerations in clinical medical research, this method could be
promising. It will allow researchers to obtain an “almost-real”
simulation with hydrodynamic modification analysis possibly

caused by the surgical procedure type “plugging.” It might
be the ideal way to manage and possibly solve the actual
pathophysiologic dilemmas as for multiple location dehiscence.

CONCLUSIONS

Based on anatomo-radiologic data of the inner ear structures
involved, a classification of TMWA is proposed herein. Its aim
is to help to conventionally systematize the increasing number
of currently known variants of this pathology. Moreover, this

classification could allow ENT specialists, radiologists, and/or
clinical radiologists to better understand some OCD variants, as
well as to imagine possible innovative therapeutic approaches in
the future. In type II OCD, involving vascular structures, MRI
has greatly contributed to a better visualization of the anatomical
elements in contact at the level of the TW, which has been
an essential element for the current classification and for the
development of newly endovascular treatment techniques.
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