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There have been tremendous advances in the neuroimmunology of multiple sclerosis

over the past five decades, which have led to improved diagnosis and therapy in the

clinic. However, further advances must take into account an understanding of some of

the complex issues in the field, particularly an appreciation of “facts” and “fiction.” Not

surprisingly given the incredible complexity of both the nervous and immune systems,

our understanding of the basic biology of the disease is very incomplete. This lack of

understanding has led to many controversies in the field. This review identifies some of

these controversies and facts/fictions with relation to the basic neuroimmunology of the

disease (cells and molecules), and important clinical issues. Fortunately, the field is in a

healthy transition from excessive reliance on animal models to a broader understanding

of the disease in humans, which will likely lead to many improved treatments especially

of the neurodegeneration in multiple sclerosis (MS).

Keywords: multiple sclerosis, neuroimmunology, B cell, CXCL13, cytokine, neuroinflammation, cerebrospinal fluid,

chemokine

INTRODUCTION

I saw my first patient with multiple sclerosis (MS) 50 years ago in 1971 as a medical student.
The patient was a young woman who presented with acute myelitis. The patient had 3 years
previously developed diplopia which was not clearly diagnosed and resolved within a few weeks.
A spinal tap was performed which was equivocal for markers of MS. At that time, the technology
for cerebrospinal fluid (CSF) oligoclonal band testing with polyacrylamide gels was the standard
(1), which is relatively insensitive in the diagnosis of MS. Also, at that time, the first CT scan of
the brain had not yet been performed, and NMR, the precursor of MRIs, was used in biophysics
research laboratories, not yet in humans. A hot bath test (2) was performed, and an intranuclear
ophthalmoplegia was evoked, which was consistent with the diplopia being caused by an MLF
lesion and thus confirmed the diagnosis of MS, using Poser’s criteria (3). The worsening of MS
symptoms with raised body temperature is called Uhthoff’s sign, first described in 1890. The only
treatment available for MS in 1971 was corticosteroid medication, which was infused, and the
patient improved and went home.

Much has changed since then. Diagnostic approaches and criteria have been refined: hot
bath tests have been replaced by much better diagnostic testing, including MRI scanning (4)
and highly sensitive oligoclonal band (OCB) testing using isoelectric focusing on agarose gels
and immunofixation of IgG bands (5), and increasingly sensitive diagnostic criteria have been
developed (6, 7). Along with corticosteroids for acute attacks, we now have 23 FDA-approved
immunomodulatory/immunosuppressive drugs (ISDs) (8) to dampen neuroinflammation. MS has
an estimated prevalence in the US of about 300 per 100,000 (9), and clinicians are increasingly faced
with complex issues in the diagnosis and management of these patients.
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TABLE 1 | The 15 forms of MS.

Category Form

MS-like diagnosis

1. Asymptomatic-MS pathology found at autopsy

2. Clinically isolated syndrome (CIS)

3. Radiologically isolated syndrome (RIS)

Definite MS each with 4 variants according to inflammatory activity

or progression of disability (non-progressive/non-active,

non-progressive/active, progressive/non-active, progressive/active)

4–7. Relapsing-remitting MS(RRMS)

8–11. Primary progressive MS(PPMS)

12–15. Secondary progressive MS(SPMS)

THE THREE INHERENT CHALLENGES IN
RESEARCHING THE BIOLOGY OF MS

Unfortunately, there has been less progress in our understanding
of the biology of MS, which has manifested as uncertainty and
much confusion about the underlying pathological processes in
MS of demyelination, inflammation, and neuronal damage. This
unfortunate state has been due to primarily three characteristics
of MS:

1. minimal access to involved tissue,
2. highly variable clinical course, and
3. tendency to extrapolate over-simplistically from results of

research in the rodent model of MS, experimental autoimmune
encephalomyelitis (EAE).

In contrast to diseases where biopsies are readily available,
CNS tissue is rarely accessed during life in patients with MS, and
autopsy tissue often yields end-stage processes in a disease that
usually begins when patients are young. Although considerable
information has been obtained from brain biopsies in a relatively
small group of selected patients withMS for whom this aggressive
procedure was indicated (10), findings are controversial (11),
and characterization of the pathology is a continual work in
progress (12), especially as meningeal inflammation and cortical
demyelination are increasingly recognized and studied (13). The
disease is highly heterogeneous and there are at least 15 different
clinically distinguishable variants of MS (Table 1) (14), some
of which may morph into other variants in any one patient.
Thus, the predominant neuroimmunology of one variant may
be different from another. Finally, partially because of the above
challenges, much of the research in the disease has focused not on
MS, but rodents mostly mice, EAE. There have been over 14,600
publications on EAE (as of July 1, 2021), despite the general
acceptance that it is not a faithful model of the human disease
(15); however, there is no doubt that it provides insights into
immunology and inflammation in the CNS (16, 17). Although
our lack of understanding about the biology of the disease is
unfortunate, it is not surprising given the above challenges and
given the fact that neuroimmunology research overlaps the two
most complex systems in the human body: the nervous and the
immune systems.

It is thus important to identify the difference between what
is KNOWN vs. what is THOUGHT TO BE KNOWN. I would
classify the former as FACT and the latter as FICTION, or
more precisely NON-FACT, since some non-facts represent not
completely unreasonable hypotheses yet to be proven right or
wrong. This review will evaluate critical areas of the clinical
neuroimmunology of MS, and separate fact from fiction.

FICTION #1. MS IS AN AUTOIMMUNE
DISEASE

FACT #1. MS Has a Definite Inflammatory
Component, Especially Early in Its Course,
but It May Not Be Truly Autoimmune
One of the pioneers in neuroimmunology and EAE in particular,
Byron Waksman, was convinced for decades that MS was
autoimmune despite lack of firm evidence, but, toward the end
of his career, changed his mind.While describing paradigm shifts
for the pathogenesis of MS, he wrote: “EAE, the autoimmunity-
based animal model, is not seen as inherently superior to (viral)
models like Visna or TMEV. One might be right to regard
autoimmunity (as a cause for MS) as a paradigm shift that never
quite made it!” (18).

Ascribing the adjective “autoimmune” to a disease with
confidence requires the demonstration of an autoantigen, a
self-molecule, and an abnormal, damage-inducing, cellular,
and/or humoral response to that molecule. Some examples
of neuroimmunological autoimmune diseases are myasthenia
gravis with autoantibodies against the nicotinic acetylcholine
receptor (19) and neuromyelitis optica with autoantibodies
against aquaporin-4 (20). Thus far, despite decades of research
into the pathogenesis of MS, neither an autoantigen nor a
damage-inducing humoral or cellular immune response has been
convincingly demonstrated. Themost prominent immunological
abnormality in MS is the presence of elevated immunoglobulin G
(IgG) response in the cerebrospinal fluid (CSF), usually measured
as oligoclonal IgG bands (21), yet an intensive search for the
target of that IgG response has not identified an autoantigen,
and the most common cause of CSF OCBs other than MS is
viral infections (22). Of course, many inflammatory diseases
that are usually considered “autoimmune” in pathogenesis such
as rheumatoid arthritis and systemic lupus erythematosus, do
not have well-defined pathogenic cellular or humoral immune
responses directed against an autoantigen. However, these
diseases have a host of characteristics that are consistent with
autoimmunity, while MS lacks a convincing array of these
characteristics. For MS, it is hard to prove a negative, i.e.,
absence of evidence does not mean evidence of absence and thus,
the autoimmune hypothesis must still be considered possible.
In a recent review of MS treatment (23), the authors, who a
decade ago would have classifiedMS as definitely an autoimmune
disease, have scaled back their certainty and described MS as
“most likely autoimmune-mediated.”

Experimental autoimmune encephalomyelitis (EAE) is
the standard model for the “outside-in” hypothesis for the
pathogenesis of MS, in which events such as lymphocyte
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activation outside of the CNS is the initiating event, followed by
influx into the CNS of pathogenic cells from the periphery. In
contrast, other MS investigators favor an “inside-out” hypothesis,
in which the initiating event is some change within the CNS, such
as damage to myelin or neuronal components, and subsequent
inflammatory events occur as a response to this damage. These
two types of pathogenesis are, of course, not mutually exclusive,
but the predominance of one hypothesis vs. the other has
considerable significance for research directions and possible
therapeutic targeting. The arguments for these two contrasting
hypotheses are extensive and beyond the scope of this review but
have been summarized in multiple recent review articles (24–26).

FICTION #2. MS IS T-CELL MEDIATED

FACT #2. The Mechanism of Damage in MS
Is Unknown
When I was reviewing grant applications for the National MS
Society from 1998 to 2005, many applications began their
background section with the statement: “MS is a T-cell mediated
autoimmune disease.” The literature is also full of such confident
assertions, e.g., “(MS) is characterized histologically by the
infiltration of encephalitogenic TH1/TH17-polarized CD4(+) T
cells” (27). These dogmatic statements irritate me, since it is not a
proven autoimmune disease (28), and, although T cells may be
involved in the inflammatory response, there is no conclusive
evidence that it is actually T cell-mediated or that T cells are
encephalitogenic in human MS.

A pivotal manuscript by Henderson et al. (29) is especially
relevant to this issue. They analyzed pathology in early MS
lesions, and, by painstakingly accumulating autopsy samples
from 11 patients with early MS, addressed one of the primary
challenges inMS, #1 above, i.e., minimal access to involved tissue,
especially early in the disease. Two of the most studied specimens
were from patients with a duration of MS of 18 and 21 days.
Their conclusion was that “adaptive immune activity involving T
and B cells is conspicuous chiefly in recently demyelinated tissue,
which may show signs of oligodendrocyte regeneration. The
findings suggest that plaque formation has some basis other than
destructive cell-mediated immunity directed against a myelin
or oligodendrocyte antigen,” and thus their conclusion that the
involvement of T and B cells is a response to some initial
unidentified damaging process, rather than the inducer of the
early MS lesion.

The emphasis on T-cells as the primary mediator of the
neuroinflammation is to a large extent a consequence of
extrapolation from the EAE model, challenge #3 above. The
history of EAE research is long (30), but the understanding of
the immunological basis of the neuroinflammation grew rapidly
pari passu with the growth of immunological research after
World War II. Methodologies for cloning subpopulations of
lymphocytes were developed and in 1981 Ben-Nun et al. (31,
32) demonstrated that T cell lines from MBP-immunized rats
transferred into naïve rats completely reproduced the disease.
Experiments over the subsequent 40 years inmany different types

of EAE have expanded upon this pioneering finding. Although
some forms of EAE are not T cell-mediated (33), the majority
are. EAE can be induced in a variety of animals, not just rodents,
including non-human primates (34) but murine EAE is the most
commonly studied because of the ready availability of mutant
mice. However, even though EAE was from the outset perceived
as a model of not MS, but acute disseminated encephalomyelitis
(ADEM) (35, 36), a neuro-inflammatory cousin of MS, there has
been an oversimplistic extrapolation of T cell mediation to MS.
This has occurred despite the fact that the mediating type of T
cell in most forms of EAE is the CD4+ helper T cell, while the
predominant type of T cell inMS lesions in the CD8+ cytotoxic T
cell (37, 38). The dangers of trying to rigorously extrapolate from
animal models of MS to the human disease have been recently
extensively reviewed (39). Thus, contrary to the situation in most
EAE models, it is highly unlikely that the MS is solely mediated
by T cells, although that possibility cannot be completely ruled
out given the association of MS with the HLA-D region (40) and
the exacerbation of MS with checkpoint inhibitors (41).

The dogma of T cell mediation of MS was repeated so often
prior to 2008 that the demonstration by Hauser et al. (42) of
potent downregulation in relapsing-remitting MS (RRMS) of
neuroinflammatory activity by B cell depletion with rituximab,
a monoclonal antibody targeting CD20 on the surface of B cells,
was a huge eye-opener to the T cell/MS community. This marked
amelioration of the neuroinflammation by depletion of B cells
has been in marked contrast to the minimal or absent effect of
selective T-cell targeted therapies in MS (43).

Some EAE models require B cells (33), but in almost all EAE
models, B cells are irrelevant, further bringing into question the
relevance of EAE to MS, since B cells are known to be important
in MS pathogenesis. Of course, there is constant interaction
between B cells and T cells (44) and thus the success of B cell
depletion in down regulating inflammation in MS does not rule
out some role for T cells in MS pathogenesis. More on the role of
B cells in MS is summarized below in FICTION/FACT #4.

FICTION #3. VIRAL MODELS OF MS ARE
IRRELEVANT BECAUSE MS IS NOT A
VIRAL DISEASE

FACT #3. Not Only Do Viral Models Provide
Insight Into Chronic Demyelinating
Neuroinflammation, but Also MS May
Indeed Represent a Chronic Infection With
a Virus or Other Pathogen
The two most studied viral models are those induced by
Theiler’s murine encephalomyelitis virus (TMEV) and mouse
hepatitis virus (MHV). Unlike EAE, where there is a hyperacute
neuroinflammatory response causing transient neurological
disability with no or stable persistent deficits, genetically
susceptible mice infected with TMEV develop progressive
weakness over months, associated with demyelination and
inflammation with a pathology strongly resembling MS (45).
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An example of how this model is relevant to MS is in the
identification of CXCL13 [Chemokine (C-X-C motif ligand 13)],
a B cell-active chemokine, as a strongly upregulated cytokine
locally within the CNS both in TMEV infected mice (46, 47) and
MS (48, 49). These findings support a plethora of data supporting
the critical role of B cells in inflammatory demyelination
(summarized below).

The presence of viral models resembling MS has prompted
a decades-long search for a viral etiology of MS (50), with the
absence of firm evidence for the involvement of any virus (51).
Two candidates that have attracted a great deal of interest are
Epstein-Barr virus (EBV) and human endogenous retroviruses
(HERV). EBV, a large herpes virus whose DNA contains about
170,000 base pairs, very commonly infects humans, with more
than 90% of Americans having serological evidence of infection
by the time they are adults. The hypothesis that EBV infection
plays a role in MS pathogenesis is not recent, with Poskanzer et
al. postulating back in 1963 that MS is a late manifestation of
an infectious disease common in childhood (52); EBV was not
described until 1964, and its link to infectious mononucleosis
made by Niederman et al. (53). Multiple studies in the ‘80 s and
‘90 s demonstrated significant increases in anti-EBV antibodies
in patients with MS compared to controls, although this finding
has not been uniformly consistent. EBV genome has been found
in MS brains, with one study demonstrating PCR positivity
in 91/101 (90%) MS brains and only 5/21 (24%) of control
brains (54). As with EBV antibodies, the findings in detection
of EBV DNA or RNA in MS brain has not been consistent with
some studies being negative (55). The variability in findings has
been attributed, at least in part, to differences in the methods
employed (56). A recent study has demonstrated that exosomes
from patients with MS express EBV-derived proteins (57). Some
positive findings of anti-herpes virus drugs in MS, i.e., acyclovir
or valacyclovir, in phase 2 studies have prompted calls for further
investigations of antivirals in MS (58). The literature in this
area is large; fortunately, the role of EBV in MS pathogenesis
has been recently reviewed in a very well-written and thorough
manuscript (59).

Recently another group of pathogens has attracted interest:
HERV, summarized in part in the publication of two international
conferences, one in 2015 (60), and the other in 2017 (61). Over
evolutionary time, almost all animals have been infected with
retroviruses some of which have become integrated into the
genome of the host. HERVs comprise about 8% of human DNA,
most of which are not transcriptionally active and have a high
susceptibility to mutation. Kremer et al. (62) have found that the
envelope protein (ENV) encoded by a member of the HERV-
W family may be pathogenic in MS since it both reduces the
ability of oligodendrocytes to differentiate, possibly contributing
to the failure of remyelination in the CNS and, in addition,
promotes microglial-mediated axonal damage (63). Temelimab,
also called GNbAC1, is a humanized IgG4 monoclonal antibody
that binds HERV-W-ENV and blocks its effects on microglia
and oligodendrocyte precursors, was tested in patients with
MS, and although it didn’t reach the primary endpoint, it
appeared to have some helpful effects on MRI measures of
neurodegeneration (64).

FICTION #4. THE IMMUNE RESPONSE IN
MS IS DOMINATED BY
ANTIGEN-REACTIVE ADAPTIVE
IMMUNITY, PARTICULARLY CD4+ T CELLS

FACT #4. Activation of the Immune
Response in MS Is Likely Highly Diverse
With Many Different Subpopulations
Involved, Including the Innate Immune
Response, B Cells, and CNS Resident Cells
The immune response is sometimes simplistically divided into
adaptive and innate immune responses, in which the former is
associated with highly antigen-specific receptors on cell surfaces
of lymphocytes [e.g., T-cell receptor (TCR) or B-cell receptor
(BCR)] and the latter consisting of a mix of cells lacking such
receptors, as well as antigen-non-specific molecules such as
complement. The summary below of the cellular immunology of
MS is very brief and deals with only a small fraction of this large
field; a more extensive and excellent review article on this topic
has been recently published (65).

“Innate” Immune Cells-
Given the lack of a clearly pathogenic adaptive immune response
in MS, as well as the complexity of the innate immune response,
it is not surprising that many components of the innate immune
response have been implicated as potentially important in MS.
An extensive analysis of this area is beyond the scope of this
review, but it is worthwhile to identify some key implicated
innate cells and systems. The most prominent among innate cells
in this regard are cells of the monocyte/macrophage/microglia
lineage, which have recently been extensively reviewed (66,
67). There are at least three different classes of these cells in
MS tissue: CNS resident cells [microglia and CNS-associated
macrophages (68)] and infiltrating cells of this lineage from the
peripheral blood.

Microglia are common cells within the CNS, and for many
years were thought to be relatively homogeneous. The realization
that they were a heterogeneous population began in 1988
when Hickey and Kimura described a subset called perivascular
microglia (69), which are located within the basal lamina of
cerebral blood vessels, express MHC II antigens constitutively,
and are regularly repopulated by bone marrow-derived precursor
cells. In contrast, most populations of microglia are sustained by
replication in situ. Juxtavascular microglia (70) are a cousin of
perivascular microglia, and they also express MHC II, but, unlike
perivascular microglia, are located just outside the basal lamina,
and do not manifest significant turnover. Other populations
of microglia are usually defined not by their location within
the CNS but by their shape, i.e., ameboid, ramified, or by
expression of the protein, allograft inflammatory factor 1(AIF-1),
also called ionized calcium-binding adapter molecule 1(IBA1),
identifying reactive microglia. Another important group of
molecules expressed in microglia has been termed the “sensome,”
which allow these cells to detect changes in their environment
(71). Microglia are characterized by extreme plasticity, i.e., being
able to change from one phenotype to another in response to
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environmental conditions. Thus, a ramified microglial cell can
become a reactive microglial cell in an inflammatory milieu.
Sometimes reactive microglia are also called activated, although
that term is misleading since most microglia are almost always
activated to some extent.

Reactive microglia are a common finding in MS lesions
(72). They can produce toxic free radicals which have been
hypothesized as being important in the neurodegeneration in
MS (73, 74). In contrast, microglia can also be “homeostatic,”
and a loss of P2RY12-positive “homeostatic” microglia has
been associated with active lesions, with the restoration of
this subpopulation in inactive lesions (75). A highly relevant
study was performed by van der Poel et al. (76), who studied
microglia isolated from gray matter (occipital lobe) or white
matter (corpus callosum) from brains from patients with MS
and controls in the Netherlands Brain Bank. Microglia showed
a transcriptional profile specific to the region, with higher
expression of type-I interferon genes in gray matter and higher
expression of NF-kappaB pathway genes in white matter in both
normals and patients with MS. In MS, white matter microglia
showed increased lipid metabolism gene expression, while gray
matter microglia showed increased expression of glycolysis and
iron homeostasis genes. In this study the “homeostatic gene”
P2RY12 was unaltered in normal-appearing MS tissue, implying
preservation of microglia homeostatic functions. Like most
studies of MS brains, this work was limited by the use of brains
from patients with long-standing MS, with an average disease
duration of 28.7 years, despite claiming that they were analyzing
“early pathological change.” They justified this claim by stating
that 37% of total lesions in these post-mortem brains were active
(77). However, the “activity” of lesions in late MS is controversial
and others have found much less inflammatory activity in brains
from that group of patients (78).

CNS-associated macrophages (CAMs) are a highly
heterogeneous group of cells, that are not present within
the parenchyma itself, but at the interface of the CNS with
the periphery, and are sometimes called border-associated
macrophages (BAM) (79). Thus, there are macrophages in the
perivascular space (pvMΦ) (80), leptomeninges (mMΦ), and
choroid plexus (cpMΦ) (81). Most of the neuroinflammation
in MS occurs within the parenchyma as demonstrated by the
relatively mild inflammatory profile in the subarachnoid space,
i.e., CSF, even in highly active disease. However, it is likely that
this group of macrophages has a role in MS, but that role has yet
to be defined.

Finally, macrophages infiltrate from the blood in patients
with MS, and are sometimes referred to as “monocyte-derived
macrophages.” Macrophages have long been known to be
important in MS pathology (82, 83), but methodologies to clearly
differentiate blood-derived macrophages from intrinsic CNS
origin cells in MS are controversial. However, monocyte-derived
macrophages have clearly different origins, gene expression,
and function compared to the other CNS cells of the
monocyte/macrophage/microglia lineage (84). Teasing out the
relative contributions of the many subsets within the lineage, e.g.,
CD16+ positive “non-classical” macrophages (85), will continue
to be a major challenge.

Neutrophils, also called polymorphonuclear leukocytes, have
also been implicated in the pathogenesis of MS (86, 87). These
cells have historically been overlooked in MS research because of
the difficulty with working with them in the laboratory and they
are being infrequently observed in post-mortem brain tissue. In
addition, the neutrophil phenotype can be plastic. However, in
some forms of EAE, the involvement of neutrophils is prominent
(88, 89), and their depletion inhibits the disease (90). Neutrophils
can be detected in the CSF early in the disease and early in
relapses (91), so they may be more important in the initiation
than the maintenance of inflammation.

Natural killer cells, which are CD3- and CD56+ represent
a class of innate cells and are a large proportion of circulating
lymphocytes in humans. One of their functions is thought to be
in the killing of cells that lackMHC class I. Given their abundance
in humans, it is not surprising that there is a large literature on
the role of NK cells in MS, but the literature is large, complex,
and frequently contradictory and beyond the scope of this article
in reviewing; a recent review of these innate cells and other innate
lymphocytes in MS, such as gamma-delta T cells, NKT cells,
and innate-like B cells (such as B1 and marginal zone B cells) is
helpful (92).

B Cells and CD8+ T Cells
The most dramatic example of a change from the “antigen-
reactive adaptive immunity, particularly CD4+ T cells” dogma
for MS pathogenesis was the demonstration that B cells are
critical in MS. The MS world was rocked in 2008 by the
demonstration of the dramatic efficacy of rituximab, an anti-
CD20monoclonal antibody, in decreasing neuroinflammation in
RRMS. The research path by which B cells were demonstrated
to be highly effective has been summarized by Steve Hauser
in a fascinating recent Charcot Lecture (93). The precise
mechanism by which B cell depletion results in decreased
CNS neuroinflammation in MS is under active investigation,
but remains at this point unclear. There are several plausible
hypotheses for why B cells might have a major role in
neuroinflammation and CNS damage in MS:

1. antibody secretion- the only cells which make antibodies
are B cells, specifically highly differentiated plasma cells, and the
presence of plasma cells (82) and antibody production within
the CNS (94) in MS is well-established. However, how this local
immunoglobulin can contribute to the disease process remains
unclear and is reviewed below in the “immunoglobulin” section.

2. Antigen presentation- B cells have been demonstrated to
be excellent at antigen presentation and, in line with the “
antigen-reactive adaptive immunity, particularly CD4+ T cells“
dogma, B cells can be hypothesized to be the most prominent
antigen presenters to pathogenic T cells, and without that antigen
presentation, activation of the pathogenic T cells will not take
place (95). Recent work suggests the possibility that self-antigens
consisting of HLA-derived self-peptides occur on B cells in MS
and can potentially stimulate autoreactive CD4+ T cells (96).
These findings, i.e., the importance of HLA-derived self-peptides,
require confirmation, and the precise mechanisms involved in
the inflammatory process in MS remain conjectural.
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3. Production of proinflammatory cytokines and chemokines
that propagate inflammation- In an interesting series of
experiments, Bar-Or et al. (97) used a dual activation system
for B cells by cross-linking the BCR and stimulation through
CD40 in the presence of a 3rd signal IFNgamma or the TLR9
ligand CpG DNA. B cells of patients with MS exhibited abnormal
lymphotoxin and TNFalpha secretion. B-cell depletion, both
ex vivo and in vivo, using rituximab, resulted in significantly
diminished proinflammatory T cell responses, and soluble
products from activated B cells of untreated patients with MS
reconstituted these diminished T-cell responses. The authors
postulated that these results might explain the diminished
neuroinflammatory activity in MS as a result of B cell depletion
therapy. MS B cells, especially IgD-CD27- cells, produced more
TNFalpha and LTalpha than similar B cells from healthy controls
(98). However, this area of research has not matured to the point
that any B cell cytokine has been targeted for possible treatment
(including CXCL13; refer to “cytokine” section below).

4. Production of soluble toxic factors contributing to
oligodendrocyte and neuronal injury- Recent research has
identified B cell produced non-immunoglobulin “factors” or
exosomes (99) as being toxic to both oligodendrocytes (100)
and neurons (101). This work is very provocative but needs to
be confirmed.

5. Contribution to the formation of ectopic lymphoid follicles
(ELFs) in the CNS. In secondary lymphoid organs, such as the
lymph nodes and spleen, highly organized areas called germinal
centers (102) are the main sites where antigen-activated B-cell
clones expand and undergo somatic hypermutation. A subset of
T cells, follicular helper T cells (Tfh), are critical for this process,
both within germinal centers and ELFs, and their malfunction
has been proposed as a potential mechanism for autoimmunity
(103). A burgeoning area of research within MS is the study of
CNS ELFs, which are aggregates of lymphoid cells within non-
lymphoid tissues with varying degrees of similarity to germinal
centers within secondary lymphoid organs. ELFs can be found
in the CNS in MS (104, 105) and its animal models (47, 106).
Some investigators (107), but not others (108), have found that
meningeal ELFs are associated with cortical demyelination.

Targeting ELFs may be helpful therapeutically in MS. In a
recent study, focal MS-like lesions were induced by injecting
heat-killed Mycobacterium tuberculosis into the brains of mice
immunized with the encephalitogenic myelin-oligodendrocyte
glycoprotein (MOG). Groups of mice that were treated with anti-
CD20 antibodies had better outcomes including dissolution of
meningeal lymphoid aggregates resembling ELFs (109). Thus,
interfering with the formation of ELFs may be one of the
mechanisms by which anti-CD20monoclonal antibodies work in
decreasing neuroinflammation in MS.

6. Providing a reservoir for EBV- B cells serve as a reservoir
for EBV, and a controversial hypothesis posits that EBV, the most
consistent environmental risk factor for MS, latently infects MS
subjects’ B cells and contributes to MS pathogenesis (110, 111).
This hypothesis has been supported by the finding of EBV
transcripts by some (112, 113). In contrast, others have not been
able to detect EBV in MS CNS (55, 114), and a recent study
which probed carefully for EBV in B cells from patients with MS

also could not detect any, including in clonally expanded and
somatically hypermutated plasmablasts/plasma cells (115).

A type of B cell that has attracted a great deal of interest
in MS is the antibody-secreting cell (ASC) since antibody
production within the CNS is a prominent feature of MS (see
“Immunoglobulin” section below). In humans ASCs consist of
highly differentiated B cells, called plasmablasts or plasma cells,
depending on how highly differentiated they are. Plasmablasts
retain some markers of less differentiated B cells, i.e., CD19,
CD20, B-cell receptor for antigen, and have low or absent
CD138, while plasma cells are usually CD19neg, CD20neg,
BCRneg, CD138 pos. Some investigators feel it is frequently
hard to truly differentiate these two types of ASCs, and feel they
exist on a continuous spectrum of differentiation (116), and a
recent manuscript termed CD19+IgD-CD27hi cells in MS as
“plasmablasts/plasma cells” (115). These cells are responsible for
the hallmark diagnostic findings in CSF analysis in patients with
MS of elevated IgG index and CSF-specific oligoclonal bands.

Although CD4+T cells are indeed found in MS lesions, the
predominant type of T cell in all types of brain lesions is CD8+ T
cells (37). This predominance is true for all types ofMS lesions, be
they active, chronic active, and inactive white lesions or normal-
appearing white matter; the predominance also holds for studies
in patients with various disease durations, tempos of evolution,
and therapies. The degree of predominance is large; the CD8:CD4
ratio in the CNS parenchyma of patients with MS averages about
4:1, and its inverse to the CD8:CD4 ratio in the peripheral blood
(1:2) and CSF (1:4) of patients with MS and healthy controls
(117). Although encephalitogenic T cells in EAE are usually felt
to be CD4+, CD8+ T cells can also induce EAE (118, 119). The
possible regulatory or encephalitogenic roles of CD8+ T cells
have recently been extensively reviewed (120), but this area of
research has generally been neglected, and more work needs to
be done.

CNS-Resident Cells
Central nervous system (CNS)-resident cells not
normally classified as “immune cells,” also participate in
neuroinflammation in MS. Astrocytes, which make up a large
percentage of CNS cells, have especially been implicated.
However, it is difficult to study this class of cells in the
laboratory, and it is known that human astrocytes are very
different from rodent astrocytes in that they are over 20-times
larger by volume and contact up to 10-times the number of
synapses as rodent astrocytes (121), making it tenuous to
extrapolate from results from rodent research to humans in
this field. Non-immunological functions of astrocytes include
contributing to the formation and maintenance of neural
circuits by affecting synapse formation, playing a role in energy
metabolism, neurotransmitter recycling, among others (122).
In MS, their importance has been studied in depth by a group
at Montreal Neurological Institute, led by Jack Antel, who
have recently summarized this research in a review article
(123). Of particular interest is the work of this group, as
well as others on the Canadian B Cell Team in MS, on the
interaction between astrocytes and B cells, demonstrating that
factors from human astrocytes robustly supported human B cell
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survival, induced B cell upregulation of antigen presentation,
and promoted activation of T cells by treated B cells (124).
Also of interest is work by Brosnan and Raine (125) who
examined astrocytic end-feet carefully in MS lesions, based
on the findings on astrocytic end-feet injury in neuromyelitis
optica (NMO). They found damage to perivascular astrocyte
end-feet early in the disease, as well as hypertrophic astrocytes
in adjacent parenchyma. They concluded that their results
as well as the literature supported multiple roles for the
astrocyte in MS. The ability of astrocytes to have a role in
glial scarring may also be important. The role of astrocytes in
MS will likely be an area of increasing research in MS, which
will be assisted by continued research on astrocytic injury in
NMO (126).

FICTION #5. THE CRITICAL MOLECULES
IN MS ARE THOSE INVOLVED IN T CELL
FUNCTION

FACT #5. A Wide Variety of Molecules Are
Important in MS and Most of Them Are Not
Involved in T Cell Function
A complete review of molecular mechanisms involved in MS is
beyond the scope of this manuscript. The molecules reviewed
below have been chosen because of their importance to the
practicing neurologist, and for the most part, are molecules
detectable in the CSF. Other molecules could also have been
selected, although the list below represents molecules that at
this point in time seem more important and have attracted
significant literature.

Immunoglobulin
Intrathecal immunoglobulin production is a hallmark of MS
(127), and its measurement has been helpful in the diagnosis of
MS for decades (21, 128). The biology of this phenomenon is
not fully understood. IgG is produced by highly differentiated B
cells, ASCs, which are likely recruited into the CNS by intrathecal
production of the B-cell active chemokine CXCL13 (48), possibly
initially as memory B cells (129); intrathecal production of
CXCL13 is described below. The location of immunoglobulin
production within the CNS may be in specialized inflammatory
areas called ectopic lymphoid follicles (ELFs) (105), first
described in 1979 by Prineas (130). These follicles are usually
found in the meninges and are associated with more severe
disease and cortical pathology (107, 131).

The most prominent and well-studied immunoglobulin
isotype in MS is IgG, although other isotypes such as IgM
(132, 133) and IgA (134) have also been implicated. Humans
have multiple subclasses of IgG (IgG1, IgG2, IgG3, and IgG4),
which differ in the constant region, particularly in their hinge and
upper CH2 domains; however, no specific subclass specifically
has been correlated with MS (135). Two types of measurement
of elevated intrathecal production of IgG are commonly used in
the diagnosis of MS: OCBs of IgG, and the IgG index. OCBs refer
to the presence of IgG within bands when run on gels, usually
either acrylamide isoelectric focusing or agarose gels. The precise

molecular significance of this phenomenon is not known, but it is
assumed to derive from similar isoelectric points of IgG produced
by a limited number of ASCs in the CNS, in contrast to the
large number of ASCs contributing to the IgG present in serum.
The IgG index is in contrast a purely quantitative determination,
being the ratio of CSF IgG concentration to CSF albumin
concentration divided by the ratio of serum IgG concentration
to serum albumin concentration. As the methodologies for OCB
determination have been improved over time, it has become
the intrathecal IgG production assay of choice, with excellent
sensitivity in the diagnosis of MS. In a study of 1,505 Swedish
patients with MS, Imrell et al. found positive OCBs in 1,422
(94.5%), a percentage in line with most other studies (5). The
positivity rate is so high in MS that “patients who are OCB
negative should have their diagnosis closely considered” (94).

The antigenic specificity of intrathecally produced IgG in MS
is controversial and has not been conclusively determined. In
other neuroinflammatory conditions in which CSF OCBs are
determined, the CSF IgG is directed to a large part against
the inciting antigen, most conclusively demonstrated in CNS
infections, such as the measles virus in subacute sclerosing
panencephalitis (136). In MS, a disease in which many have felt
that the autoimmune response is directed against CNS myelin,
some have found that CSF OCBs appear not to be directed
against myelin antigens (137), while others have found that
the target of the CNS immune response in some patients with
MS is the myelin antigen, myelin oligodendrocyte glycoprotein
(138). However, there is no consensus, and studies of the
antigenic target(s) have continued (139, 140); a recent study by
Prineas and Parratt found no support for the hypothesis that
damage to myelin is caused by pathogenic serum anti-myelin
or anti-oligodendrocyte autoantibodies (141). In contrast, in a
provocative study from the University of Colorado, Blauth et al.
(142) examined the binding to CNS tissue of IgG1 monoclonal
recombinant antibodies (rAbs) derived from the CSF expanded
B cell clones to CNS tissue of patients with MS. Those rAbs
that displayed binding to mouse and human CNS tissue bound
to antigens preferentially expressed on astrocytes and neurons.
Some of the rAbs caused significant myelin loss and astrocyte
activation when applied to spinal cord explant cultures in the
presence of complement. Their conclusion was that their data
implicated intrathecal IgG in MS pathogenesis.

Complement
Complement is a class of proteins grouped within the
innate immune system. The complement system is sometimes
referred to as the complement cascade since activation of
the initial components frequently leads to a series of events,
with multiple downstream effects. The system is best known
for “complementing” antibody-mediated killing and lysis of
microbes and damaged cells and for initiating inflammation.

The involvement of complement in MS is controversial.
In a pioneering study Lucchinetti et al. (10) classified MS
pathology into 4 distinct patterns, the most common of
which is type II with immunopathological evidence of the
deposition of immunoglobulin and activated complement in
actively demyelinating lesions. This mode of classification is
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not universally accepted (11), but the immunostaining of
immunoglobulin and complement components in MS lesions is
indisputable. Identification of complement involvement on brain
biopsies might have therapeutic significance: plasma exchange,
which results in decreased complement levels (143), benefitted
patients with brain biopsies consistent with type 2 but not type
3 appearance (144, 145). The possible role of complement and
complement receptors inMS has been recently reviewed in depth
(146, 147).

Chemokines/Cytokines
The best-documented molecule in MS in this group is CXCL13,
a chemokine critical for B cell trafficking and initially called
B-lymphocyte chemoattractant (BLC) (148). Involvement of
CXCL13 in disease is not unique to MS; it is also highly
expressed in Lyme borreliosis (149–151). In MS CXCL13 was
first studied in the context of the formation of ELFs in MS
(104, 152); CSF CXCL13 was subsequently identified as a
potential biomarker in MS (153, 154), or MS treatment (155).
A recent study found that intrathecal production of CXCL13, as
measured by the CXCL13 index, at the time of the initial clinical
demyelinating event in MS, was especially helpful in predicting
future neuroinflammatory activity as defined by attacks or new
or enhancing MRI lesion (49).

The precise mechanism(s) by which intrathecal production
of CXCL13 promotes neuroinflammation is not known. Since
CXCL13 is the ligand for the receptor CXCR5, and CXCR5 is
primarily expressed by B cells, and since B cell depletion is a
powerful therapy to decrease inflammatory events in MS, it is
possible that the intrathecal production of CXCL13 functions to
increase CNS inflammatory activity solely by recruiting B cells
to the CNS. However, CXCR5 is also expressed on follicular
helper T cells (Tfh) (156), and recruitment of these cells into the
CNS may also contribute. The therapeutic effect of fingolimod,
a sphingosine-1-phosphate receptor blocker, in MS, has been
attributed to decreasing circulating Tfh cells (157).

Chitinase
The chitinases are 18 glycosyl hydrolases. Their name derives
from their ability to cleave chitin, a natural polysaccharide found
in the coating of a variety of pathogens as well as the exoskeleton
of insects. 18 glycosyl hydrolases are expressed across a wide
range of organisms and are evolutionarily conserved even in
mammals that lack chitin. Thus, the role that chitinases play in
humans under normal circumstances is unclear (158).

The most well-studied chitinase in MS is chitinase 3-like
1(CHI3l1), also called YKL-40, which is classified as a chi-lectin
because it binds chitin but does not have chitinolytic activity.
Although not normally expressed at high levels in the CNS,
inflammation results in upregulation of expression, especially
in reactive astrocytes and infiltrating macrophages. The role of
chitinases in MS may not be primarily in inflammation but
injury repair. In an interesting series of experiments, Starosssom
et al. found that murine chitinases, including CHI3L1, induce
oligodendrogenesis, possibly through activation of the epidermal
growth factor receptor, and that silencing of the chitinase CHI3L3
worsens the severity of EAE (159). In support of the role

of chitinases in injury repair, CSF CHI3L1 levels correlated
significantly with concentrations of the CSF axonal damage
biomarker, neurofilament light chains (160). CSF CHI3L1 levels
have also been found associated with conversion from a first
demyelinating event to MS (161, 162).

Neurofilaments
Neurofilaments are a class of molecules that form the neuronal
cytoskeleton, and provide physical stability to axons. They are
protein polymers, and normally do not occur at substantial
concentrations in the CSF. However, in disease states associated
with CNS injury, neurofilaments are released into the CSF
and can eventually appear in the serum at low concentrations.
Although it has been known for some time that CNS damage
is associated with increases in the levels of CSF neurofilaments
(163), interest in neurofilaments has escalated recently because
of fourth-generation assay methodology, i.e., single-molecule
array (SIMOA), that has allowed detection of neurofilaments,
primarily neurofilament light (NfL) in the blood (164). Serum
Nfl as a biomarker in progressive MS has been recently reviewed
(165). In a recently published study of 127 patients with MS,
serum Nfl was cross-sectionally associated with walking speed,
manual dexterity, and cognitive processing speed, and baseline
NfL levels predicted 5-year disability scores. However, r values
for these associations were relatively low, and thus the utility
for this measurement in individual patients may not be high. In
addition, there is a poor inter-laboratory level of agreement. The
use of NfL measurement in patients with MS care is an area of
active investigation.

Other Emerging Molecules and Potential
Biomarkers
sCD27: It is a protein of about 30 kD and is the soluble, truncated
version of the surface molecule CD27. CD27 belongs to the
TNF receptor superfamily, is a marker for memory B cells in
humans, is found on both B and T cells, and participates in B-cell
differentiation and immunoglobulin synthesis. sCD27 is released
by activated T and B cells, and its elevated levels in the CSF inMS
are consistent with CNS inflammation (166, 167).

Triggering receptor expressed on myeloid cells 2 (TREM2):
Triggering receptor expressed on myeloid cells 2 (TREM2) is
a cell-surface receptor of the immunoglobulin superfamily that
is found in a variety of cell types, but primarily cells of the
macrophage/monocyte lineage, including microglia and other
tissue macrophages. It is released by these cells in response to
activation. This molecule appears to be important in the process
of myelin debris clearance; TREM2 knockouts have impaired
remyelination after cuprizone treatment (168). CSF TREM2, but
not blood TREM2, is elevated in both RRMS and PPMS, but also
other inflammatory neurological disease (169), and is correlated
with levels of neurofilament and sCD27 (170).

Soluble B cell maturation antigen (sBCMA): BCMA, a
member of the TNF-receptor superfamily is preferentially
expressed in mature B lymphocytes, and may be important for B
cell development. It is considered a survival factor for plasma cells
and is increased in the CSF of patients with MS, correlated with
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intracerebral immunoglobulin production (171). CSF sBCMA
levels are higher in untreated than treated patients withMS (172).

FICTION #6. NEUROLOGISTS DO NOT
NEED INFORMATION FROM CSF
ANALYSIS ANYMORE SINCE MRIS AND
SERUM BIOMARKERS ARE NOW
AVAILABLE; BESIDES, LUMBAR
PUNCTURES ARE HIGHLY INVASIVE,
ASSOCIATED WITH A HIGH RISK OF
HEADACHES, OLD-SCHOOL AND
UNNECESSARY

FACT #6. CSF Analysis Is a Crucial
Component in the Diagnostic Workup in
MS, and Possible Adverse Effects Are Rare
and Easily Managed When Present
One consequence of the challenge to MS research noted above,
i.e., “minimal access to involved tissue,” is the need to find a
suitable alternative to the involved tissue. In diseases involving
structures outside of the CNS, such as the liver or GI tract, in
which there is an unimpeded interchange between the tissue and
the circulation, testing of the blood provides clinically useful
clues. However, in MS where the blood-brain and a blood-
CSF barrier is generally diffusely intact, i.e., CSF/blood albumin
quotient is normal in 90% of patients with MS (173), blood
is not a good indicator of pathologic events within the CNS.
Serum biomarkers, although promising for some molecules such
as neurofilament light, need more validation to be clinically
useful (174). In contrast, CSF analysis is considered invaluable
for the neurologist in evaluating neuro-inflammatory conditions
including MS (175).

The high value of the results from CSF analysis has recently
been acknowledged by the incorporation of the presence of CSF
OCBs in the most recent McDonald criteria for the diagnosis of
MS (6), where positive OCBs can fulfill criteria for dissemination
in time when dissemination in space in the CNS is present.
In addition, in an age when MS misdiagnosis is increasingly
common, “OCBs have been shown in several studies to have a
high negative predictive value, and thus their absence should be
a red flag suggesting the possibility of an alternative diagnosis”
(7). CSF analysis for markers other than OCBs is also generally
helpful in assisting in the diagnosis of MS.

Neurologists are ordering more and more MRIs of the CNS
in the diagnosis and management of MS, and with increasing
constraints on clinicians’ time, some are relying almost solely on
MRIs. However, the presence of white matter lesions has poor
specificity for the diagnosis of MS, especially in older patients
or those with comorbidities (176). With regard to the issue of
invasiveness of LPs or their adverse effects, complications of
the procedure are rare, and post-LP headaches can be almost
completely prevented by the use of atraumatic needles (177, 178).
Thus, the history, exam, and both CSF and MRI results should
ideally be used in the workup for possible MS.

FICTION #7. RELAPSE RATE, THE
ENDPOINT USED BY THE FDA IN THE
PAST TO APPROVE DRUGS FOR MS,
CONTINUES TO BE APPROPRIATE FOR
DEVELOPING MORE TREATMENTS
FOR MS

FACT #7. Relapse Rate Has Little to No
Correlation With What Patients With MS
Want and What Their Treatments Ideally
Should Do: i.e., Decrease Disability Accrual
Over Time. The Best Endpoint for Future
MS Medications Would Be a
Disability Endpoint
MS treatments have come a long way since ACTH/corticosteroids
were described as being effective 70 years ago (179). No other
treatments became available until 1993 when interferon beta-1b
was shown to be effective in decreasing relapses in patients with
frequent relapses (180). Since that time, 22 more drugs have been
approved for MS when pivotal trials have demonstrated that they
were able to decrease the frequency of relapses.

Relapse frequency in a 2-year trial was certainly a reasonable
primary outcome measure in the 1980’s when interferon beta-
1b was being tested. At that time, it was thought that the
primary driver for disability accrual was relapses. However, that
hypothesis has been continually questioned through the years.
Confavreux et al. (181) studied 1,844 patients with multiple
sclerosis who were followed for a mean of 11 years and concluded
that “relapses do not significantly influence the progression
of irreversible disability.” These powerful data did not affect
the FDA’s continued acceptance of relapse reduction as an
acceptable primary outcome measure in clinical trials over the
subsequent 20 years. More recent data continues to confirm
Confavreux’s conclusions. Kappos et al. (182) found that “in
a typical population with relapsing MS, 80–90% of overall
disability accumulation occurred independently of relapses.
Together with findings previously obtained in (other studies)
our study strongly supports that MS may be a single disease
continuum with an underlying progressive disease course and a
highly variable superimposed accumulation of disability resulting
from relapses with incomplete recovery,” or as concluded in
a recent editorial, “a primary progressive disease in all cases,
but some patients have superimposed relapses (183).” The term
Progression Independent of Relapse Activity (PIRA) or “silent
progression” has been used to define this type of disability accrual
(182, 184), while disability attributed to relapses has been termed
“relapse-associated worsening” (RAW).

Although patients and their providers certainly dislike
relapses, their primary concern is decreasing not relapses but
accrual of disability. Newly diagnosed patients ask me: “Doc, how
long will it be before I am in a wheelchair?” or similar questions
related to disability accrual, not “Doc, howmuch can we decrease
relapses?” Given patient preferences and the primary progressive
nature of the disease from the outset, why is disability accrual
NOT the primary endpoint for new drugs in MS?
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One answer to this lies in the approach of companies
developing new drugs: pharmaceutical companies insist on
short studies, and prefer targets germane to biologies, such
as inflammation, that are broadly applicable to other possible
diseases. For instance, teriflunomide, one of the therapies for
MS, FDA-approved in 2012, is a metabolite of leflunomide (185),
a drug commonly used for rheumatoid arthritis for decades.
Another example is sphingosine-1-phosphate receptor (S1PR)
modulators, of which there are 4 currently FDA-approved in
MS (fingolimod, siponimod, ponesimod, and ozanimod); the first
drug developed, fingolimod, also called FTY720, was initially
meant as an immunosuppressive agent in the treatment of
organ transplantation (186). Choosing a target operative in MS
(inflammation/immunity) that is also operative in multiple other
diseases allows a wide range of opportunities while targeting the
mysterious process of CNS injury in MS does not.

Another answer to the question of why disability outcomes
are not the primary endpoint for new MS drugs is that
measuring disability accrual in MS is extremely difficult, and
the optimal mechanisms have not been identified. Thus, a
company using disability accrual as a primary outcome would
need to go into uncharted waters, not a comfortable venture for
pharmaceutical companies. An example of these difficulties is a
recent attempt by Biogen to expand to secondary progressive
MS the indication of their anti-alpha 4 integrin monoclonal
antibody, natalizumab, in the ASCEND study (187), previously
only approved for relapsing-remitting MS. ASCEND tested the
hypothesis that natalizumab could downregulate the intrathecal
inflammatory response in secondary progressive MS (188)
and utilized a unique multicomponent primary endpoint for
sustained disability progression, the EDSS-plus, comprising the
EDSS (189), the 25 foot timed talk, and the 9 hole peg test (190).
The EDSS-plus had never previously been used as a primary
endpoint in a pharmaceutical trial, and, given the failure for
natalizumab to meet the primary endpoint, may never be used
again. Thus, the optimal measure to use in trials with disability
accrual as a primary endpoint remains unclear, in stark contrast
to the 3 decades-plus use of relapses as the primary endpoint.

A third answer to the question of why disability outcomes
are not being used as the primary endpoint for new MS
drugs is that ameliorating progressive neurological disability
has proven to be futile in other neurological diseases. The
most aggressively pursued disease in this respect, with the
most failed trials, has been Alzheimer’s disease (191), and no
treatment had been approved from 2003 until 2021. In 2021 drug,
aducanumab for Alzheimer’s was FDA-approved via the use of
the FDA Accelerated Approval Program in which a surrogate
endpoint, such as an effect on a biomarker, can substitute for
clinical benefit in pivotal trials. In the case of Aducanumab,
the surrogate endpoint was decreased beta-amyloid, and the
approval came despite lack of significant effect on clinical
symptoms. However, this approval was fraught with problems on
many levels (192), one of which was whether decreasing beta-
amyloid was a reasonable surrogate for clinical effect. Whether
this type of approach, i.e., identifying a surrogate endpoint, can
be successful for disability accrual in MS, seems unlikely at this
point in time.

FICTION #8. LONG-TERM OUTCOMES
HAVE BEEN UNIFORMLY IMPROVED IN
PATIENTS WITH MS BY THE INSTITUTION
OF IMMUNOSUPPRESSIVE DRUGS (ISDS)

FACT #8. ISDs May Only Improve
Long-Term Outcomes in a Small Subset of
Patients Diagnosed With MS Using
Current Criteria
MS is a highly heterogeneous disease with respect to long-term
outcomes. Some patients with severe MS can progress to bed-
bound existence or death within a few years of diagnosis (193)
while classical MS plaques can be found in individuals who
underwent autopsy after a long symptom-free life, a type of
asymptomatic MS (194, 195). Many biologic factors affect long-
term outcomes, such as comorbidities and variable potential for
CNS plasticity, neuronal repair, and remyelination.

Further complicating the picture are major changes in the past
two decades in what is being diagnosed as MS. The spectrum of
clinical features in MS as diagnosed in 2021 is VERY different
than in 2001. Until 2001, clinicians used the Schumacher or
more commonly Poser criteria (3) for the diagnosis which
utilized almost exclusively clinical features, primarily attacks.
These criteria identified a population with severe MS with 50%
of patients requiring aid to ambulate or worse, i.e., EDSS of 6 or
greater (189), by 24 years after the onset of MS (196). In 2001,
the first iteration of the McDonald criteria was published (197),
which for the first time, incorporated MRI criteria, and there
were subsequent revisions of the criteria in 2005, 2010, and 2017.
Each iteration of the McDonald criteria has resulted in milder
and milder presentations being diagnosed as “MS.” Thus, using
the 2010 McDonald criteria, Chung et al. (198) found that 42%
of patients with MS followed for 30 years had no significant
disability (EDSS <3); an equivalent calculation for the Poser
criteria was only 14% (196). When such an analysis is performed
using the even less rigorous 2017 McDonald criteria, the number
of “MS-2017” patients without significant disability 30 years after
the diagnosis of MS will likely be >50%.

These changing diagnostic criteria make it essentially
impossible to use historical controls (199), especially in the
analysis of amelioration of disability accrual. Since placebo
controls are now considered unethical in MS, clinical research of
future therapies with disability measures as the primary outcome
will likely require much more difficulty, compounded by the
other problems outlined above in Fiction/Fact #7.

Since the diagnosis of MS is currently being given to a
large percentage of people who will not develop a significant
disability over the long term, the benefit/cost ratio for
ISDs must be carefully evaluated in each patient diagnosed
with MS. Of particular relevance to this calculation is a
landmark study by Scalfari et al. (200). They found that
relapse frequency beyond Year 2 did not predict disability
outcomes. They felt that “more frequent attacks during the
first 2 years are likely to be concomitant with, rather than
causative of, faster disease progression (201),” i.e., that those
frequent attacks during the first 2 years did not cause the
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worse prognosis but rather identified a subset of particularly
aggressive MS. Given their data from the study of 28,000
patient-years, the appropriate conclusion would be that, since
ISDs predominantly decrease the likelihood of attacks, they
may not affect long-term outcomes in almost any patient
with MS, and especially not if given more than 2 years
after the onset of the disease. Supportive data for the above
conclusion comes from a study of the use of interferon beta in
2,656 Vancouver (202). Despite the clear benefit of interferon
beta for decreasing relapses, the authors concluded that
“among patients with relapsing-remitting MS, administration of
interferon beta was not associated with a reduction in progression
of disability.”

Given this questionable benefit for long-term outcomes, the
cost must be assessed carefully. ISDs significantly increase risks
of infection (203), cancer (204, 205), and poor response to
vaccines (206). These adverse effects are especially worrisome
now during the COVID pandemic (207). In addition, the
financial burdens to both patients for out-of-pocket expenses and
the health care systems are both onerous and worsening over
time (208).

Ideally, a population that would be likely to derive maximal
benefit from ISDs could be identified by a biomarker or
combination of biomarkers, and this predictive approach could
be utilized as soon as possible, i.e., at the time of the initial clinical
demyelinating event (ICDE). A highly promising biomarker for
prediction of future inflammatory activity (attacks or new lesions
on MRI) at the time of the ICDE is intrathecal production of
the chemokine CXCL13, as shown recently in a study of 41
patients with ICDE and 26 patients with other forms of MS (49).
CXCL13 binds to the chemokine receptor CXCR5 on B cells
and follicular helper T cells and serves to chemoattract these
cells from the circulation into the CNS. Intrathecal production
of the protein is measured by calculating the CXCL13 index
[(CSF concentrationCXCL13/Serum concentrationCXCL13)/(CSF
concentrationalbumin/serum concentrationalbumin)]; neurologists
are comfortable with this type of index which is also used for
calculation of the IgG index, commonly used in the analysis
of CSF in MS. Incorporating serum levels is important since
CXC13 is a small molecule that can enter the CNS easily and
serum concentrations of CXCL13 in patients with MS are highly
variable (209). The albumin ratio is a well-accepted measure
of blood-CSF and blood-brain barrier integrity (210), which
must be included because decreased integrity will result in
higher concentrations coming into the CSF from the serum.
We are currently formulating a clinical trial using the CXCL13
index to determine treatment where CXCL13-negative ICDE
patients would be treated with moderate efficacy ISDs, such as

interferons or glatiramer acetate, and CXCL13-positive ICDE
patients would be treated with high efficacy ISDs (211). Of
course, ideally using biomarkers for treatment to ameliorate
long-term outcomes would be assisted by knowing more about
the biology of MS, as noted in a recent review (212) in
which the following aspects remain mysterious: when does
MS start? does the spectrum of MS really span multiple
diseases? when does the progressive phase of the disease
begin? in which of the disease is there a therapeutic window
for immunotherapy?

Biomarkers other than the CXCL13 index have been utilized
to attempt to predict future MS activity in ICDE and other
forms of MS. One that has attracted the most excitement in
the last few years, both for predicting inflammatory activity and
correlating with axonal damage, has been serum neurofilament
light, partly because of the easier accessibility of serum relative
to CSF, discussed above, and reviewed recently (213). A detailed
review of potential biomarkers is beyond the scope of this paper,
but there have been several excellent reviews (214, 215).

CONCLUSION

This review has sought to clarify some of the controversies
surrounding the neuroimmunology of MS, and the relevance
of some of the basic aspects of the disease to diagnosis and
management. It is not surprising that it is very little about the
disease we know with supreme confidence since the immune
and nervous systems are the most complex in medicine. There
are few other diseases where “personalized medicine” (216) is
so important, given the heterogeneity of MS, but our ability to
achieve this goal optimally is hindered by our lack of adequate
understanding of the disease. However, as our research efforts
focus more and more on the disease in humans, and less
on relatively unfaithful animal models (15), I am confident
that we will reach the goal of understanding enough of the
neuroimmunology of the disease so that we can truly personalize
therapy to the needs of each patient.
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