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Background: Amygdalae play a central role in emotional processing by interconnecting

frontal cortex and other brain structures. Unilateral amygdala enlargement (AE) is

associated with mesial temporal lobe epilepsy (mTLE). In a relatively large sample of

patients with mTLE and AE, we aimed to evaluate functional integration of AE in emotion

processing and to determine possible associations between fMRI activation patterns in

amygdala and deficits in emotion recognition as assessed by neuropsychological testing.

Methods: Twenty-two patients with drug resistant unilateral mTLE due to ipsilateral

AE were prospectively recruited in a large epilepsy unit and compared with 17 healthy

control subjects in terms of amygdala volume, fMRI activation patterns and performance

in emotion recognition as assessed by comprehensive affect testing system (CATS)

and Ekman faces. All patients underwent structural and functional 1.5 Tesla MRI,

electro-clinical assessment and neuropsychological testing.

Results: We observed BOLD signal ipsilateral to AE (n = 7; group PAT1); contralateral

to AE (n = 6; group PAT2) and no activation (n = 9; group PAT3). In the region of interest

(ROI) analysis, beta estimates for fearful face > landscape contrast in the left amygdala

region did not differ significantly in patients with left TLE vs. patients with right TLE [T (16)

= −1.481; p = 0.158]. However, beta estimates for fearful face > landscape contrast in

the right amygdala region were significantly reduced in patients with right TLE vs. patients

with left TLE [T (16) =−2,922; p= 0.010]. Patients showed significantly lower total scores

in CATS and Ekman faces compared to healthy controls.

Conclusion: In our cohort, patients with unilateral mesial TLE and ipsilateral AE, an

amygdala could display either functional integration in emotion recognition or dysfunction

as demonstrated by fMRI. Perception and recognition of emotions were impaired more

in right-sided mTLE as compared to left-sided mTLE. Neuropsychological tests showed

deficits in emotion recognition in patients as compared to healthy controls.
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INTRODUCTION

The amygdala, a temporal lobe structure is not only of central
importance for emotional behavior, but also plays a key role in
epileptogenesis and epilepsy (1).

Amygdala enlargement (AE) on MRI without hippocampal

structural abnormalities has been associated with a subtype of

mesial temporal lobe epilepsy (TLE) (2, 3). On MRI, unilateral

sustained AE is characterized by increased size and high signal
in T2-weighted images including fluid attenuated inversion-
recovery (FLAIR). In so-called non-lesional mesial TLE,
amygdala MRI-volumetry may reveal amygdala enlargement
ipsilateral to mesial TLE in 12–16% of patients (4, 5).
AE may be associated with seizure clusters or even status
epilepticus originating from mesial temporal structures. The
changes observed on MRI usually vanish in the course
of weeks or months correlating with the seizure frequency
reduction, returning to either “normal” size or resulting
in amygdala atrophy (along with other mesial temporal
structures). The sustained AE is usually associated with
either autoimmune inflammation, amygdala dysplasia or low-
grade tumors (6, 7). However, histopathologically, AE may
be associated with unspecific presentation of clustering of
hypertrophic neurons and vacuolation with slight gliosis or
without gliosis (2).

TLE with AE is a distinct electro-clinical syndrome beginning
in middle age adults (8). In patients with AE, electro-clinical
presentation of epilepsy may differ from that in patients with
pure hippocampal sclerosis (HS). They may have increased
tonic components during seizure and generalized ictal EEG
onset more frequently than patients with HS (9). Similar to
other patients with mesial TLE, patients with AE, particularly
those with autoimmune encephalitis, may present with psychosis
supposedly due to disrupted circuits in limbic system (10).
Increased volume of amygdala was observed in patients with TLE
and psychopathology (11). Alterations in Theory of Mind (ToM)
abilities in patients with mesial TLE due to HS was associated
with disrupted connectivity between amygdala and temporal and
frontal brain areas (12). Further, various studies showed impaired
emotion processing in patients with TLE due to amygdala lesions
(13–17). In a systematic review conducted by Monti and Meletti
(18) deficits in fear recognition were observed most often in
patients with amygdala lesions, followed by deficits in sadness
and disgust recognition. Impaired fear conditioning has also
been demonstrated in an animal model of epilepsy with electrical
stimulation of amygdala (19).

Similar to other patients withmesial TLE, the patients with AE
may develop drug resistant epilepsy requiring epilepsy surgery,
rendering ∼80% of patients seizure free (20). Anterior temporal
lobe resections in such patients usually spare the hippocampus
(20). fMRI studies have shown that this type of surgery may
be complicated by post-surgical emotional disturbances (21).
In general, up to 50% of patients with no psychiatric history
may develop symptoms of anxiety and depression shortly
after anterior temporal lobe resection (22, 23). Despite this
fact, postsurgical emotional disturbances received less attention
compared to cognitive changes and the studies were mainly

focused on patients with TLE due to hippocampal sclerosis
and TLE.

An fMRI paradigm of dynamic fearful faces, which activates
amygdala bilaterally in healthy individuals and well-lateralizes
mesial TLE, was developed at the Swiss Epilepsy Center (24).
In a previous study, we have demonstrated in a small group of
patients with possible amygdala dysplasia and mesial TLE that
the function might be retained by enlarged amygdala raising
concerns about post-surgical deficits (25). In this study, we
present a larger sample of patients with unilateral mesial TLE due
to ipsilateral amygdala lesion with functional imaging, behavioral
and electro-clinical data aiming to evaluate the functional
integration of enlarged amygdala in emotion processing and to
determine possible associations between fMRI activation patterns
in amygdala and deficits in emotion recognition as assessed by
neuropsychological testing.

METHODS

Participants
Twenty-two patients (10 women; mean age 35 years, range 20–
57 years) with unilateral AE and ipsilateral mesial TLE were
prospectively recruited either at the large out-patient epilepsy
unit or in the EEG-video monitoring unit of the Department
of Neurology, Medical University of Innsbruck. The inclusion
criteria were unilateral non-progressive enlargement of amygdala
with ipsilateral drug resistant mesial TLE, normal hippocampi
as assessed qualitatively by expert neuro-radiologists as well as
by voxel based morphometry. Absence of any other MRI lesions
was obligatory.

All patients had drug resistant mesial TLE as determined
by electro-clinical presentations. The mean age at seizure onset
was 24 years (range 6–50 years); the mean epilepsy duration
for the time of the study was 11.9 years (range 1–34 years). All
patients underwent video-EEG monitoring with scalp electrodes
confirming the origin of seizures from the mesial temporal lobe
ipsilateral to AE.

In addition, 17 healthy control subjects with no history of any
neurological or psychiatric illness with a mean age of 30 years
(range 21–52 years), were matched in age, sex and education to
the patient group. The native language of all study participants
was German.

fMRI Task Design
The fMRI paradigm was first developed, validated and applied
to healthy subjects and patients with TLE by Schacher et al.
(26). Further information related to the selection procedure
of the stimuli can be found in Schacher et al. (26). Stimuli
were presented in a block design. The paradigm consisted of
eight activation and eight baseline blocks each lasting 24 s.
The activation condition consisted of 75 brief episodes from
thriller and horror films. All episodes showed the faces of actors
expressing fear with high intensity. None of the episodes showed
violence or aggression. During baseline blocks, 72 short episodes
of similar length with landscape video recordings were presented.
Video clips of dull domestic landscapes were used owing to their
stable low emotional content while their general visual stimulus
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properties were comparable with the movie clips. Stimuli were
presented via a back-projection screen, viewed through a tilted
overhead mirror. Prior to beginning, subjects were told that they
would see presentations of film sequences depicting fearful faces
intermixed with landscape film sequences. They were instructed
to relax while watching the film and to focus on the eyes of the
actors during the activation blocks.

MRI Acquisition
The MRI-data were obtained using a 1.5 T MR scanner
(Siemens Sonata, Erlangen, Germany). MRI sequences included
T1-weighted spin echo and gradient echo three-dimensional
multiplanar reconstruction images (MPRAGE) ± contrast
substance, axial and coronal T2-weighted turbo spin echo, FLAIR
and diffusion weighted sequences. Coronal T2 and FLAIR slices
were 2–3mm thick and were acquired at 90◦ perpendicular to
the long axis of hippocampus. There were successive parameters
for the anatomic sequence: 176 axial slices with 1-mm single-slice
thickness, repetition time (TR) 8.2ms, echo time (TE) 3.93ms, 8◦

flip angle, field of view (FOV) 250mm, and 288× 288 matrix.
Functional data were acquired using EPI T2∗-weighted

sequence. The following parameters were applied to measure
amygdala activation: 18 coronal slices, 4-mm slice thickness
(interslice gap: 0mm), TR 1,500ms, TE 35ms, 75◦ flip angle,
FOV 220mm, matrix size 64 × 64 (voxel size 2.75 × 2.75 ×

4mm), reconstructed into an imagematrix of 128× 128. Coronal
slices were geared orthogonally to the hippocampal formation
and were spread over the anterior temporal lobe.

Criteria for the Assessment of Amygdala
Structural Abnormalities
Amygdala lesion was determined qualitatively by visual
assessment by expert neuroradiologists and quantitatively by
voxel based volumetry. All patients had unilaterally enlarged
amygdala as seen on T1- and T2-weighted images without
uptake of contrast substance and had an increased signal in the
FLAIR sequence. All patients underwent at least two MRIs with
an interval of at least 6 months. The MRI changes were stable
in consecutive MRIs suggesting a non-progressive abnormality.
Hippocampal volumetry showed normal hippocampi in
all patients.

Single Subject Analysis of fMRI Data
Image analysis for revealing significant brain activation based
on changes in blood oxygen level dependant (BOLD) signal
was performed on each subject’s fMRI data by using statistical
parametric mapping (SPM12, Wellcome Department of
Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) under MATLAB R2013a (MathWorks
Inc., Natick, MA, USA). The functional data sets of each patient
were motion corrected after discarding the first three volumes to
allow signal stabilization. Eventually 269 volumes per series were
utilized for data analysis. Anatomical high-resolution images
were co-registered to a mean functional image of each subject.
Images were normalized spatially and smoothed using an 8mm
FWHM Gaussian kernel. A statistical analysis on the basis of the
general linear model (GLM) was conducted as implemented in

SPM12. The delta-function of the block onsets was convolved
with the canonical form of the hemodynamic response function
for a duration corresponding to the block length, to generate
the model time courses for the two conditions of the paradigm.
A high-pass filter (1/288Hz) was used to remove low frequency
drifts. SPM maps of the contrast of voxels with increased
intensity during “active” blocks (fearful faces) in relation to the
contrast block (landscapes) in the whole brain were computed.
Clusters of activation were reported as significant, when they
surpassed an initial threshold of p < 0.001 (uncorrected) and
had a FEW (family-wise error) corrected p-value of p < 0.05 on
cluster level.

Group Analysis of fMRI Data
For preprocessing and statistical analysis within group
comparison, SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/
12/), running in a MATLAB R2013a environment (Mathworks
Inc., Natick MA, USA), and additional functions from AFNI
(Analysis of Functional Neuro-Images, https://afni.nimh.nih.
gov/) were used. Functional images were realigned, de-spiked
(with the AFNI 3D despike function) unwarped and corrected for
geometric distortions using the fieldmap of each participant and
slice time corrected. The high resolution structural T1-weighted
image of each participant was processed and normalized with
the CAT12 toolbox (Computational Anatomy Toolbox 12,
http://dbm.neuro.uni-jena.de/cat) using default settings. Each
structural image was segmented into gray matter (GM), white
matter (WM) and cerebro-spinal fluid (CSF) and denoised. Then
each image was warped into Montreal Neurological Institute
(MNI) space by registering it to the DARTEL template provided
by the CAT12 toolbox via the high-dimensional DARTEL
(diffeomorphic anatomical registration through exponentiated
Lie algebra) (27) registration algorithm. Based on these steps, a
skull stripped version of each image in native space was created.

To normalize functional images into MNI space, the
functional images were co-registered to the skull stripped
structural image and the parameters from the DARTEL
registration (27) were used to warp the functional images, which
were re-sampled to 3 × 3 × 3mm voxels and smoothed with a
6mm FWHMGaussian kernel.

Statistical analysis was performed with a GLM two staged
mixed effects model. In the subject-specific first level model,
each condition was modeled by convolving stick functions at its
onsets with SPM12’s canonical hemodynamic response function
(target trials and start and endmessages weremodeled as separate
events of no interest, the model also included the six motion
parameters and six noise regressors, reflecting physiological noise
components obtained from FIACH (Functional Image Artifact
Correction Heuristic) (28) as regressors of no interest. Parameter
estimates for each condition were calculated via these first level
GLM, using a temporal high-pass filter (cutoff 128 s) to remove
low-frequency drifts and modeling temporal autocorrelation
across scans with a first-order autoregressive process (AR) (29).

For voxel-based group analyses, contrast images (fearful faces
> landscapes) for effects of interest were calculated at the first
level and used for second level analyses using one-way ANOVAS
with patients groups and healthy controls. A threshold of p =
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0.005 (uncorrected) with a cluster-level FDR threshold of p =

0.05 were used.

Region of Interest (ROI) Analyses
In a first step, the Regions of interest (ROIs) were defined
by manual segmentation of the amygdalae by 3D-Slicer
(htpps://www.slicer.org/, Pieper, Lorensen, Schroeder and
Kikinis) (30) for patients and healthy controls. In a second step,
we extracted the beta estimates of these individual ROIs for
the first-level contrast (fearful faces > landscapes) which were
further used for group analyses. Peak coordinates and voxel
extent are reported in the Supplementary Table 1. Subsequent
analyses were done using IBM SPSS Statistics 20 R©.

Amygdala Volumetry
T1-weighted volume datasets were normalized to Montreal
Neurological Institute template space using DARTEL (27) and
segmented into different brain compartments—GM, WM, and
CSF using the unified segmentation algorithm of SPM12 with
default parameters. Volumetric measures of brain structures
were calculated by voxel-by-voxel multiplication and subsequent
integration of normalized and modulated component images
(GM, WM, or CSF) with predefined masks in the same space.
Masks for amygdala were derived from the Harvard-Oxford atlas
of subcortical structures distributed with the Oxford Center for
Functional MRI of the Brain Software Library (FSL) package.
Amygdala volumes were controlled for age, sex, and total cerebral
volume (31–34). GM, WM, and CSF volumes and intracranial
volume (ICV) were determined by the “tissue volumes” utility of
SPM12 (35).

Neuropsychological Tests
Thirty-tree participants (18 patients and 15 healthy controls)
underwent neuropsychological testing including the multiple-
choice vocabulary test (MWT-B) which served as estimate of
crystalline verbal intelligence (36). Further, the test battery
comprised tests for emotion recognition and a self-report
questionnaire for depression and anxiety symptoms (see below).

Emotion Recognition

Comprehensive Affect Testing System (CATS)
The Comprehensive affect testing system (CATS) (37) is a
computerized measure of emotion processing previously used
in studies with epilepsy patients (12, 38). It aims to assess
the perception of facial expressions, prosody, and linguistically
presented emotional material and therefore employs visual and
auditory modalities of communication (37). Instructions as well
as verbal and auditory stimuli for CATS tasks were translated into
German at the Swiss Epilepsy Center.

The CATS consists of 13 subtests: 11 emotion tasks and two
control tasks assessing facial identification, emotion matching
with and without verbal denotation (e.g., in some tasks both
emotional faces and the name of the target emotion is displayed
on the screen, whereas in other tasks no additional verbal cues are
given), emotional tone or prosodic processing with and without
verbal denotation (e.g., in some tasks both emotional prosody

and the name of the target emotion is displayed on the screen,
whereas in other tasks no additional verbal cues are given),
and with conflicting or congruent semantic content. Emotional
stimuli covered happy, sad, angry, surprised, disgusted, fearful,
or neutral mood.

Composite scales. Each item within a subtest is scored as
either correct or incorrect, and items are summed to obtain
a raw score for each of the 13 subtests. Data from the 11
emotion related subtests were combined and reduced to five
different composite scales: Simple Facial Scale (Subtests 2 and 5),
Complex Facial Scale (Subtests 7, 8, 13), Prosody Scale (Subtests
4, 6, 9), Lexical Scale (Subtests 10), and Cross-Modal Scale
(Subtest 11 and 12).

Quotient scales. Broader scales, based on mode of
communication (facial affect and prosody) and emotion
per se, are also generated. The Affect Recognition Quotient
is obtained by combining the two facial scales; the Prosody
Recognition Quotient is identical to the Prosody Scale, and
the Emotion Recognition Quotient is an overarching scale and
includes all 11 emotional subtests.

Discrete emotion scales. There are additional scales for
each of the six basic emotions that provide information about
performance based on type of emotion. Items in the discrete
emotion scales test facial affect recognition and are taken from
Subtests 5, 7, 8, and 13.

Ekman Faces
The Ekman 60 Faces Test is a well-known neuropsychological
tool assessing emotion recognition from facial expressions of
basic emotions. It consists of photographs from the Ekman and
Friesen series of Pictures of Facial Affect (39), which has been the
most widely used and validated series of photographs in facial
expression research. The faces of 10 actors (six female, four male)
were shown, each displaying the six basic emotions (happiness,
sadness, disgust, fear, surprise, and anger). The maximum test
score indicating best performance is 60 for all six emotions and
10 for each basic emotion. The computer software for the test was
available on CD-ROM. Patients were allowed unlimited time for
the response.

TABLE 1 | Characteristics of patients and healthy controls.

Variable Healthy

controls

(n = 17)

TLE patients

(n = 22)

Mann-Whitney-U-

Test /

Chi2-Test/(Fisher’s

exact test

Age in years,

mean (SD)

31 (8.6) 35 (10.3) p = 0.193

Sex (female; male) 9; 8 10; 12 p = 0.643

Education in

years, mean (SD)

10.73 (5.7) 12.14 (3.5) p = 0.262

Handedness (right;

left)

15; 2 19; 3 p = 0.862

MWT-B (estimated

IQ), mean (SD)

115.40 (12.4) 101.82

(10.35)

p = 0.008
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FIGURE 1 | fMRI activation patterns in amygdala lesions. (A) BOLD signal in left amygdala, contralateral to the AE on the right. (B) BOLD signal in amygdala bilaterally,

however more on the right than on the left (left-sided AE).

Anxiety and Depression Scale
The HADS measures levels of anxiety and depression during
the last week. It consists of an anxiety subscale (HADS-
A) and a depression subscale (HADS-D), each containing
seven items scoring from 0 to 3 (40). Total scores in
each subscale range from zero to 21, with higher scores
indicating pronounced anxiety- and depression-related
symptoms. We classified scores below eight as normal,
between eight and 10 as mild, and above 10 as clinically
significant (40).

Statistics
Analyses were carried out using SPSS Version 20. Two-by-two
comparisons were performed by means of Mann–Whitney-U-
Test for non-parametric independent samples and unpaired t-
test for parametric samples. Comparisons of more than two
groups were performed by means of the Kruskal–Wallis test or
one-way ANOVA.

Significance was set at α < 0.05 and all p-values were
adjusted for multiple comparison using the Benjamini-Hochberg
FDR correction method. Correlation of independent as well
as dependent variables with each other and with variables
such as behavioral data were tested using the Spearman’s rank
correlation coefficient.

Ethics Statement
The study was performed according to the Declaration of
Helsinki and approved by the local ethics committee of the
Medical University of Innsbruck. Written informed consent was
obtained from all participants prior to study tests.

TABLE 2 | BOLD signal in patients.

Ipsilateral to amygdala lesion 7 (7 TLE L)

Contralateral to amygdala lesion 6 (4 TLE L; 2 TLE R)

No BOLD 9 (6 TLE L; 3 TLE R)

RESULTS

An overview of demographic data of patients and healthy
controls is shown in Table 1. A significant difference
between patients and healthy controls was seen in the
estimated verbal IQ, with healthy controls achieving
higher scores.

fMRI Single Subject Analysis
Blood oxygenation dependent (BOLD) signal was elicited in 13
(59%) patients and 12 (71%) healthy controls. The BOLD signal
was seen most frequently bilaterally in amygdalae in both groups
(Figure 1). However, in healthy controls it was more common
compared to the patients (47 vs. 23% respectively), without
reaching a statistically significant difference.

In patients, we observed the following activation patterns
in fMRI task in relation to AE: seven patients had ipsilateral
activation (group PAT1), suggesting therefore functional
integration of enlarged amygdala. In six patients, the BOLD
signal was observed solely in the amygdala contralateral to
the AE (group PAT2) (Figure 1) and in nine patients, there
was no BOLD signal registered in either amygdala (group
PAT3), suggesting dysfunction of amygdala in these two groups
(Table 2).
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We did not analyze the presence of BOLD signal in relation to
the AE side due to small sample size in each sub-group (the data
presented in Tables 2, 3).

Amygdala Volumetry
Amygdala volumes in 17 healthy controls were normally
distributed. The mean total volume of amygdala in healthy
controls was 3.6 (SD 0.2) cm3. The right and left amygdala
volumes were not statistically different, however slightly larger
on the right with a mean volume of 1.9 (SD 0.1) cm3 and left
amygdala with a mean volume of 1.7 (SD 0.1) cm3. The left
amygdala was significantly larger in patients with left mesial TLE
compared to the left amygdala in healthy controls: mean volume
1.8 cm3 (SD 0.1) vs. 1.7 cm3 (SD 0.1), respectively; Student’s t-
test p = 0.015, 2-tailed. The mean volume of right amygdala was
higher in patients with right mesial TLE compared to the volume
of the right amygdala in the healthy controls, without reaching
statistically significant difference: mean 2.0 cm3 (SD 0.3) vs. 1.9
(SD 0.1) cm3, respectively; Student’s t-test p= 0.124, 2-tailed.

fMRI Group Comparisons
Whole Brain Analysis
There was no significant difference in activation patterns when
the whole group of patients was compared with healthy controls.
Sub-group analyses regarding patients with left mesial TLE vs.
healthy controls as well as patients with right mesial TLE vs.

healthy controls also did not show any significant difference [all
p > 0.005 (uncorrected)].

ROI Analyses
Beta estimates were extracted from right and left amygdalae, as
defined by manual segmentation.

Beta estimates for fearful face > landscape did not differ
significantly within the patient groups (PAT1, PAT2, and PAT3).
Beta estimates for fearful face > landscape contrast in the left
amygdala region did not differ significantly in patients with
left TLE vs. patients with right TLE [T(16) = −1.481; p =

0.158]. However, beta estimates for fearful face > landscape
contrast in the right amygdala region were significantly reduced
in patients with right TLE vs. patients with left TLE [T(16) =

−2,922; p = 0.010]. No significant difference was found when
comparing beta-estimates of the unilaterally enlarged amygdala
to the contralateral amygdala within the patient group [T(16)

= −1.433, p = 0.170]. The results of the individual ROIs are
presented in the Supplementary Table 1.

Behavioral Tests
Neuropsychological data were not carried out in four patients
and two healthy controls. Therefore, those subjects could not be
included in further analysis regarding neuropsychological tests
on emotion recognition.

TABLE 3 | fMRI activation patterns in TLE patients and healthy controls.

No BOLD signal BOLD signal bilaterally BOLD signal on the left BOLD signal on the right Total

Healthy controls (N, %) 5 (29%) 8 (47%) 2 (12%) 2 (12%) 17 (100%)

Patients (N, %) 9 (41%) 5 (23%) 4 (18%) 4 (18%) 22 (100%)

TLE L (N) 6 5 2 (ipsilateral) 4 (contralateral) 17

TLE R (N) 3 0 2 (contralateral) 0 5

TABLE 4 | Performance of TLE patients and healthy controls on the CATS quotients expressed as Z scores.

Variable Healthy controls

(n = 15) Med (min-max)

TLE patients (n = 18)

Med (min-max)

Mann-Whitney-U-Test

Affect Recognition Quotient 1.00 (-1.00 – 2.00) 0.20 (-1.3 – 1.00) p = 0.106

Prosody Recognition Quotient −0.40 (-2.90 – 2.00) −1.00 (-4.70 – 0.80) p = 0.329

Emotion Recognition Quotient 0.40 (-1.60 – 2.20) −0.85 (-3.50 – 0.40) p = 0.023*

Simple Facial Scale 0.40 (-1.60 – 2.20) 0.60 (-0.90 – 1.20) p = 0.829

Complex Facial Scale 0.90 (-1.30 – 2.00) −0.20 (-2.00 – 1.10) p = 0.046*

Prosody Scale −0.40 (-0.50 – 1.60) −1.00 (-4.60 – 0.80) p = 0.329

Lexical Scale −0.80 (-1.30 – 0.30) −0.90 (-2.70 – 0.30) p = 0.011*

Discrete Emotion Scales:

Happy 0.30 (0.30 – 0.30) 0.30 (-2,60 – 0.30) p = 0.744

Surprised 0.10 (-1.70 – 1.00) −0.80 (-2.70 – 1.00) p = 0.422

Fear 1.10 (-2.30 – 1.90) 0.20 (-2.30 – 1.50) p = 0.214

Sad −0.40 (-2.50 – 0.30) −1.50 (-6.60 – 0.30) p = 0.829

Angry 0.00 (-1.00 – 1.60) −1.00 (-1.50 – 1.10) p = 0.035*

Disgusted 0.70 (-2.00 – 1.20) −0.15 (-2.00 – 1.00) p = 0.488

*Mann-Whitney-U-Test is significant at the p < 0.05 level (two-tailed).
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TABLE 5 | Results of each group on the Ekman 60 Faces Test.

Ekman-

Scales

Healthy controls (n = 15)

sum correct answers

Med (min-max)

TLE patients (n = 18)

sum correct answers

Med (min-max)

Mann-

Whitney-U-

Test

Anger 9 (6–10) 8 (5–10) p = 0.329

Disgust 9 (5–10) 7,5 (3–10) p = 0.102

Fear 6 (2–10) 4.5 (1–10) p = 0.102

Happiness 10 (9–10) 10 (8–10) p = 0.997

Sadness 8 (7–10) 8 (2–10) p = 0.898

Surprise 9 (7–10) 9 (5–10) p = 0.931

Total score 53 (44–57) 44.5 (38–59) p = 0.017*

*Mann-Whitney-U-Test is significant at the p < 0.05 level (two-tailed).

Comprehensive Affect Testing System (CATS)∗

Quotient scales: Comparison of all patients with healthy
controls showed significantly worse performance in the Emotion
Recognition Quotient. In the Affect Recognition Quotient and
the Prosody Recognition Quotient, no difference was observed
between the two groups. For results, see Table 4.

When comparing the three patient groups (PAT1, PAT2, and
PAT3), no significant difference was found in the three quotient
scales (all p > 0.05).

Composite scales: Comparison of all patients with the
healthy control group showed significant differences in the
Complex Facial Scale and in the Lexical Scale. Patients performed
significantly worse than healthy controls. The remaining two
Composite Scales (Simple Facial Scale, Prosody Scale) did not
show significant differences (all p > 0.05). When comparing the
three patient groups (PAT1, PAT2, and PAT3), no significant
difference was found in all four composite scales (all p > 0.05).

Discrete emotion scales: Patients performed significantly
worse compared to healthy controls in recognition of anger. In
all other Discrete emotion scales, no significant differences were
observed. Furthermore, no differences were observed when the
three groups of patients (PAT1, PAT2, and PAT3) were compared
(all p > 0.05).

Ekman 60 Faces Test∗

The patient group performed significantly worse compared to
healthy controls in emotion recognition as assessed by the Ekman
60 Faces Test (sum of all six sub-scales) (Table 5). However, no
significant difference can be found in sub-scales, each presenting
one of the six basic emotions (all p > 0.05).

When comparing the three patient groups (PAT1, PAT2, and
PAT3), no significant difference could be found (all p > 0.05).

∗The influence of verbal IQ as a potential confounding factor
was assessed by explorative univariate ANOVA for the CATS and
Ekman faces measures where significant group differences were
detectable by means of Mann-Whitney U-tests (i.e., Emotion
Recognition Quotient, Complex Facial Scale, Lexical Scale,
Angry, Ekman total score). Significance was set at a α < 0.05 one-
tailed. The group difference in the Lexical Scale was the only one
that did not reach significance after controlling for verbal IQ.

TABLE 6 | Results of each group on HADS.

Healthy

controls

TLE patients Chi2-test (Fisher’s exact test)

Anxiety

(HADS-A)

0.458

Score ≤7 12 (80%) 13 (65%)

Score 8–10 3 (20%) 5 (25%)

Score ≥11 0 (0%) 2 (10%)

Depression

(HADS-D)

0.244

Score ≤7 15 (100%) 17 (85%)

Score 8–10 0 (0%) 3 (15%)

Score ≥11 0 (0%) 0 (0%)

Hospital Anxiety and Depression Scale (HADS)
In both anxiety and depression subscales, the majority of patients
and healthy controls scored in the normal range. Very few
participants in both groups scored above seven, indicating mild
to clinically significant anxiety- or depression-related disorders.
Chi2-tests indicated that the distribution of normally scoring
participants vs. mild-to-clinically relevant disorders did not differ
between the two groups (both p > 0.1) (Table 6).

Correlations
Ekmann total score correlated with the CATS total score (sum of
all 13 subtests) (r = 0.74, p < 0.001). Both total scores correlated
significantly with verbal IQ (Ekman: r = 0.60, p < 0.001; CATS:
r = 0.62, p < 0.001).

Regarding depression and anxiety symptoms, both scores
correlated with the Ekmann total score (r = −0.487, r < 0.05 /
r =−0.438, r < 0.05), as well as the CATS total score (r =−598,
p < 0.001 / r =−585, p < 0.001).

DISCUSSION

In this prospective study on 22 patients with unilateral drug
resistant mTLE due to ipsilateral AE, we have demonstrated that
enlarged amygdala might display both, functional integration
in emotion processing as well as dysfunction, as assessed by
“fearful faces” fMRI paradigm. Enlarged amygdala on the right
was dysfunctional in patients with right mTLE compared to
those with left mTLE. The patients performed worse compared
to healthy controls in emotion recognition as shown by the CATS
and Ekman faces.

Enlargement of amygdala is a rare condition which may be
associated with mTLE (3). The changes observed on MRI might
be caused by different etiologies such as autoimmune limbic
encephalitis, dysplasia or low-grade tumor. Autoimmune limbic
encephalitis is the most frequent cause of lesional mTLE in adults
(41). Aside from epileptic seizures, which poorly respond to
drugs, patients may present with acute psychosis (41, 42). On
MRI, swelling of mesial temporal structures with high signal
in T2-weighted sequences and uptake of contrast substance are
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observed in an acute phase (41, 43). These changes may be uni-
or bilateral, they either resume completely within few months
or result in a volume reduction of amygdala and hippocampus,
causing mesial temporal lobe sclerosis (43, 44). In a serum or
cerebro-spinal fluid (CSF) of patients with limbic encephalitis,
either onconeural (mainly Hu and Ma2 antibodies) or various
non-paraneoplastic antibodies (e.g., VGKC, NMDA-R) may be
detected (41, 42).

Amygdala is considered dysplastic if the patients do not have
any clinical or laboratory evidence of limbic encephalitis and the
MRI changes remain stable over a long period of time (41). Low
grade (e.g., astrocytoma WHO grade II) or dysplastic tumors
(e.g., developmental neuroepithelial tumor or ganglioglioma)
are diagnosed on histopathology in about 15% of patients with
AE (42).

In our cohort of patients, we could not determine the
underlying etiology as the histology was not available in a pre-
surgical setting and the majority of patients were not tested
for serum or CSF antibodies. All our patients underwent at
least two serial MRIs with an interval of at least 6 months
and no lesion progression or contrast substance uptake was
demonstrated. Therefore, we presume that the patients in our
series did not have a high-grade tumor affecting amygdala. The
heterogeneity of fMRI response in patients might be due to
different etiology of AE. We could speculate that those with
amygdala dysplasia might demonstrate dysfunction as opposed
to acquired lesions such as autoimmune limbic encephalitis or
low-grade tumor, which could maintain function. Congenital
lesions such as malformations of cortical development due
to abnormal neuronal proliferation (focal cortical dysplasia
type II, tuberous sclerosis, etc.) usually do not bear function
as demonstrated by fMRI studies (45, 46) and invasive
EEG recordings (47). Other possible reasons for amygdala
dysfunction might be epilepsy features irrespective of its etiology,
e.g., duration of epilepsy, seizure frequency, seizure types
etc. However, in the regression analysis, we could not find
any association between different epilepsy features and fMRI
activation patterns.

The side of temporal lobe damage might play a critical role in
perception of fear as left- and right-sided TLE patients displayed
different fMRI activation patterns in our series. In patients
with right TLE, amygdala displayed either no BOLD signal or
activation on the contralateral side; whereas patients with left-
sided TLE showed activation of damaged amygdala in 41% of
cases. Right amygdala has been implicated in the literature as
a key structure for fear processing and that its function cannot
be fully compensated in case of right-sided mesio-temporal lobe
damage (48).

In a systematic review, it has been shown that facial emotion
recognition of all six basic emotions (anger, disgust, fear, sadness,
happiness, and surprise) was impaired in patients with TLE
compared to healthy controls with the largest effect size for fear
(49). Interestingly, poorer ability of facial emotion recognition
was observed in patients with right-sided TLE (18), which
is in line with our findings as we demonstrated dysfunction
of right enlarged amygdala in patients with ipsilateral mTLE.
Similar to our findings, Toller et al. demonstrated by dynamic

fearful faces fMRI that right mTLE was associated with reduced
activity in the right amygdala, suggesting its mediating role
in the emotional awareness of empathic experiences of fear
(50). In patients with mTLE, the deficits in facial emotion
perception are contributed to the disruptions of functional
networks, which are more pronounced in right mTLE (51).
Children and adolescents with mTLE also demonstrate deficits
in perception of different emotions, especially of fear (52). These
deficits were observed in patients with both left and right mTLE,
however, the deficits were more prominent in the latter (52).
Earlier onset of seizures was associated with poorer recognition
of facial expression of emotions (52). The earlier the damage
to the right mesial temporal structure, the greater the deficit in
fear recognition and in fMRI activation magnitude in patients
with right-sided TLE (53). In our series, we did not observe
any association between the duration of epilepsy and the fMRI
activation patterns. However, the neurobiology of the lesion
and the time of the insult could determine dysfunction of the
right amygdala.

Amygdala abnormalities contribute to comorbid affective
disorders in TLE. Interictal anxiety and depression are common
in patients with pharmacoresistant TLE due to amygdala damage.
At the same time, patients with major depression show amygdala
dysfunction in fMRI. The fMRI reactivity of amygdala to emotion
facial impressions is associated with greater chances of symptom
improvement in patients with major depression (54). In patients
with drug resistant mTLE, a pre-operative assumption of the
post-surgical risks of developing emotional disturbances is of
great importance. Bonneli et al. have shown that the greater the
pre-operative fMRI activation in right amygdala, the higher the
chance of developing post-operative depression and anxiety (21).
This was not true, however, for patients with left-sided TLE. As
our study was pre-surgical, we cannot judge the deficits following
epilepsy surgery.

The main limitations of this study are related to a small
number of patients in analyzed subgroups and the pre-surgical
nature of the study, which precludes the histological diagnosis of
AE. Furthermore, the vast majority of patients of this series were
not tested for autoimmune antibodies, which would potentially
contribute to the diagnosis of limbic encephalitis. Therefore, in
the absence of histological and immunological data, we could
not judge upon the neurobiology of dysfunctional or functionally
integrated enlarged amygdala.

CONCLUSION

In this study, we could show that in patients with unilateral
mesial TLE and ipsilateral AE, an amygdala could display either
functional integration in emotion recognition or dysfunction
as demonstrated by fMRI. The results of neuropsychological
tests display deficits in emotion recognition in patients
as compared to healthy controls. These results are in line
with the current evidence and support the notion that
perception and recognition of emotions are commonly
impaired in mTLE, more in right-sided mTLE as compared to
left-sided mTLE.
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