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SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) are

an heterogeneous family of proteins that, together with their key regulators, are

implicated in synaptic vesicle exocytosis and synaptic transmission. SNAREs represent

the core component of this protein complex. Although the specific mechanisms of

the SNARE machinery is still not completely uncovered, studies in recent years have

provided a clearer understanding of the interactions regulating the essential fusion

machinery for neurotransmitter release. Mutations in genes encoding SNARE proteins

or SNARE complex associated proteins have been associated with a variable spectrum

of neurological conditions that have been recently defined as “SNAREopathies.” These

include neurodevelopmental disorder, autism spectrum disorder (ASD), movement

disorders, seizures and epileptiform abnormalities. The SNARE phenotypic spectrum

associated with seizures ranges from simple febrile seizures and infantile spasms, to

severe early-onset epileptic encephalopathies. Our study aims to review and delineate

the epileptic phenotypes associated with dysregulation of synaptic vesicle exocytosis

and transmission, focusing on the main proteins of the SNARE core complex (STX1B,

VAMP2, SNAP25), tethering complex (STXBP1), and related downstream regulators.

Keywords: SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor), epilepsy,

seizures, mutations, vesicle fusion, epileptic encephalopathies

INTRODUCTION

Epilepsy is defined as a large heterogeneous group of diseases in which individuals have an
enduring predisposition to seizures (1), characterized by many different seizure types and epilepsy
syndromes (2, 3).The term “epileptic encephalopathy” refers to a group of disorders in which
unremitting epileptic activity contributes to progressive cerebral dysfunction (4). The epilepsies
have a wide range of etiologies, which include genetic, metabolic, immune, and inflammatory
factors; acquired or congenital brain abnormalities, infections, trauma or hypoxic-ischemic insults
due to brain injuries (3). A genetic cause has been found in more than 50% of epilepsy
phenotypes, particularly in developmental epileptic encephalopathies (5, 6). Pathogenic variants
in genes encoding several voltage-gated K+, Na+, and Ca2+ channels subunits are the most
common genetic cause of epileptic encephalopathies, accounting for a group of diseases defined
as “channelopathies” (7). Another class of functionally related proteins have been discovered by
James E. Rothman in 1994 and given the name SNARE (soluble N-ethylmaleimide sensitive factor
attachment protein receptor) (8). Since then, several mutations in each subunit of the SNARE
complex have been associated with an heterogenous group of neurological disorders, together
referred to as SNAREopathies. SNAREs are a protein family involved in transport and release
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mechanisms of synaptic vesicles inside the neuron. They mediate
the fusion of membranes by localizing both at the vesicular
and target membrane. The core SNARE machinery consists of
VAMP2 (synaptobrevin-2), the only vesicular binding SNARE
(v-SNARE) of the complex and a combination of target
membrane SNARE proteins (t-SNAREs): syntaxin1-A (STX1A)
and synaptosomal-associated protein 25 kD (SNAP25) (9). The
assembly of the SNARE machinery is carefully arranged by
the assembly complex, which is composed of MUNC18-1 and
MUNC13-1 and plays an essential role in the fusion of synaptic
vesicles (10). Pathogenic biallelic and monoallelic variants
disrupting proteins of the SNARE complex and associated
regulators are a known cause for neurodevelopmental disorders
consisting of an overlapping phenotype of developmental delay
(DD), intellectual disability (ID), movement disorders, and
epilepsy. The SNARE phenotypic spectrum associated with
seizures ranges from simple febrile seizures and infantile
spasms, to severe early-onset epileptic encephalopathies. Here
we review the epileptic phenotypes associated with dysregulation
of synaptic vesicle exocytosis and transmission, focusing on the
main proteins of the SNARE core complex (STX1B, VAMP2,
SNAP25), assembly complex (STXBP1, UNC13A), and related
downstream regulators.

PROTEINS OF THE MAIN SNARE
COMPLEX

STX1B
Sintaxin-1B (STX1B) codes for a presynaptic plasma membrane
protein that belongs to the syntaxins family and is predominantly
expressed in neurons. STX1B is part of the SNARE complex and
its main role is to mediate the calcium-dependent synaptic vesicle
release (11, 12). The crucial role of STX1B is underlined by studies
performed on animal models. In fact, STX1B KO mice presented
with impaired brain development, disruptedmotor coordination,
and only survived the first 14 days. Hippocampal cell cultures
viability was lower compared to controls (13). Interestingly,
heterozygous STX1B presented with a less severe phenotype
(14), while heterozygous zebrafish models showed jerks and
paroxysmal movements. Epileptic episodes were observed in
approximately 50% of the animals, with increased events
associated with higher temperature which is in concordance with
the occurrence of febrile seizures (15).

A total of 40 different heterozygous or denovo mutations
in STX1B have been described so far. These included 4
missense, 2 indels, 6 nonsense, 7 frameshift, 7 splice variants
and 4 large indels (Table 1). Most of these mutations were
predicted to cause haploinsufficiency of STX1B, resulting in
early termination of the protein. Sixty-two individuals have
been described so far and the mainly reported phenotype was
epilepsy (Table 2) (15–28). Wolking et al. (23) divides STX1B-
associated epileptic phenotypes in four different groups: (1)
benign epilepsy syndrome with febrile and afebrile seizures
corresponding to “genetic epilepsies with febrile seizures plus,”
(2) “genetic generalized epilepsy” phenotype, (3) “developmental
and epileptic encephalopathy” syndrome with refractory seizures

and moderate to severe developmental deficits, and (4) focal
epilepsy phenotype. Seizures have been described in almost all
the individuals (61/62, 98%) and, where specified, they were the
main symptom at onset in the majority of the individuals (43/48,
90%). Generalized seizures were the most common type of onset,
presenting in 53 individuals (53/57, 93%), while focal-onset
seizures occurred in 14 individuals (14/39, 36%). Seizure type
ranged from tonic-clonic seizures (40/56, 71%) absence seizures
(16/47, 34%), tonic or atonic seizures (24/56, 43%) to myoclonic
seizures (16/30, 53%). Infantile spasms and status epilepticus
were infrequent, both being reported in only two individuals. Out
of the 47 electroencephalography recordings available, 42 showed
epileptiform or non-epileptiform abnormalities (42/47, 89%).

Global developmental delay was documented in 15 individuals
(15/47, 32%), and 23 individuals manifested various degrees
of intellectual disability (23/59, 39%). Motor impairment,
mainly ataxia, has been reported in 15 individuals (15/48,
31%). Behavioral or movement abnormalities were infrequent,
accounting for 10% and 4% of the cases, respectively (5/45
and 2/51, respectively). When available, magnetic resonance
imaging (MRI) was unremarkable for the majority of the cases
(22/27, 81%).

VAMP2
VAMP2 encodes synaptobrevin-2, a major neuronal v-SNARE
protein responsible for fusing synaptic vesicles at mammalian
central nerve terminals (29, 30). VAMP2 KO mice presented
with abnormal body shape and died shortly after birth, brain
abnormalities were not detected (31). Moreover, synaptic vesicle
observed under the electron microscope from VAMP2 KO mice
presented abnormal morphology and size (32).

De novo mutations in VAMP2 have hitherto been reported
in 11 individuals with neurodevelopmental disorder (Table 1)
(33–35). VAMP2 has been first described as a causative gene
by Salpietro et al. (33), who reported 5 unrelated individuals
with de novo heterozygous mutations. Simmons (34) and Sunaga
(35) further expanded the cohort with 6 additional unrelated
individuals carrying de novo heterozygous mutations in VAMP2.
The mutations described so far include 7 missense, 2 indels,
1 nonsense and 1 frameshift. The entire cohort of variants is
localized in the highly conserved SNARE motif.

All the affected individuals showed moderate to severe
global developmental delay and intellectual disability (11/11;
100%). Behavioral abnormalities, including Autism Spectrum
Disorder (ASD) or Rett-like features, were virtually present in
all the reported cases (9/9; 100%). Movement abnormalities
were present in 6 individuals (6/11, 55%) and included chorea
(n = 3), dystonia (n = 1), myoclonic jerks (n = 1), tremor
(n = 1) and hyperkinetic movements (n = 1). Even though
seizures have only been reported in 6 individuals (6/11,
55%), electroencephalography (EEG) recordings, where available,
showed abnormalities in 7 individuals (7/9; 78%). Generalized-
onset seizures were the most prevalent type, occuring in 5
individuals (5/6, 83%). Among those, seizure type varied from
tonic-clonic (n = 2), tonic/atonic (n = 1) and myoclonic (n =

1). Infantile spasms have been reported in 3 individuals (3/6,
50%), two of them in theWest syndrome spectrum. Focal seizures
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TABLE 1 | Mutations in SNARE proteins encoding genes.

Type of mutation

Gene Inheritance Zygosity Missense Nonsense Frameshift Splicing Indel Large indels Associated OMIM

number

VAMP2 AD Denovo 7/11 1/11 1/11 – 2/11 – 185881

STX1B AD Heterozygous,

Denovo

14/40 6/40 7/40 7/40 2/40 4/40 601485

SNAP25 AD Denovo 15/19 2/19 – 2/19 – – 600322

STXBP1 AD, AR Heterozygous,

Homozygous,

Denovo

60/209 30/209 42/209 34/209 2/209 41/209 602926

MUNC13-1 AD, AR homozygous,

denovo

1/2 1/2 – – – – 609894

GOSR2 AR Homozygous,

Compound

Heterozygous

4/7 – – 2/7 1/7 – 604027

SNAP29 AR Homozygous,

Compound

Heterozygous

3/10 2/10 5/10 – – – 604027

STXBP5L AR Homozygous 1 – – – – – 609381

CPLX1 AR Homozygous 1/3 2/3 – – – – 605032

were less frequent, occurring in 3 individuals (3/6; 50%). Two
individuals experienced status epilepticus (2/6, 33%). Magnetic
resonance imaging was unremarkable for 6 individuals, otherwise
MRI findings included corpus callosum thinning or hypoplasia
(n = 2), periventricular FLAIR hyperintensities (n = 1) or mild
brain atrophy (n = 1) (Table 2). Of the 11 individuals with de
novo variants, seven different missense variants were identified,
in addition to two single residue deletions and two stop gains. All
variants were absent from GnomAD database blablabla to date,
it seems that no clear correlation between the type of variant and
the phenotype has been identified.

SNAP25
SNAP25 encodes the SNAP-25 protein, a t-snare widely expressed
in the brain which is localized both at the presynaptic nerve
terminal as well as to neuronal membranes (36). SNAP-25 is
distinctive in the SNARE complex as it lacks a transmembrane
domain and contains two SNARE motifs separated by a
linker region (37). When trying to generate KO SNAP25
mice, it was observed that heterozygous mice did not present
any significant differences in comparison to their wilt-type
littermates. However, no homozygous SNAP25-/- were generated
from the heterozygous crosses. Analysis of the homozygous
fetuses revealed smaller size, absence of movements and blotchy
appearance likely caused by vascular abnormalities of the skin.
Morphology of the brain appeared normal (38). There have been
19 different de novomutations identified so far in SNAP25 across
23 patients (39). Out of the total number of variants, 14 were
missense, 2 nonsense and 2 splice-site (Table 1). The mutations
are localized in the SNARE motifs and are predicted to disrupt
the SNARE complex, but thorough functional studies are yet to
be performed.

All individuals presented with global developmental delay and
intellectual disability (23/23, 100%), ranging between profound
(4/20; 20%), severe (5/20; 25%), moderate (6/20; 30%), and
mild (5/20; 25%). Regression was reported in five individuals
(5/17; 29%) with three of them showing signs of regression with
the onset of seizures. All individuals showed variable degree
of motor delay, with motor impairment being more evident
in 12 individuals (12/15, 80%). Seizures have been reported in
17 individuals (17/23, 74%). The age of seizure onset ranged
between the 7th day of life to 12 years. In 14 individuals, the
onset was before 2 years of age. Most individuals showed a broad
spectrum of epileptic spasms, generalized and focal seizures.
Generalized-onset or focal to generalized-onset seizures were
the most frequently occuring, being reported in 11 individuals
(11/17, 65%), while focal seizures were described in 6 individuals
(6/17, 35%). Seizure spectrum included tonic-clonic (n = 7),
absence (n = 6), tonic or atonic (n = 4), myoclonic (n =

4) seizures and epileptic spasms (n = 5). Status epilepticus
was reported in only one individual. EEG abnormal findings,
generally multifocal epileptic discharges and generalized spike
wave discharges, were documented in 15 out of the 16 available
records (15/16, 94%). Less frequently reported features were
abnormal movements (5/21, 24%) and behavioral abnormalities
(3/18, 17%). MRI was performed on 21 individuals and was
unremarkable in 15 individuals (15/21, 71%) (Table 2).

SNARE COMPLEX ASSEMBLY FACTORS

MUNC18-1 (STXBP1)
MUNC18-1, also known as Syntaxin-binding protein-1
(STXBP1), belongs to the Sec1/Munc18 (SM) family. MUNC18-
1, together with MUNC13-1, plays a crucial role in the SNARE
complex assembly. More specifically, MUNC18-1 forms an
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TABLE 2 | Main phenotypes associated with mutations in the SNARE complex.

Gene Disorder (#OMIM) MOI Cases Age of onset Seizures EEG

discharges

Global

developmental

delay

Intellectual

disability

Motor

impairment

Movement

disorders

Autism/

behavioral

abnormalities

MRI

abnormalities

Main proteins

STX1B Generalized epilepsy with

febrile seizures plus, type

9 (#616172)

AD 62 Early infancy 61/62 (98%) 42/47(89%) 15/47 (32%) 23/59 (39%) 15/48 (31%) 2/51 (4%) 5/45 (11%) 5/27 (19%)

VAMP2 Neurodevelopmental

disorder with hypotonia

and autistic features with

or without hyperkinetic

movements (#618760)

AD 11 Early

childhood

6/11 (∼55%) 7/9 (∼78%) 11/11 (100%) 9/9 (100%) 8/10 (80%) 06/11 (∼55%) 9/9 (100%) 4/10 (40%)

STXBP1 Developmental and

epileptic encephalopathy

4 (#612164)

AD >400 Early infancy 401/446

(∼90%)

160/226

(∼71%)

297/313 (∼95%) 261/279

(∼94%)

143/261 (55%) 130/261 (50%) 96/274 (35%) 111/257 (43%)

SNAP25 Myasthenic syndrome,

congenital, 18;

Developmental and

epileptic encephalopathy

(#616330)

AD 23 Early infancy

to childhood

onset

17/23

(73.9%)

15/16

(93.75%)

23/23 (100%) 23/23 (100%) 12/15 (80%) 5/21 (23.81%) 3/18 (16.67%) 6/21 (29%)

MUNC13-1 Not on OMIM AR/AD 2 Early infancy 1/2 (50%) 2/2 (100%) 2/2 (100%) 2/2 (100%) 2/2 (100%) 1/2 (50%) 1/2 (50%) 1/2 (50%)

Other associated proteins

CPLX1 Developmental and

epileptic encephalopathy

63 (617976)

AR 5 Early infancy 5/5 (100%) 3/3 (100%) 5/5 (100%) 5/5 (100%) 3/3 (100%) – – 3/5 (60%)

STXBP5L Not on OMIM AR 2 Early infancy 2/2 (100%) – 2/2 (100%) – – 1/2 (50%) – 2/2 (100%)

SNAP29 Cerebral dysgenesis,

neuropathy, ichthyosis,

and palmoplantar

keratoderma syndrome

(609528)

AR 25 Late

infancy/Childhood

9/25 (36%) – 25/25 (100%) 25/25 (100%) – 0/25 (0%) – 21/22 (95%)

GOSR2 Epilepsy, progressive

myoclonic 6 (#614018)

AR 34 Childhood 31/33(94%) 22/22 (100%) 6/26 (23%) 5/24 (20%) 32/32 (100%) 24/26 (93%) – 5/16 (31%)

Seizures EEG

discharges

Seizures as

first

symptom at

onset

Infantile

spasms

Generalized

onset

Tonic-clonic Absence Tonic and

atonic

Myoclonic Focal onset Status

epilepticus

STX1B 61/62 (98%) 42/47(89%) 43/48 (90%) 2/54 (4%) 53/57 (93%) 40/56 (71%) 16/47 (34%) 24/56 (43%) 16/30 (53%) 14/39 (36%) 2/8 (25%)

VAMP2 6/11 (∼55%) 7/9

(∼78%)

0 3/6 (50%) 5/6 (83%) 2/5 (40%) 0 1/5 (20%) 1/5 (20%) 3/6 (50%) 2/6 (33%)

SNAP25 73.91% 93.75% 7/17

(41.18%)

5/17

(29.41%)

11/17(64.71%) 7/17 (41.18%) 6/17 (35.29%) 4/17 (23.53%) 4/17 (23.53%) 6/17 (35.29%) 1/17 (5.88%)

STXBP1 401/446

(∼90%)

160/226

(∼71%)

69/84 (82%) 162/260

(62%)

108/159

(68%)

77/258 (30%) 22/247 (9%) 84/246 (34%) 49/236 (21%) 140/274 (51%) 9/163 (6%)
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inactive complex with syntaxin-1 to secure correct positioning
of the latter. The formation of this complex is likely to represent
the initial event for synaptic vesicle fusion (40).

KO mice have shown severe phenotype, dying immediately
after birth and with no neurotransmission activity recorded.
Moreover, degeneration was observed from cultured neurons
from these mice (41, 42). Mutations in STXBP1 are the most
commonly reported in literature, with a large difference in
numbers compared tomutations in other SNARE proteins. So far,
163 distinct mutations and 41 large indels have been identified in
STXBP1. The majority of this group is composed of 59 missenses,
followed by 40 frameshift, 34 splice-site, 28 nonsense and 2 indels
(Table 1). When missense variants are compared to all other
types of mutations, there is no correlation to presence or absence
of epilepsy. Cases reported to date were monoallelic, with the
exception of two recently described siblings carrying a biallelic
STXBP1 L446F mutation (43).

More than 400 cases have been reported so far (19, 44–103).
However, for many individuals, detailed clinical information
was not available. Nevertheless, the key clinical findings
in STXBP1-spectrum comprised global developmental delay
and/or intellectual disability, seizures and variable presence
of movement disorder, motor impairment or behavioral
abnormalities. The most commonly described clinical feature is
global developmental delay, presenting in 95% of the patients for
whom information was available (297/313, 95%). The range of
intellectual disability may vary: Stamberger et al. (56) reported
that more than 80% of the individuals described until then
presented with severe to profound intellectual disability.

Seizures were reported in 401 individuals (401/446,∼90%). A
wide spectrum of seizure types was described inmost individuals.
Where specified, epileptic spasms frequently occurred at some
stage during the disease course (162/260,∼63%). Other frequent
seizure types were generalized-onset seizures (108/159, ∼68%)
and focal seizures (140/274,∼51%). Almost 90% of seizures occur
in early infancy as the first symptom. When performed, EEG was
reported abnormal in 71% of the cases (160/226,∼71%).

Other less commonly reported features include motor
impairment [143/261 (55%)], movement disorders [130/261
(50%)] and behavioral abnormalities [96/274 (35%)]. In 146
of the 257 individuals for whom brain magnetic resonance
imaging (MRI) was available, no abnormalities were documented
(146/257,∼57%) (Table 2).

MUNC13-1
MUNC13-1 is a protein encoded by UNC13A and is highly
expressed in the hippocampus, cerebellum, cortex, striatum, and
olfactory bulb (104). By binding both to synaptobrevin-2 and
syntaxin-1, it aids in the formation of the SNARE complex,
thus making synaptobrevin-2 more accessible by the MUNC18-
1/syntaxin-1 formation (105).

Studies on MUNC13-1 KO mice have shown absence
of evoked and spontaneous excitatory and inhibitory
neurotransmitter release and synapses reduction in docked
vesicles (106, 107). Until now, only two cases have been reported
with mutations in MUNC13-1 (108, 109). A homozygous
nonsense mutation (p.Gln102Ter) in UNC13A was identified

in a girl with microcephaly, cortical hyperexcitability, fatal
myasthenia, global developmental delay and intellectual
disability. Seizures were not reported, but EEG showed
abnormalities. MRI documented thinning of corpus callosum.
Subsequently, a de novo heterozygous missense mutation
was identified in a boy with dyskinetic movement disorder,
developmental delay, intellectual disability, autism and ADHD,
who also experienced febrile seizures.

Other Associated Proteins
Epileptic phenotypes have also been associated with mutations
in other SNARE-associated proteins, here we review GOSR2,
SNAP29, STXBP5L, and CPLX1. The Golgi snap receptor
complex member 2 (GOSR2), is part of a complex responsible
for docking and fusion of newly synthesized proteins from the
endoplasmic reticulum (110). To date, seven different biallelic
variants have been reported in GOSR2 (Table 1). All individuals
share a similar phenotype with myoclonus epilepsy, ataxia, and
usually relatively preserved cognition. SNAP29, acting in the
autophagosome-lysosome fusion (111), has been found to harbor
10 distinct biallelic mutations (Table 1). Namely, 5 frameshifts, 2
nonsense and 3 missense (112). Mutations in SNAP29 have been
linked to CEDNIK syndrome, whose clinical features include
microcephaly, severe neurologic impairment, psychomotor
retardation, failure to thrive, and facial dysmorphism, as well
as palmoplantar keratoderma and late-onset ichthyosis (113).
Global developmental delay and intellectual disability have been
reported in all the affected individuals. Seizures are not very
common and have been described in 9 of the 25 reported
individuals (9/25,∼36%).

The function of STXBP5L is still not clear, but it has been
observed it plays a role in the inhibition of the formation
of the SNARE complex. Only one homozygous missense
variant has been reported so far in two siblings with seizures,
global developmental delay and MRI abnormalities (114, 115).
Complexin-1 (CPLX1) is a neuronal protein of the SNARE
complex, which contributes to vesicle fusing. To date, 2 nonsense
and 1missense biallelic mutations have been reported in the gene.
Only five cases have been described so far, all presenting with
seizures and global developmental delay (116, 117).

DISCUSSION

In the previous paragraphs, the epileptic syndromes
associated with mutations or variants in the SNARE
complex were briefly reviewed. Since the identification
of SNARE proteins, many studies have focused on the
role of the single molecules within the whole complex.
Mutations in each subunit of the complex and in the related
upstream and downstream regulators have been identified
in a heterogeneous group of disorders, mostly neurological
disorders. We focused on the association between the SNARE
complex and seizures. Only four proteins involved in the
synaptic vesicle fusion have not been linked to epileptic
phenotypes: α-synuclein, synaptobrevin-1, and synaptotagmin-1
and -2.
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Deficits in the subunits of the core complex (synaptobrevin-
2, syntaxin-1B and SNAP-25), Munc18-1 and complexin-1
are mainly associated with an overlapping spectrum of
developmental delay, intellectual disability, epilepsy, and
movement disorders. Overall, the most reported feature is
epilepsy, presenting in almost 90% of the individuals with a
SNARE dysfunction. Particularly, mutations in syntaxin-1B
are most associated with epileptic phenotypes. The type of
seizures may vary from generalized tonic-clonic, myoclonic
or absence seizures to focal seizures. Infantile spasms or West
syndrome were also reported in association with SNARE
dysfunction. The epileptic phenotypes associated with the
main vesicle fusion machinery have been characterized in
Table 2. Given the significant overlap in seizure semiology,
it is not possible to differentiate the genetic cause based on
seizure type. Global developmental delay and intellectual
disability are also frequent features, presenting in 85% of the
individuals. However, dysfunctions in STX1B and GOSR2 are
less commonly associated with developmental delay, as most
of the affected individuals don’t show intellectual impairment.
Motor impairment and movement abnormalities, including
ataxia, gait abnormalities, tremor, hyperkinetic movements,
chorea and myoclonus, are variably present, affecting almost half
of the individuals. Behavioral abnormalities, comprising Autism
Spectrum Disorder, Rett-like phenotypes and stereotypies, were
less commonly documented in the cohort. Brain MRI was
performed and reported as normal in more than 50% of the
overall cohort. We comprehensively reported the total cohort
of mutations identified so far in the genes that form the core
SNARE complex and some associated proteins. The zygosity of
genes in the core SNARE complex was heterozygous or de novo,
indicating the crucial role of these proteins. Studies on animal
models have confirmed this, by showing that homozygous KO
animal models are either incompatible with life or severely
affected, not surviving their first days. Therefore, it is likely
that the early onset of the epileptic phenotype might be the
consequence of the disruption of the neurotransmitters release
machinery. Except for STXBP1, where only one biallelic variant

was reported out of the total 209, all other discussed genes
presented biallelic and monoallelic variants. In conclusion,
we comprehensively described a cohort of more than 600
individuals affected with dysfunction in proteins of the SNARE
complex or synaptic vesicle machinery. We illustrated the
phenotypic spectrum of the SNARE-associated disorders and
focused on the epileptic phenotypes. This review underlines
the key role of SNARE proteins in the pathogenicity of epilepsy
and the prevalence of this phenotype. Limitations of this
study are mainly attributable to its retrospective nature. One
important limitation has been the lack of precise information
on the main phenotype and on the neuroradiological features,
particularly when the mutation was reported in big cohort
studies. Clinical features were summarized through percentages,
but we cannot exclude the risk of under or overestimation. We
reviewed the function of the main SNARE proteins, taking in
consideration the consequence of their disruption in animal
models. However, to better understand the pathways involved
in these disease mechanisms, further functional studies will
be required.
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